
ON THE BANACH SPACE VALUED AZUMA INEQUALITY AND
SMALL-SET ISOPERIMETRY OF ALON–ROICHMAN GRAPHS

ASSAF NAOR

Abstract. We discuss the connection between the expansion of small sets in graphs, and
the Schatten norms of their adjacency matrices. In conjunction with a variant of the Azuma
inequality for uniformly smooth normed spaces, we deduce improved bounds on the small-set
isoperimetry of Abelian Alon–Roichman random Cayley graphs.

1. Introduction

In what follows all graphs are allowed to have multiple edges and loops. For a finite group
Γ of cardinality n, the Cayley graph associated to the group elements g1, . . . , gk ∈ Γ is the
2k-regular graph G = (V,E), where V = Γ, and the number of edges joining u, v ∈ Γ equals
|{i ∈ {1, . . . , n} : uv−1 = gi}|+ |{i ∈ {1, . . . , n} : uv−1 = g−1

i }|.
For a graph G = (V,E) and S ⊆ V , let eG(S, V rS) denote the size of the edge boundary of

S, i.e., the number of edges joining S and its complement. The Alon–Roichman theorem [3]
asserts that random Cayley graphs obtained by choosing k group elements independently
and uniformly at random are good expanders, provided k is large enough:

Theorem 1.1 (Alon–Roichman theorem). For every ε ∈ (0, 1) there exists c(ε) ∈ (0,∞) with
the following property. Let Γ be a finite group of cardinality n. Assume that k > c(ε) log n.
Then with probability at least 1

2
over g1, . . . , gk chosen independently and uniformly at random

from Γ, if G is the Cayley graph associated to g1, . . . , gk, then for every ∅ 6= S ( Γ we have∣∣∣∣∣ eG(S, V r S)
2k
n
|S|(n− |S|)

− 1

∣∣∣∣∣ 6 ε.

Subsequent investigations by several authors [17, 11, 14, 22, 8] yielded new proofs, with
various improvements, of the Alon–Roichman theorem. The best known upper bound on
c(ε) is O(1/ε2); see [8] for the best known estimate on the implied constant.

Here we obtain an improved estimate on the isoperimetric profile of random Cayley graphs
of Abelian groups:

Theorem 1.2. There exists a universal constant c ∈ (0,∞) with the following property. Let
Γ be an Abelian group of cardinality n. Assume that k > c logn

ε2
. Then with probability at least

1
2

over g1, . . . , gk chosen independently and uniformly at random from Γ, if G is the Cayley
graph associated to g1, . . . , gk, then for every S ⊆ Γ with 2 6 |S| 6 n

2
we have∣∣∣∣∣ eG(S, V r S)

2k
n
|S|(n− |S|)

− 1

∣∣∣∣∣ 6 ε

√
log |S|
log n

. (1)
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The possible validity of an estimate such as (1) for finite groups Γ that are not necessarily
Abelian remains an interesting open question.

When k = o(log n), the graphs G of Theorem 1.2 need not be connected, and they are
never expanders [3, Prop. 3]. Nevertheless, with positive probability, sufficiently small sets
in such graphs do have a large edge boundary:

Theorem 1.3. There exists a universal constant c ∈ (0,∞) with the following property. Let
Γ be an Abelian group of cardinality n. Fix k ∈ N and ε ∈ (0, 1). Then with probability at
least 1

2
over g1, . . . , gk chosen independently and uniformly at random from Γ, if G is the

Cayley graph associated to g1, . . . , gk, then for every ∅ 6= S ( Γ we have

|S| 6 ecε
2k =⇒

∣∣∣∣∣ eG(S, V r S)
2k
n
|S|(n− |S|)

− 1

∣∣∣∣∣ 6 ε.

The main purpose of this note is not to obtain results such as Theorem 1.2 and Theo-
rem 1.3, even if these have independent interest. Our goal is rather to present a method
to prove expansion of small sets, going beyond the standard spectral gap techniques. In
addition, we highlight a simple and general geometric argument that allows one to reason
about such questions for random objects like Alon–Roichman graphs. The rest of this intro-
duction will therefore be devoted to a description these issues. We note that a draft of this
manuscript has been circulating for several years, and we were motivated to make it pub-
licly available since the ideas presented here inspired recent progress in theoretical computer
science; see [5].

1.1. Schatten bounds and small-set expansion. For an n-vertex graph G = (V,E) and
u, v ∈ V , let e(u, v) denote the number of edges joining u and v if u 6= v, and twice the
number of loops at u if u = v. If G is d-regular, then the normalized adjacency matrix of G
is the n× n matrix A(G) whose entry at (u, v) ∈ V × V equals e(u, v)/d. We will denote by
1 = λ1(G) > λ2(G) > · · · > λn(G) the decreasing rearrangement of the eigenvalues of A(G).

The well-established connection, due to [2, 19] (see also [4, Thm. 9.2.1]), between spectral
gaps and graph expansion, reads as follows: for every ∅ 6= S ( V we have∣∣∣∣∣ eG(S, V r S)

d
n
|S|(n− |S|)

− 1

∣∣∣∣∣ 6 max
i∈{2,...,n}

|λi(G)|. (2)

Let L2(V ) denote the vector space CV , equipped with the standard scalar product

∀ x, y : V → C, 〈x, y〉 def
=

1

n

∑
u∈V

x(u)y(u).

The following lemma is a natural variant of the bound (2).

Lemma 1.4. Fix p ∈ [1,∞]. Assume that L2(V ) has an orthonormal basis consisting of
eigenvectors of A(G), all of whose entries are bounded by 1 in absolute value. Then for every
∅ 6= S ( V we have,∣∣∣∣∣ eG(S, V r S)

d
n
|S|(n− |S|)

− 1

∣∣∣∣∣ 6
(

n∑
i=2

|λi(G)|p
) 1

p
(
|S|

1
p+1 (n− |S|)

p
p+1 + |S|

p
p+1 (n− |S|)

1
p+1

n

) p+1
p

.
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See Lemma 3.1 below for a more general version of Lemma 1.4, which does not require
the existence of an orthonormal basis with good L∞ bounds. We chose to state the above
simpler version of Lemma 3.1 in the introduction, since the assumption of Lemma 1.4 holds
automatically for Cayley graphs of Abelian groups, where the orthonormal basis in question
consists of the characters of the group.

Alon and Roichman [3], as well as the subsequent work [17, 11, 14, 22, 8], proved Theo-
rem 1.1 by showing that, under the assumptions appearing in the statement of Theorem 1.1,
we have maxi∈{2,...,n} |λi(G)| 6 ε, and then appealing to (2). We will prove Theorem 1.2
and Theorem 1.3 by applying Lemma 1.4 with an appropriate choice of p (depending on the
cardinality of S). With this goal in mind, we need to be able to argue about the quantity

(
∑n

i=2 |λi(G)|p)1/p
when G is the random graph appearing in Theorem 1.2. This can be done

via simple geometric considerations from Banach space theory.

1.2. Banach space valued concentration. The singular values of an n×n matrix A, i.e.,
the eigenvalues of

√
A∗A, are denoted s1(A) > s2(A) > · · · > sn(A). For p ∈ [1,∞], the

Schatten p-norm of A, denoted ‖A‖Sp , is defined to be (
∑n

i=1 si(A)p)
1/p

. Thus, the quantity

(
∑n

i=2 |λi(G)|p)1/p
appearing in Lemma 1.4 equals

∥∥(I − 1
n
J
)
A(G)

∥∥
Sp
, where I is the n× n

identity matrix and J is the n× n matrix all of whose entries are 1.
Fix a group Γ of cardinality n. Let R : Γ→ GL(L2(Γ)) be the right regular representation,

i.e., (R(g)φ)(h) = φ(gh) for every φ : Γ→ C and g, h ∈ Γ. The normalized adjacency matrix
of the Cayley graph associated to g1, . . . , gk ∈ Γ is given by

A(g1, . . . , gk)
def
=

1

2k

k∑
i=1

(
R(gi) +R(g−1

i )
)
. (3)

In order to apply Lemma 1.4, we are therefore interested in the random quantity∥∥∥∥∥
k∑
i=1

(
I − 1

n
J

)
R(gi) +R(g−1

i )

2k

∥∥∥∥∥
Sp

. (4)

All the known proofs of the Alon–Roichman theorem, corresponding to the case p = ∞
in (4), proceed by proving the desired deviation inequality for operator-valued random vari-
ables; the original proof of Alon and Roichman uses the Wigner semicircle method, while later
proofs rely on the Ahlswede–Winter matrix valued deviation bound [1]. Alternatively, one
can use in this context the moment inequalities arising from the non-commutative Khinchine
inequalities of Lust-Piquard and Pisier [15, 16], and this method also yields the inequalities
that we need for the deviation of the Schatten p-norm in (4). Nevertheless, all of these
approaches are specific to operator-valued random variables, and are deeper than the simple
argument that we present below. It turns out that for our purposes, it suffices to use an
elementary geometric argument that ignores the specific structure of matrix spaces—it works
for random variables taking values in arbitrary uniformly smooth normed spaces, of which
the Schatten p-norms are a special case.

For a Banach space (X, ‖·‖), the triangle inequality implies that ‖x+τy‖+‖x−τy‖ 6 2+2τ
for every two unit vectors x, y ∈ X and every τ > 0. X is said to be uniformly smooth if
‖x + τy‖ + ‖x − τy‖ 6 2 + o(τ), where the o(τ) term is independent of the choice of unit
vectors x, y ∈ X. Formally, consider the following quantity, called the modulus of uniform

3



smoothness of X.

ρX(τ)
def
= sup

{
‖x+ τy‖+ ‖x− τy‖

2
− 1 : x, y ∈ X, ‖x‖ = ‖y‖ = 1

}
. (5)

Then X is uniformly smooth if limτ→0
ρX(τ)
τ

= 0.
X is said to have a modulus of smoothness of power type 2 if there exists s > 0 such that

for all τ > 0 we have ρX(τ) 6 sτ 2. For simplicity, we will only deal here with spaces that have
a modulus of smoothness of power type 2. All of our results below carry over, with obvious
modifications, to general uniformly smooth spaces (of course, in this more general setting,
the probabilistic bounds that we get will no longer be sub-Gaussian). For concreteness, if
p > 2 and Sp denotes the space of all n × n matrices equipped with the Schatten p-norm,
then for every τ > 0 we have ρSp(τ) 6 p−1

2
τ 2. The fact that the modulus of smoothness

of Sp has power type 2 when p > 2 was first proved by Tomczak-Jaegermann in [20]. The
exact modulus of smoothness of Sp was computed in [6]. The case of Lp(µ) spaces is much
older—the modulus of smoothness in this case was computed by Hanner in [10].

An Azuma-type deviation inequality holds for general norms whose modulus of smoothness
has power type 2.

Theorem 1.5. There exists a universal constant c ∈ (0,∞) with the following property. Fix
s > 0 and assume that a Banach space (X, ‖ · ‖) satisfies ρX(τ) 6 sτ 2 for all τ > 0. Fix
also a sequence of positive numbers {ak}∞k=1 ⊆ (0,∞). Let {Mk}∞k=1 ⊆ X be an X-valued
martingale satisfying the pointwise bound ‖Mk+1 −Mk‖ 6 ak for all k ∈ N. Then for every
u > 0 and k ∈ N we have

P [‖Mk+1 −M1‖ > u] 6 es+2 · exp

(
− cu2

a2
1 + · · ·+ a2

k

)
. (6)

Theorem 1.5 is a consequence of well understood moment inequalities in Banach space
theory. The key insights here are due to the work of Pisier. Theorem 1.5 relies on an
estimate of implicit constants appearing in Pisier’s inequality [18]; this is done in Section 2.
While these bounds are not available in [18], undoubtedly Pisier could have computed them
if they were needed for the purpose of his investigations in [18]. Therefore, Section 2 should
be viewed as mainly expository. In addition to obtaining the estimates that we need, another
purpose of Section 2 is to present the proof in a way which highlights the clarity and simplicity
of the general geometric argument leading to Theorem 1.5.

Note that the exponential dependence on s in (6) cannot be improved. A roundabout way
to see this is to note that when X is the space of n×n matrices equipped with the Schatten
p norm, then since in this case s 6 p/2, and for p = log n we have ‖ · ‖Sp � ‖ · ‖S∞ (= the
operator norm), the inequality (6) corresponds (for this value of p) to the Ahlswede–Winter
deviation inequality used in [11, 8, 22] to prove the (sharp) logarithmic dependence of k on n
in the Alon–Roichman theorem. For random variables taking values in the space of matrices
equipped with the operator norm, deeper methods lead to results that are more refined than
Theorem 1.5, but do not have an interpretation in the setting of general uniformly smooth
Banach spaces, and are not needed for our purposes; see [21] for more information on this
topic.
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2. The Azuma inequality in uniformly smooth normed spaces

Our main result is the following theorem.

Theorem 2.1. Fix s > 0 and q > 2. Assume that a Banach space X satisfies ρX(τ) 6 sτ 2

for all τ > 0. Let {Zn}∞n=1 be X-valued random variables such that for all n ∈ N we have
E [‖Zn‖q] <∞. Denote Sn = Z1 + · · ·+ Zn. Assume that for all n ∈ N we have

E [‖Sn − Zn+1‖q] > E [‖Sn‖q] . (7)

Then (
E [‖Sn‖q]

)1/q

6 8
√
s+ q ·

√√√√ n∑
j=1

(E [‖Zj‖q])2/q. (8)

Before proving Theorem 2.1 we record two concrete examples. The most important case is
when {Zn}∞n=1 form a martingale difference sequence. In other words, there exists a filtration
F1 ⊆ F2 ⊆ · · · such that Z1, . . . , Zn are measurable with respect to Fn for all n ∈ N, and
for m > n we have E

[
Zm
∣∣Fn

]
= 0. In this case, using the notation of Theorem 2.1 and the

convexity of the norm, we see that

E
[
‖Sn − Zn+1‖q

∣∣Fn

]
>
∥∥E [Sn − Zn+1

∣∣Fn

]∥∥q = ‖Sn‖q. (9)

By taking expectation we get that the assumption (7) is satisfied.
Another example worth mentioning is when q is an even integer and Zn ∈ Lq(Ω, µ) satisfy

the point-wise condition E [Zn+1S
q−1
n ] 6 0 for all n ∈ N. In this case

E
[
‖Sn − Zn+1‖qLq(Ω,µ)

]
= E

[∫
Ω

(Sn − Zn+1)qdµ

]
> E

[∫
Ω

(
Sqn − qZn+1S

q−1
n

)
dµ

]
> E

[
‖Sn‖qLq(Ω,µ)

]
.

Therefore the assumption (7) holds in this case.

Proof of Theorem 1.5. An application of Theorem 2.1 to Zn = Mn+1 −Mn, together with
Markov’s inequality, shows that for all q > max{2, s} and u > 0,

P [‖Mk+1 −M1‖ > u] 6

(
16
√
q(a2

1 + · · ·+ a2
k)

u

)q

. (10)

The optimal choice of q in (10) is q = u2

256e(a21+···+a2k)
, which is an allowed value of q provided

u2 > max{s, 2} · 256e(a2
1 + · · ·+ a2

k). This implies (6). �

We now pass to the proof of Theorem 2.1. We start with the following lemma, whose
proof is a slight variant of the proof of Proposition 7 in [6].

Lemma 2.2. Assume that ρX(τ) 6 sτ 2 for all τ > 0. Then for every x, y ∈ X and for every
q > 2 we have

‖x+ y‖q + ‖x− y‖q

2
6
(
‖x‖2 + 8(s+ q) · ‖y‖2

)q/2
. (11)
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Proof. Assume first of all that ‖x‖ = 1 and ‖y‖ 6 1. Denote

b
def
=
‖x+ y‖+ ‖x− y‖

2
and β

def
=
‖x+ y‖ − ‖x− y‖
‖x+ y‖+ ‖x− y‖

.

Then b > 1, since the function τ 7→ ‖x + τy‖ + ‖x − τy‖ is convex and even, and hence

attains its minimum at τ = 0. Also, the triangle inequality implies that β 6 ‖y‖
b
6 ‖y‖ 6 1.

If we write (
(1 + β)q + (1− β)q

2

)1/q

= 1 + θ

then θ ∈ [0, 1] and θ 6 (q − 1)β2. Both of these inequalities are elementary numerical facts;
the proof of the latter inequality can be found in many places, e.g., [13, Lem. 1.e.14].

Now,(
‖x+ y‖q + ‖x− y‖q

2

)1/q

= b

(
(1 + β)q + (1− β)q

2

)1/q (♣)

6 [1 + ρX(‖y‖)] · [1 + θ]

(♣♣)

6
√

1 + 8 [ρX(‖y‖) + θ] 6
√

1 + 8(s+ q)‖y‖2,

where in (♣) we used the definition of ρX and θ and in (♣♣) we used the elementary

inequality (1 +u)(1 + v) 6
√

1 + 8(u+ v), which is valid for all u, v ∈ [0, 1]. This proves the
assertion of Lemma 2.2 when ‖y‖ 6 ‖x‖. When ‖y‖ > ‖x‖ apply the same reasoning with the
roles of x and y reversed, and use the bound ‖y‖2 +8(s+q) ·‖x‖2 6 ‖x‖2 +8(s+q) ·‖y‖2. �

In what follows, if (Ω, µ) is a measure space then Lq(X,Ω, µ) will denote the Banach space
of all functions f : Ω→ X such that

‖f‖qLq(X,Ω,µ)

def
=

∫
Ω

‖f‖qdµ <∞.

In [9] it is shown that if q > 2 and X is 2-smooth then Lq(X,Ω, µ) is also 2-smooth. The
dependence of the modulus of smoothness of Lq(X,Ω, µ) on q and the modulus of smoothness
of X can be deduced from the proofs in [9], but is not stated there explicitly. This dependence
is crucial for us, so we will now show how it easily follows from Lemma 2.2.

Corollary 2.3. Assume that ρX(τ) 6 sτ 2 for all τ > 0. Then ρLq(X,Ω,µ)(τ) 6 4(s+ q)τ 2 for
every τ > 0.

Proof. Fix f, g ∈ Lq(X,Ω, µ) with ‖f‖Lq(X,Ω,µ) = ‖g‖Lq(X,Ω,µ) = 1 and τ > 0. Then,(
‖f + τg‖Lq(X,Ω,µ) + ‖f − τg‖Lq(X,Ω,µ)

2

)q
6
‖f + τg‖qLq(X,Ω,µ) + ‖f − τg‖qLq(X,Ω,µ)

2

=

∫
Ω

‖f + τg‖q + ‖f − τg‖q

2
dµ

(∗)
6

∫
Ω

(
‖f‖2 + 8(s+ q) · τ 2‖g‖2

)q/2
dµ

(∗∗)
6

(
‖f‖2

Lq(X,Ω,µ) + 8(s+ q)τ 2‖g‖2
Lq(X,Ω,µ)

)q/2
=

(
1 + 8(s+ q)τ 2

)q/2
, (12)
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where in (∗) we used Lemma 2.2 and in (∗∗) we used the triangle inequality in Lq/2(Ω, µ).
It follows from (12) that

‖f + τg‖Lq(X,Ω,µ) + ‖f − τg‖Lq(X,Ω,µ)

2
6
√

1 + 8(s+ q)τ 2 6 1 + 4(s+ q)τ 2. �

The following lemma goes back to [12, 7] (see also Proposition 2.2 in [18]).

Lemma 2.4. Assume that ρX(τ) 6 sτ 2 for all τ > 0. Let {xn}∞n=1 ⊆ X be a sequence of
vectors in X and for every n ∈ N denote Sn = x1 + · · ·+ xn. Assume that for all n ∈ N we
have ‖Sn − xn+1‖ > ‖Sn‖. Then for every n ∈ N,

‖Sn‖2 6 10(s+ 2)
(
‖x1‖2 + · · ·+ ‖xn‖2

)
.

Proof. Apply Lemma 2.2 with q = 2, x = Sn and y = xn+1 to get that

‖Sn+1‖2 + ‖Sn‖2

2

(?)

6
‖Sn + xn+1‖2 + ‖Sn − xn+1‖2

2
6 ‖Sn‖2 + 5(s+ 2)‖xn+1‖2, (13)

where in (?) we used the assumption ‖Sn − xn+1‖ > ‖Sn‖. Inequality (13) is equivalent to
‖Sn+1‖2 6 ‖Sn‖2 + 10(s+ 2)‖xn+1‖2. Therefore Lemma 2.4 follows by induction. �

Proof of Theorem 2.1. Let (Ω, µ) be the probability space on which the random variables
{Zn}∞n=1 are defined. Lemma 2.4 applied to the Banach space X ′ = Lq(X,Ω, µ), combined
with Corollary 2.3, implies Theorem 2.1. �

Remark 2.1. Readers who are mainly interested in the case of operator valued random
variables should note that the above argument proves the general Azuma inequality (6) in a
self-contained way, except that we quoted the fact that ρSp(τ) . pτ 2. We wish to stress that
the proof of this fact is elementary and accessible to non-experts. When p = 2k is an even in-
teger, the sharp estimate on the modulus of smoothness of Sp was proved in [20] by expanding
the quantity ‖A+B‖pSp + ‖A−B‖pSp = trace

(
[(A+B)(A∗ +B∗)]k + [(A−B)(A∗ −B∗)]k

)
,

and estimating the summands in the resulting sum separately. When p > 2 is not an even
integer, the computation of the sharp modulus of smoothness of Sp in [6] is more subtle,
but still elementary. Note that for the purpose of our application to small-set expansion of
graphs, the case of even p suffices. Also, in the case of Sp, the above proof is much shorter
(yielding better constants), since the intermediate steps of Lemma 2.2 and Corollary 2.3
are not needed—the inequalities obtained in Lemma 2.2 and Corollary 2.3 are the way that
ρSp(τ) was estimated in [20, 6] in the first place. The role of these elementary intermediate
steps is only to relate the standard definition (5) of the modulus of uniform smoothness to
inequalities such as (11), but in the literature, when one estimates ρX(τ), this is often done
by proving (11) directly.

3. Schatten norm bounds and graph expansion

Let G = (V,E) be an n-vertex d-regular graph. For p > 1, the normed space Lp(V ) is the
space of all x ∈ CV , equipped with the norm

‖x‖Lp(V )
def
=

(
1

n

∑
u∈V

|x(u)|p
)1/p

.
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In what follows, whenever we refer to an orthornormal eigenbasis e1, . . . , en of the normal-
ized adjacency matrix A(G), it will always be understood that it is orthonormal in L2(V ),
the eigenvectors are indexed so that A(G)ej = λj(G)ej for all j ∈ {1, . . . , n}, and e1 = 1V
(the constant 1 function).

The following lemma becomes Lemma 1.4 when q = r =∞.

Lemma 3.1. Assume that p, r > 1 and q > 2p
p−1

. Let G = (V,E) be an n-vertex d-regular

graph, and let e1, . . . , en be an orthonormal eigenbasis of the normalized adjacency matrix
A(G). Then for every ∅ 6= S ( V we have,∣∣∣∣∣ eG(S, V r S)

d
n
|S|(n− |S|)

− 1

∣∣∣∣∣ 6M
q

p(q−2)

(
n∑
i=2

|λi(G)|p
) 1

p ( |S|δ(n− |S|)1−δ + |S|1−δ(n− |S|)δ

n

) 1
1−δ

,

where

M
def
=

(
n∑
j=1

‖ej‖qLr(V )

)1/q

and δ
def
=

q(r − 2)

pr(q − 2) + q(r − 2)
. (14)

Proof. Consider the linear operator T : CV → Cn given by

T (x)
def
=
(
〈x, e1〉, 〈x, e2〉, . . . , 〈x, en〉

)
.

Since {e1, . . . , en} is an orthonormal basis of L2(V ) we have ‖T (x)‖`n2 = ‖x‖L2(V ) for all

x ∈ CV . Moreover, using Hölder’s inequality we have

‖T (x)‖`nq =

(
n∑
j=1

|〈x, ej〉|q
)1/q

6

(
n∑
j=1

‖ej‖qLr(V )‖x‖
q
L r
r−1

(V )

)1/q

= M‖x‖L r
r−1 (V )

.

In other words, we have the operator norm bounds

‖T‖L2(V )→`n2 = 1 and ‖T‖L r
r−1

(V )→`nq 6M.

Recall that 2p
p−1
∈ (2, q), so we can define ε ∈ (0, 1) by p−1

2p
= ε

2
+ 1−ε

q
, i.e.,

ε = 1− q

p(q − 2)
.

If we then define a > 1 via 1
a

= ε
2

+ (1−ε)(r−1)
r

, i.e.,

a =
2pr(q − 2)

pr(q − 2) + q(r − 2)

(14)
= 2(1− δ),

then the Riesz–Thorin interpolation theorem (see [23, Ch. XII]) asserts that for every x ∈ CV

we have

‖T (x)‖`n2p
p−1

6M1−ε‖x‖La(V ) = M
q

p(q−2)‖x‖La(V ). (15)

Fix S ⊆ V and consider the function x ∈ CV given by

x
def
= (n− |S|)1S − |S|1V rS.

8



Since 〈x, e1〉 =
∑

u∈V x(u) = 0, the bound (15) becomes(
n∑
j=2

|〈x, ej〉|
2p
p−1

) p−1
2p

6M
q

p(q−2)

(
|S|(n− |S|)a + (n− |S|)|S|a

n

) 1
a

.

Hence,

|〈A(G)x, x〉| =

∣∣∣∣∣
n∑
j=2

λj(G)〈x, ej〉2
∣∣∣∣∣ 6

(
n∑
j=2

|λj(G)|p
) 1

p
(

n∑
j=2

|〈x, ej〉|
2p
p−1

) p−1
p

6M
2q

p(q−2)

(
n∑
j=2

|λj(G)|p
) 1

p ( |S|(n− |S|)a + (n− |S|)|S|a

n

) 2
a

.

The required result now follows from the identity

〈A(G)x, x〉 = |S|(n− |S|)− n

d
eG(S, V r S). �

4. Proof of Theorem 1.2

Let Γ be a group of cardinality n. Recall that R : Γ → GL(L2(Γ)) is the right regular
representation, and given g1, . . . , gk ∈ Γ, the matrix A(g1, . . . , gk) is defined as in (3).

Lemma 4.1. There exists a universal constant C ∈ (0,∞) with the following property. Fix
k, n ∈ N and a group Γ of cardinality n. Let g1, . . . , gk ∈ Γ be chosen independently and
uniformly at random. Then with probability at least 1

2
, for every integer p > 2 we have∥∥∥∥(I − 1

n
J

)
A(g1, . . . , gk)

∥∥∥∥
Sp

6 Cn1/p

√
p

k
.

Proof. For all i ∈ {1, . . . , k}, since E [R(gi)] = E
[
R(g−1

i )
]

= J
n
, we have

E
[(
I − J

n

)
R(gi) +R(g−1

i )

2

]
= 0. (16)

Moreover, note that we have
∥∥(I − 1

n
J
)
R(gi)

∥∥
Sp

= (n − 1)1/p, because MM∗ = I − 1
n
J ,

where M =
(
I − 1

n
J
)
R(gi). We therefore have the (point-wise) bound∥∥∥∥(I − 1

n
J

)
R(gi) +R(g−1

i )

2

∥∥∥∥
Sp

6 (n− 1)1/p. (17)

Theorem 2.1 now implies that for some universal constant c ∈ (0,∞),

E

[∥∥∥∥(I − 1

n
J

)
A(g1, . . . , gk)

∥∥∥∥p
Sp

]
6
(cp
k

)p/2
n.

Hence,

E

[
∞∑
p=2

(∥∥(I − 1
n
J
)
A(g1, . . . , gk)

∥∥
Sp

2n1/p
√
cp/k

)p]
6

∞∑
p=2

1

2p
=

1

2
.
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It follows from Markov’s inequality that with probability at least 1
2

we have

max
p∈N∩[2,∞)

(∥∥(I − 1
n
J
)
A(g1, . . . , gk)

∥∥
Sp

2n1/p
√
cp/k

)p

6
∞∑
p=2

(∥∥(I − 1
n
J
)
A(g1, . . . , gk)

∥∥
Sp

2n1/p
√
cp/k

)p

6 1. �

Proof of Theorem 1.2. Γ is now Abelian, and therefore for every g1, . . . , gk ∈ Γ, the char-
acters of Γ are an orthonormal eigenbasis of A(g1, . . . , gk), consisting of functions whose
absolute value is point-wise bounded by 1. By Lemma 3.1 and Lemma 4.1, with probability
at least 1

2
over i.i.d. uniform choice of g1, . . . , gk ∈ Γ, if we let G be the Alon–Roichman

graph whose adjacency matrix is A(g1, . . . , gk), then every S ⊆ Γ with 2 6 |S| 6 n
2

satisfies∣∣∣∣∣ eG(S, V r S)
2k
n
|S|(n− |S|)

− 1

∣∣∣∣∣ . min
p∈N∩[2,∞)

n 1
p

√
p

k

(
|S|

1
p+1 (n− |S|)

p
p+1 + |S|

p
p+1 (n− |S|)

1
p+1

n

) p+1
p


. min

p∈N∩[2,∞)

(
|S|

1
p

√
p

k

)
.

√
log |S|
k

, (18)

where in the last step of (18) we choose p = 2dlog |S|e. �

5. Proof of Theorem 1.3

If k 6 1/ε2 then Theorem 1.3 is vacuous for c > 0 small enough. Assuming k > 1/ε2, de-
note p = 2ε2k > 2. Arguing analogously to (18), we see that there exists a universal constant
K ∈ (0,∞) such that with probability at least 1

2
over i.i.d. uniform choice of g1, . . . , gk ∈ Γ,

if we let G be the Alon–Roichman graph whose adjacency matrix is A(g1, . . . , gk), then for
all S ⊆ Γ with 2 6 |S| 6 n

2
,∣∣∣∣∣ eG(S, V r S)

2k
n
|S|(n− |S|)

− 1

∣∣∣∣∣ 6 K|S|
1
p

√
p

k
= εK

√
2|S|

1
2ε2k 6 2Kε,

provided |S| 6 2ε
2k. �
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