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ABSTRACT. Andoni, Krauthgamer and Razenshteyn (AKR) proved (STOC 2015) that a finite-dimensional normed space
(X ,‖ · ‖X ) admits a O(1) sketching algorithm (namely, with O(1) sketch size and O(1) approximation) if and only if for every
ε ∈ (0,1) there exist αÊ 1 and an embedding f : X → `1−ε such that ‖x − y‖X É ‖ f (x)− f (y)‖1−ε Éα‖x − y‖X for all x, y ∈ X .
The "if part" of this theorem follows from a sketching algorithm of Indyk (FOCS 2000). The contribution of AKR is therefore
to demonstrate that the mere availability of a sketching algorithm implies the existence of the aforementioned geometric
realization. Indyk’s algorithm shows that the "if part" of the AKR characterization holds true for any metric space whatso-
ever, i.e., the existence of an embedding as above implies sketchability even when X is not a normed space. Due to this, a
natural question that AKR posed was whether the assumption that the underlying space is a normed space is needed for
their characterization of sketchability. We resolve this question by proving that for arbitrarily large n ∈N there is an n-point
metric space (M(n),dM(n)) which is O(1)-sketchable yet for every ε ∈ (0, 1

2 ), if α(n) Ê 1 and fn : M(n) → `1−ε are such that
dM(n)(x, y) É ‖ fn (x)− fn (y)‖1−ε Éα(n)dM(n)(x, y) for all x, y ∈ M(n), then necessarily limn→∞α(n) =∞.

1. INTRODUCTION

We shall start by recalling the notion of sketchability; it is implicit in seminal work [2] of Alon, Matias and Szegedy,
though the formal definition that is described below was put forth by Saks and Sun [38]. This is a crucial and well-
studied algorithmic primitive for analyzing massive date sets, with several powerful applications; surveying them here
would be needlessly repetitive, so we refer instead to e.g. [17, 3] and the references therein.

Given a set X , a function K : X × X → R is called a nonnegative kernel if K (x, y) Ê 0 and K (x, y) = K (y, x) for every
x, y ∈ X . In what follows, we will be mainly interested in the geometric setting when the kernel K = dX is in fact a
metric on X , but even for that purpose we will also need to consider nonnegative kernels that are not metrics.

Fix D Ê 1 and s ∈N. Say that a nonnegative kernel K : X ×X → [0,∞) is (s,D)-sketchable if for every r > 0 there is a
mapping R=Rr : {0,1}s × {0,1}s → {0,1} and a probability distribution over mappings Sk= Skr : X → {0,1}s such that

inf
x,y∈X

K (x,y)Ér

Prob
[
R

(
Sk(x),Sk(y)

)= 0
]
Ê 3

5
and inf

x,y∈X
K (x,y)>Dr

Prob
[
R

(
Sk(x),Sk(y)

)= 1
]
Ê 3

5
. (1)

The value 3
5 in (1) can be replaced throughout by any constant that is strictly bigger than 1

2 ; we chose to fix an arbitrary
value here in order to avoid the need for the notation to indicate dependence on a further parameter. A kernel (or,
more formally, a family of kernels) is said to be sketchable if it is (s,D)-sketchable for some s =O(1) and D =O(1).

The way to interpret the above definition is to think of Sk as a randomized method to assign one of the 2s labels
{0,1}s to each point in X , and to think of R as a reconstruction algorithm that takes as input two such labels in {0,1}s

and outputs either 0 or 1, which stand for "small" or "large," respectively. The meaning of (1) becomes that for every
pair x, y ∈ X , if one applies the reconstruction algorithm to the random labels Sk(x) and Sk(y), then with substantially
high probability its output is consistent with the value of the kernel K (x, y) at scale r and approximation D , namely
the algorithm declares "small" if K (x, y) is at most r , and it declares "large" if K (x, y) is greater than Dr .

Suppose thatα,β,θ > 0 and that K : X ×X → [0,∞) and L : Y ×Y → [0,∞) are nonnegative kernels on the sets X and
Y , respectively. Suppose also that there is f : Y → X such that αL(x, y)θ É K ( f (x), f (y)) É βL(x, y)θ for all x, y ∈ Y . It
follows formally from this assumption and the above definition that if K is (s,D)-sketchable for some s ∈N and D Ê 1,
then L is (s, (βD/α)1/θ)-sketchable. Such an "embedding approach" to deduce sketchability is used frequently in the
literature. As an example of its many consequences, since `2 is sketchable by the works of Indyk and Motwani [18]
and Kushilevitz, Ostrovsky and Rabani [27], so is any metric space of negative type, where we recall that a metric space
(X ,d) is said to be of negative type (see e.g. [15]) if the metric space (X ,ρ) with ρ =p

d is isometric to a subset of `2.

S.K. was supported by NSF CCF-1422159 and the Simons Foundation. A.N. was supported by NSF CCF-1412958, the Packard Foundation
and the Simons Foundation. This work was carried out under the auspices of the Simons Algorithms and Geometry (A&G) Think Tank.
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1.1. The Andoni–Krauthgamer–Razenshteyn characterization of sketchable norms. The following theorem from [3]
is a remarkable result of Andoni, Krauthgamer and Razenshteyn (AKR) that characterizes those norms that are sketch-
able1 in terms of their geometric embeddability into a classical kernel (which is not a metric).

Theorem 1 (AKR characterization of sketchability). Fix s ∈N and D Ê 1. A finite-dimensional normed space (X ,‖ · ‖X )
is (s,D)-sketchable if and only if for any ε ∈ (0,1) there exists α=α(s,D,ε) > 0 and an embedding f : X → `1−ε such that

∀x, y ∈ X , ‖x − y‖X É ‖ f (x)− f (y)‖1−ε Éα‖x − y‖X .

Thus, a finite-dimensional normed space is sketchable if and only if it can be realized as a subset of a the classical
sequence space `1−ε so that the kernel ‖ · ‖1−ε reproduces faithfully (namely, up to factor α) all the pairwise distances
in X . See [3, Theorem 1.2] for an explicit dependence in Theorem 1 of α(s,D,ε) on the parameters s,D,ε.

Lp space notation. In Theorem 1 and below, we use the following standard notation for Lp spaces. If p ∈ (0,∞) and
(Ω,µ) is a measure space, then Lp (µ) is the set of (equivalence classes up to measure 0 of) measurable functions
ϕ :Ω→R with

´
Ω |ϕ(ω)|p dµ(ω) <∞. When µ is the counting measure on N, write Lp (µ) = `p . When µ is the counting

measure on {1, . . . ,n} for some n ∈ N, write Lp (µ) = `n
p . When µ is the Lebesgue measure on [0,1], write Lp (µ) = Lp .

When the underlying measure is clear from the context (e.g. counting measure or Lebesgue measure), one sometimes
writes Lp (µ) = Lp (Ω). The Lp (µ) (quasi)norm is defined by setting ‖ϕ‖p

p = ´Ω |ϕ(ω)|p dµ(ω) for ϕ ∈ Lp (µ). While if
p Ê 1, then (ϕ,ψ) 7→ ‖ϕ−ψ‖p is a metric on Lp (µ), if p = 1−ε for some ε ∈ (0,1), then ‖·‖1−ε is not a metric; if L1−ε(µ) is
infinite dimensional, then ‖·‖1−ε is not even equivalent to a metric in the sense that there do not exist any c,C ∈ (0,∞)
and a metric d : L1−ε(µ)×L1−ε(µ) → [0,∞) such that cd(ϕ,ψ) É ‖ϕ−ψ‖1−ε ÉC d(ϕ,ψ) for allϕ,ψ ∈ Lp (µ). Nevertheless,
‖ ·‖1−ε is a nonnegative kernel on Lp (µ) and there is a canonical metric d1−ε on Lp (µ), which is given by

∀ϕ,ψ ∈ L1−ε(µ), d1−ε(ϕ,ψ)
def= ‖ϕ−ψ‖1−ε

1−ε =
ˆ
Ω

|ϕ(ω)−ψ(ω)|1−εdµ(ω). (2)

See the books [30, 31] and [21] for much more on the structure for Lp (µ) spaces when p Ê 1 and 0 < p < 1, respectively.

1.1.1. Beyond norms? Fix ε ∈ (0,1). The sketchability of the nonnegative kernel on `1−ε that is given by ‖ϕ−ψ‖1−ε
for ϕ,ψ ∈ `1−ε was proved by Indyk [17] (formally, using the above terminology it is sketchable provided ε is bounded
away from 0; when ε→ 0 the space s = s(ε) of Indyk’s algorithm becomes unbounded). Thus, any metric space (M ,dM )
for which there exists α ∈ [1,∞) and an embedding f : M → `1−ε that satisfies

∀x, y ∈ M , dM (x, y) É ‖ f (x)− f (y)‖1−ε ÉαdM (x, y) (3)

is sketchable with sketch size Oε(1) and approximation O(α). Therefore, the "if part" of Theorem 1 holds for any met-
ric space whatsoever, not only for norms. The "only if" part of Theorem 1, namely showing that the mere availability
of a sketching algorithm for a normed space implies that it can be realized faithfully as a subset of `1−ε, is the main
result of [3]. This major achievement demonstrates that a fundamental algorithmic primitive coincides with a geomet-
ric/analytic property that has been studied long before sketchability was introduced (other phenomena of this nature
were discovered in the literature, but they are rare). The underlying reason for Theorem 1 is deep, as the proof in [3]
relies on a combination of major results from the literature on functional analysis and communication complexity.

A natural question that Theorem 1 leaves open is whether one could obtain the same result for ε = 0, namely for
embeddings into `1. As discussed in [3], this is equivalent to an old question [28] of Kwapień; a positive result in this
direction (for a certain class of norms) is derived in [3] using classical partial progress of Kalton [20] on Kwapień’s
problem, but fully answering this longstanding question seems difficult (and it may very well have a negative answer).

Another natural question that Theorem 1 leaves open is whether its assumption that the underlying metric space
is a norm is needed. Given that the "if part" of Theorem 1 holds for any metric space, this amounts to understanding
whether a sketchable metric space (M ,dM ) admits for every ε ∈ (0,1) an embedding f : M → `1−ε that satisfies (3). This
was a central open question of [3]. Theorem 2 below resolves this question. It should be noted that the authors of [3]
formulated their question while hinting that they suspect that the answer is negative, namely in [3, page 893] they
wrote "we are not aware of any counter-example to the generalization of Theorem 1.2 to general metrics" (Theorem 1.2
in [3] corresponds to Theorem 1 here). One could therefore view Theorem 2 as a confirmation of a prediction of [3].

1In [3], the conclusion of Theorem 1 is proven under a formally weaker assumption, namely it uses a less stringent notion of sketchability
which allows for the random sketches of the points x, y ∈ X to be different from each other, and for the reconstruction algorithm to depend
on the underlying randomness that was used to produce those sketches. Since our main result, namely Theorem 2 below, is an impossibility
statement, it becomes only stronger if we use the simpler and stronger notion of sketchability that we stated above.
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Theorem 2 (failure of the AKR characterization for general metrics). For arbitrarily large n ∈N there exists an n-point
metric space (M(n),dM(n)) which is

(
O(1),O(1)

)
-sketchable, yet for every ε ∈ (

0, 1
2

)
and α Ê 1, if there were a mapping

f : M(n) → `1−ε that satisfies dM(n)(x, y) É ‖ f (x)− f (y)‖1−ε ÉαdM(n)(x, y) for all x, y ∈ M(n), then necessarily

α& (loglogn)
1−2ε

2(1−ε) . (4)

Asymptotic notation. In addition to the usual "O(·),o(·),Ω(·),Θ(·)" notation, it will be convenient to use throughout
this article (as we already did in (4)) the following (also standard) asymptotic notation. Given two quantities Q,Q ′ > 0,
the notations Q .Q ′ and Q ′&Q mean that Q ÉCQ ′ for some universal constant C > 0. The notation Q ³Q ′ stands for
(Q .Q ′)∧ (Q ′ .Q). If we need to allow for dependence on parameters, we indicate this by subscripts. For example,
in the presence of auxiliary objects (e.g. numbers or spaces) φ,Z, the notation Q .φ,Z Q ′ means that Q É C (φ,Z)Q ′,
where C (φ,Z) > 0 is allowed to depend only on φ,Z; similarly for the notations Q &φ,Z Q ′ and Q ³φ,Z Q ′.

We will see that the metric spaces {(M(n),dM(n))}∞n=1 of Theorem 2 are of negative type, so by the above discussion
their sketchability follows from the sketchability of Hilbert space [18, 27]. In fact, these metric spaces are (subsets
of) the metric spaces of negative type that were considered by Devanur, Khot, Saket and Vishnoi in [14] as integrality
gap examples for the Goemans–Linial semidefinite relaxation of the Sparsest Cut problem with uniform demands.
Hence, our contribution is the geometric aspect of Theorem 2, namely demonstrating the non-embeddability into
`1−ε, rather than its algorithmic component (sketchability). This is a special case of the more general geometric phe-
nomenon of Theorem 7 below, which is our main result. It amounts to strengthening our work [23] which investigated
the `1 non-embeddability of quotients of metric spaces using Fourier-analytic techniques. Here, we derive the (for-
mally stronger) non-embeddability into `1 of snowflakes of such quotients (the relevant terminology is recalled in
Section 1.2 below). It suffices to mention at this juncture (with further discussion in Section 1.2.4 below) that on a
conceptual level, the strategy of [23] (as well as that of [26, 14]) for proving non-embeddability using the classical the-
orem [19] of Kahn, Kalai and Linial (KKL) on influences of variables does not imply the required `1 non-embeddability
of snowflakes of quotients. Instead, we revisit the use of Bourgain’s noise sensitivity theorem [7], which was applied
for other (non-embeddability) purposes in [24, 23], but subsequent work [26, 14] realized that one could use the much
simpler KKL theorem in those contexts (even yielding quantitative improvements). Thus, prior to the present work it
seemed that, after all, Bourgain’s theorem does not have a decisive use in metric embedding theory, but here we see
that in fact it has a qualitative advantage over the KKL theorem in some geometric applications.

The present work also shows that the Khot–Vishnoi approach [24] to the Sparsest Cut integrality gap has a further
qualitative advantage (beyond its relevance to the case of uniform demands) over the use of the Heisenberg group for
this purpose [29], which yields a better [12] (essentially sharp [35]) lower bound. Indeed, the Heisenberg group is a
O(1)-doubling metric space (see e.g. [16]), and by Assouad’s embedding theorem [5] any such space admits for any
ε ∈ (0,1) an embedding into `1−ε which satisfies (3) with α.ε 1 (for the connection to Assouad’s theorem, which may
not be apparent at this point, see Fact 6 below). Thus, despite its quantitative superiority as an integrality gap example
for Sparsest Cut with general demands, the Heisenberg group cannot yield Theorem 2 while the Khot–Vishnoi spaces
do (strictly speaking, we work here with a simpler different construction than that of [24], but an inspection of the
ensuing proof reveals that one could have also used the metric spaces of [24] to answer the question of [3]).

Question 3. The obvious question that is left open by Theorem 2 is to understand what happens when ε ∈ [1
2 ,1

)
. While

we established a marked qualitative gap vis à vis sketchability between the behaviors of general normed spaces and
general metric spaces, the possibility remains that there exists some ε0 ∈

[1
2 ,1

)
such that any sketchable metric space

(M ,dM ) admits an embedding into `1−ε0 that satisfies (3) with α = O(1); perhaps one could even take ε0 = 1
2 here.

This possibility is of course tantalizing, as it would be a complete characterization of sketchable metric spaces that
is nevertheless qualitatively different from its counterpart for general normed spaces. At present, there is insufficient
evidence to speculate that this is so, and it seems more likely that other counterexamples could yield a statement that
is analogous to Theorem 2 also in the range ε ∈ [1

2 ,1
)
, though a new idea would be needed for that.

Question 4. Even in the range ε ∈ (
0, 1

2

)
of Theorem 2, it would be interesting to determine if one could improve (4) to

α& (logn)c(ε) for some c(ε) > 0 (see Remark 5 below for a technical enhancement that yields an asymptotic improve-
ment of (4) but does not achieve such a bound). For the corresponding question when ε= 0, namely embeddings into
`1, it follows from [35] that one could improve (4) to α &

√
logn. However, the example that exhibits this stronger

lower bound for ε= 0 is a doubling metric space, and hence by Assouad’s theorem [5] for every ε> 0 it does admit an
embedding into `1−ε that satisfies (4) with α.ε 1. Note that by [34, 4] we see that if an n-point metric space (M ,dM )
is sketchable for the reason that for some θ ∈ (0,1] the metric space (M ,dθ

M ) is bi-Lipschitz to a subset of `2, then (4)
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holds for ε= 0 and α. (logn)1/2+o(1). It would be worthwhile to determine if this upper bound on α (for ε= 0) holds
for any sketchable metric space whatsoever, i.e., not only for those whose sketchability is due to the fact that some
power of the metric is Hilbertian. It seems plausible that the latter question is accessible using available methods.

Remark 5. The lower bound (4) can be improved by incorporating the "enhanced short code argument" of Kane and
Meka [22] (which is in essence a derandomization step) into the ensuing reasoning. This yields a more complicated
construction for which (4) can be improved toαÊ exp

(
c(1−2ε)

√
loglogn

)
for some universal constant c > 0. Because

it becomes a significantly more intricate case-specific argument that does not pertain to the more general geometric
phenomenon that we study in Theorem 7, we will not include the technical details of this quantitative enhancement
of Theorem 2 in the present extended abstract (the full version will contain more information).

1.2. Metric embeddings. The distortion of a metric space (U ,dU ) in a metric space (V ,dV ) is a numerical invariant
that is denoted c(V ,dV )(U ,dU ) and defined to be the infimum over those α ∈ [1,∞] for which there exist an embedding
f : U → V and a scaling factor λ ∈ (0,∞) such that λdU (x, y) É dV

(
f (x), f (y)

) É αλdU (x, y) for all distinct x, y ∈ U .
Given p Ê 1, the infimum of c(V ,dV )(U ,dU ) over all possible2 Lp (µ) spaces (V ,dV ) is denoted cp (U ,dU ).

1.2.1. Snowflakes. Because for every ε ∈ (0,1) the quasi-norm ‖·‖1−ε does not induce a metric on `1−ε, the embedding
requirement (3) does not fit into the above standard metric embedding framework. However, as we explain in Fact 6
below, it is possible to situate (3) within this framework (even without mentioning `1−ε at all) by considering embed-
dings of the (1− ε)-snowflake of a finite metric space into `1. Recall the commonly used terminology (see e.g. [13])
that the (1−ε)-snowflake of a metric space (M ,dM ) is the metric space (M ,d 1−ε

M ).

Fact 6. Let (M ,dM ) be a finite3 metric space and fix ε ∈ (0,1). The quantity c1(M ,d 1−ε
M )

1
1−ε is equal to the infimum over

those αÊ 1 for which there exists an embedding f : M → `1−ε that satisfies (3).

Proof. Suppose that f : M → `1−ε satisfies (3). Then, recalling the notation (2) for the metric d1−ε on `1−ε, we have
dM (x, y)1−ε É d1−ε( f (x), f (y)) Éα1−εdM (x, y)1−ε for all x, y ∈ M . It follows from general principles [9, 39] that the met-
ric space (`1−ε,d1−ε) admits an isometric embedding into an L1(µ) space (an explicit formula for such an embedding
into L1(R2) can be found in [32, Remark 5.10]). Hence, c1(M ,d 1−ε

M ) Éα1−ε. Conversely, there is an explicit embedding
(see equation (2) in [33]) T : `1 → L1−ε(N×R) which is an isometry when one takes the metric d1−ε on L1−ε(N×R).
Hence, if β > c1(M ,d 1−ε

M ), then take an embedding g : M → `1 such that dM (x, y)1−ε É ‖g (x)− g (y)‖1 É βdM (x, y)1−ε

for all x, y ∈ M and consider the embedding T ◦ g which satisfies (3) with α = β1/(1−ε), except that the target space is
L1−ε(N×R) rather than `1−ε. By an approximation by simple functions we obtain the desired embedding into `1−ε. �

1.2.2. Quotients. Suppose that G is a group that acts on a metric space (X ,dX ) by isometries. The quotient space
X /G = {Gx}x∈X of all the orbits of G can be equipped with the following quotient metric dX /G : (X /G)×(X /G) → [0,∞).

∀x, y ∈ X , dG/X (Gx,G y)
def= inf

(u,v)∈(Gx)×(G y)
dX (u, v) = inf

g∈G
dX (g x, y). (5)

See [10, Section 5.19] for more on this basic construction (in particular, for a verification that (5) indeed gives a metric).
Given k ∈ N, we will consider the Hamming cube to be the vector space Fk

2 over the field of two elements F2,
equipped with the Hamming metric dFk

2
: Fk

2 ×Fk
2 →N∪ {0} that is given by

∀x = (x1, . . . , xk ), y = (y1, . . . , yk ) ∈ Fk
2 , dFk

2
(x, y) = |{ j ∈ {1, . . . ,k} : x j 6= y j }|.

Below, Fk
2 will always be assumed to be equipped with the metric dFk

2
. The standard basis of Fk

2 is denoted e1, . . . ,ek .

If G is a group acting on Fk
2 by isometries, and if it isn’t too large, say, |G| É 2k/2, then all but an exponentially small

fraction of the pairs (x, y) ∈ Fk
2 ×Fk

2 satisfy dFk
2
(Gx,G y)& k. Specifically, there is a universal constant η> 0 such that

|G| É 2
k
2 =⇒

∣∣∣{(x, y) ∈ Fk
2 ×Fk

2 : dFk
2 /G (x, y) É ηk

}∣∣∣É 2
5
3 k . (6)

A simple counting argument which verifies (6) appears in the proof of [23, Lemma 3.2].

2When (U ,dU ) is a finite metric space, it suffices to consider embeddings into `p rather than a general Lp (µ) space, as follows via a straight-
forward approximation by simple functions. We warn that this is not so for general (infinite) separable metric spaces, in which case one must
consider embeddings into Lp ; by [11, Corollary 1.5] there is even a doubling subset of L1 that does not admit a bi-Lipschitz embedding into `1.

3The only reason for the finiteness assumption here (the present article deals only with finite metric space) is to ensure that the embedding
is into `1−ε rather than a more general L1−ε(µ) space. For embeddings of finite-dimensional normed spaces, i.e., the setting of [3], a similar
reduction to embeddings into `1−ε is possible using tools from [36, 1, 6].
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The symmetric group Sk acts isometrically on Fk
2 by permuting the coordinates, namely for each permutation g of

{1, . . . ,k} and x ∈ Fk
2 we write g x = (xg−1(1), xg−1(2), . . . , xg−1(k)). A subgroup G É Sk of Sk therefore acts by isometries on

Fk
2 ; below we will only consider quotients of the form (Fk

2 /G ,dFK
2 /G ) when G is a transitive subgroup of Sk .

1.2.3. `1 non-embeddability of snowflakes of (subsets of) hypercube quotients. In [23] we studied the `1 embeddability
of quotients of Fk

2 . In particular, [23, Corollary 3] states that if G is a transitive subgroup of Sk with |G| É 2k/2, then

c1
(
Fk

2 /G ,dFk
2 /G

)
& logk. (7)

In Remark 4 of [23] we (implicitly) asked about the sketchability of Fk
2 /G , by inquiring whether its (1/2)-snowflake

embeds into a Hilbert space with O(1) distortion, as a possible alternative approach for obtaining integrality gaps
(quantitatively stronger than what was known at the time) for the Goemans–Linial semidefinite relaxation of the
Sparsest Cut problem. This hope was realized in [14] for the special case when G = 〈Sk〉 É Sk is the cyclic group
that is generated by the cyclic shift Sk = (1,2, . . . ,k) ∈ Sk . Specifically, it follows from [14] that there exists a large sub-
set M ⊆ Fk

2 , namely |Fk
2 à M | . 2k /k2, and a metric ρ on M/〈Sk〉 satisfying ρ(O,O′) ³ dFk

2 /〈Sk 〉(O,O′) for all pairs of

orbits O,O′ ∈ M/〈Sk〉, and such that the metric space (M/〈Sk〉,pρ) embeds isometrically into `2. Strictly speaking, a
stronger statement than this was obtained in [14] for a larger metric space (namely, for the quotient of Fk

2 ×Fk
2 by the

group 〈Sk〉×〈Sk〉), but here it suffices to consider the above smaller metric space which inherits the stated properties.
Recalling Fact 6, this discussion leads naturally, as a strategy towards proving Theorem 2, to investigating whether

a lower bound as (7) holds for the (1−ε)-snowflake of the hypercube quotient Fk
2 /G rather than that quotient itself.

We will see that the method of [23] does not yield any such lower bound that tends to ∞ as k →∞ for fixed ε> 0, but
we do obtain the desired statement here, albeit with an asymptotically weaker lower bound than the logk of (7). Note
that an application of Theorem 7 below to the above subset M ⊆ Fk

2 from [14] yields Theorem 2, because of Fact 6.

Theorem 7 (non-embeddability of snowflakes of quotients of large subsets of the hypercube). Fix k ∈N and ε ∈ (0, 1
2 ).

Let G be a transitive subgroup of Sk with |G| É 2k/2. Then, every M ⊆ Fk
2 with |Fk

2 àM | É 2k /
√

logk satisfies

c1

(
M/G ,d 1−ε

Fk
2 /G

)
& (logk)

1
2−ε. (8)

It would be interesting to determine the asymptotically sharp behavior (up to universal constant factors) in (8) for
M = Fk

2 , though understanding the dependence on the transitive subgroup G É Sk may be challenging; see [8] for
investigations along these lines. Even in the special case G = 〈Sk〉 we do not know the sharp bound, and in particular
how it transitions from the (logk)1/2−ε of (8) to the logk of (7) as ε→ 0 (it could be that neither bound is tight).

1.2.4. Bourgain’s Fourier tails versus the Kahn–Kalai–Linial influence of variables. In [23, Theorem 3.8] we applied the
important theorem [19] of Kahn, Kalai and Linial on the influence of variables on Boolean functions to show that if G
is a transitive subgroup of Sk , then every f : Fk

2 /G → `1 satisfies the following Cheeger/Poincaré inequality.

1

4k

∑
(x,y)∈Fk

2×Fk
2

‖ f (Gx)− f (G y)‖1.
1

logk

k∑
j=1

1

2k

∑
x∈Fk

2

∥∥ f
(
G(x +e j )

)− f (Gx)
∥∥

1 . (9)

Fix (ε,α) ∈ (0,1)× [1,∞). If |G| É 2k/2 and dFk
2 /G (Gx,G y)1−ε É ‖ f (Gx)− f (G y)‖1 ÉαdFk

2 /G (Gx,G y)1−ε for x, y ∈ Fk
2 , then

k1−ε (6)
.

1

4k

∑
(x,y)∈Fk

2×Fk
2

dFk
2 /G (Gx,G y)1−ε É 1

4k

∑
(x,y)∈Fk

2×Fk
2

‖ f (Gx)− f (G y)‖1

(9)
.

1

logk

k∑
j=1

1

2k

∑
x∈Fk

2

∥∥ f
(
G(x +e j )

)− f (Gx)
∥∥

1

É α

logk

k∑
j=1

1

2k

∑
x∈Fk

2

dFk
2 /G

(
G(x +e j ),G y

)1−ε (5)É α

logk

k∑
j=1

1

2k

∑
x∈Fk

2

dFk
2
(x +e j , y)1−ε = αk

logk
.

It follows that

c1

(
Fk

2 /G ,d 1−ε
Fk

2 /G

)
&

logk

kε
. (10)

This is how (7) was derived in [23], but the right hand side of (10) tends to ∞ as k →∞ only if ε. (loglogk)/ logk.
Following the above use of the KKL theorem [23], it was used elsewhere in place of applications [24, 23] of a more

substantial theorem of Bourgain [7] on the Fourier tails of Boolean functions that are not close to juntas; notably this
was first done by Krauthgamer and Rabani [26] to obtain an asymptotically improved analysis of the Khot–Vishnoi
integrality gap [24] for Sparsest Cut. We have seen above that the KKL-based approach does not yield Theorem 7
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(though, of course, one cannot rule out the availability of a more sophisticated application of KKL that does), but
our use of Bourgain’s theorem in the ensuing proof of Theorem 7 shows that this theorem does sometime provide
qualitatively stronger geometric information. One should note here that (8) follows from an application of a sharp
form of Bourgain’s theorem that was more recently obtained by Kindler, Kirshner, and O’Donnell [25]; an application
of Bourgain’s original formulation yields a bound that is asymptotically weaker by a lower-order factor.

2. PROOF OF THEOREM 7

Here we will prove Theorem 7, thereby completing the justification of Theorem 2 as well.

2.1. Fourier-analytic preliminaries. We will include here some basic facts and notation related to Fourier analysis on
the hypercube Fk

2 ; an extensive treatment of this topic can be found in e.g. the monograph [37]. Fix k ∈N. From now
on, letµ=µk denote the normalized counting measure on Fk

2 . Given A ⊆ {1, . . . ,k}, the Walsh functionWA : Fk
2 → {−1,1}

and Fourier coefficient ϕ̂(A) ∈R of a function ϕ : Fk
2 →R are defined by

∀x ∈ Fk
2 , WA(x) = (−1)

∑n
j=1 x j and ϕ̂(A) =

ˆ
Fk

2

ϕ(x)WA(x)dµ(x).

The convolution ϕ∗ψ : Fk
2 →R of two functions ϕ,ψ : Fk

2 →R is defined by

∀x ∈ Fk
2 , (ϕ∗ψ)(x) =

ˆ
Fk

2

ϕ(y)ψ(x + y)dµ(y) = ∑
A⊆{1,...,k}

ϕ̂(A)ψ̂(A)WA(x),

where the last equality is valid because the 2k Walsh functions {WA}A⊆{1,...,k} consist of all of the characters of the
additive group Fk

2 , hence forming an orthonormal basis of L2(µ). Suppose that g ∈GL(Fk
2 ) is an automorphism of Fk

2 .
If ϕ : Fk

2 →R is a g -invariant function, i.e., ϕ(g y) =ϕ(y) for all y ∈ Fk
2 , then for every ψ : Fk

2 →R and x ∈ Fk
2 ,

(ϕ∗ψ)(x) =
ˆ
Fk

2

ϕ(y)ψ(x + y)dµ(y) =
ˆ
Fk

2

ϕ(g y)ψ(x + y)dµ(y)

=
ˆ
Fk

2

ϕ(z)ψ
(
x + g−1z

)
dµ(z) =

ˆ
Fk

2

ϕ(z)ψ
(
g−1(g x + z)

)
dµ(z) =

(
ϕ∗ (

ψ◦ g−1))(g x).

In particular, under the above invariance assumption we have the identity

‖ϕ∗ψ‖L2(µ) =
∥∥∥ϕ∗ (

ψ◦ g−1)∥∥∥
L2(µ)

. (11)

Given p ∈ [0,1], let ϑp : 2F
k
2×Fk

2 → [0,1] be the probability measure that is defined by setting for each (x, y) ∈ Fk
2 ×Fk

2 ,

ϑp(x, y)
def= p

d
Fk

2
(x,y)

(1−p)
k−d

Fk
2

(x,y)

2k
= 1

4k

k∏
j=1

(
1+ (1−2p)(−1)x j+y j

)= 1

4k

∑
A⊆{1,...,k}

(1−2p)|A|WA(x + y). (12)

In other words, ϑp(x, y) is equal to the probability that the ordered pair (x, y) is the outcome of the following random-
ized selection procedure: The first element x ∈ Fk

2 is chosen uniformly at random, and the second element y ∈ Fk
2 is

obtained by changing the sign of each entry of x independently with probability p. Note in passing that both marginals
of ϑp are equal to µ, i.e., ϑp(Ω×Fk

2 ) =ϑp(Fk
2 ×Ω) =µ(Ω) for everyΩ⊆ Fk

2 . Also, for everyΩ⊆ Fk
2 we have

ϑp
(
Ω× (Fk

2 àΩ)
)= 1

8

ˆ
Fk

2×Fk
2

(
(−1)1Ω(x) − (−1)1Ω(y)

)2
dϑp(x, y)

= 1

4

(
1−
ˆ
Fk

2×Fk
2

(−1)1Ω(x)(−1)1Ω(y)dϑp(x, y)

)
= 1

4

∑
A⊆{1,...,k}

(
1− (1−2p)|A|

)(à(−1)1Ω(A)
)2

,
(13)

where the last equality in (13) is a direct consequence of Parseval’s identity and the final expression in (12) for ϑp(·, ·).
For ϕ : Fk

2 →R and j ,m ∈ {1, . . . ,k}, the level-m influence of the j ’th variable on ϕ, denoted InfÉm
j [ϕ], is the quantity

InfÉm
j [ϕ] = ∑

A⊆{1,...,k}à{ j }
|A|Ém−1

ϕ̂(A∪ { j })2 =
∥∥∥ϕ∗RÉm

j

∥∥∥2

L2(µ)
, (14)
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where the last equality is a consequence of Parseval’s identity, using the notation

RÉm
j

def= ∑
A⊆{1,...,k}à{ j }

|A|Ém−1

WA∪{ j }. (15)

It follows from the first equation in (14) that

k∑
j=1

InfÉm
j [ϕ] = ∑

B⊆{1,...,k}
|B |Ém

|B |ϕ̂(B)2 É m
∑

B⊆{1,...,k}
B 6=∅

ϕ̂(B)2 = m

(ˆ
Fk

2

ϕ2 dµ− ϕ̂(∅)2
)
= mVarµ[ϕ], (16)

where Varµ[·] denotes the variance with respect to the probability measure µ. By considering the symmetric group Sk

as a subgroup of GL(Fk
2 ), where the action is permutation of coordinates, an inspection of definition (15) reveals that

RÉm
j ◦ g =RÉm

g j for g ∈ Sk and j ,m ∈ {1, . . . ,k}. By (11) and the second equality in (14), if ϕ : Fk
2 →R is g -invariant, then

∀ j ,m ∈ {1, . . . ,k}, InfÉm
j [ϕ] = InfÉm

g−1 j [ϕ].

A combination of this observation with (16) yields the following statement, which we record for ease of later reference.

Fact 8. Fix k ∈N. Let G be a subgroup of Sk that acts transitively on the coordinates {1, . . . ,k}. Suppose that ϕ : Fk
2 →R is

a G-invariant function, i.e., f (g x) = f (x) for every g ∈G and x ∈ Fn
2 . Then, for every m ∈ {1, . . . ,k} we have

max
j∈{1,...,k}

InfÉm
j [ϕ] É m

k
Varµ[ϕ].

Throughout what follows, given a subgroup G É Sk , we denote by πG : Fk
2 → Fk

2 /G its associated quotient mapping,
i.e., πG (x) =Gx for all x ∈ Fk

2 . We denote by µFk
2 /G =µ◦π−1

G the probability measure on Fk
2 /G that is given by

∀O ∈ Fk
2 /G , µFk

2 /G (O) =µ(O).

In a similar vein, for every p ∈ [0,1] the probability measure ϑp on Fk
2 ×Fk

2 that is given in (12) descends to a probability
measure ϑp

Fk
2 /G

=ϑp ◦ (πG ×πG )−1 on (Fk
2 /G)× (Fk

2 /G) by setting

∀O,O′ ⊆ Fk
2 /G , ϑ

p

Fk
2 /G

(O,O′) =ϑp(O×O′).

2.2. A Cheeger/Poincaré inequality for transitive quotients. Our main technical result is the following inequality.

Lemma 9. There is a universal constant β ∈ (0,1) with the following property. Fix an integer k Ê 55 and a transitive
subgroup G of Sk . Suppose that X ⊆ Fk

2 /G is a sufficiently large subset in the following sense.

µFk
2 /G (X ) Ê 1− 1√

logk
. (17)

Then there is a further subset Y ⊆ X with µFk
2 /G (Y ) Ê 3

4µFk
2 /G (X ) such that every function f : Y → `1 satisfiesÏ

Y ×Y
‖ f (O)− f (O′)‖1 dµFk

2 /G (O)dµFk
2 /G (O′).

√
logk

Ï
Y ×Y

‖ f (O)− f (O′)‖1 dϑ
1

β logk

Fn
2 /G (O,O′). (18)

Prior to proving Lemma 9 we shall assume its validity for the moment and proceed to prove Theorem 7.

Proof of Theorem 7 assuming Lemma 9. Fix αÊ 1 and suppose that f : M/G → `1 satisfies

∀x, y ∈ M , dFk
2 /G (Gx,G y)1−ε É ‖ f (Gx)− f (G y)‖1 ÉαdFk

2 /G (Gx,G y)1−ε. (19)

Our task is to bound α from below by the right hand side of (8).
An application of Lemma 9 to X = M/F2, which satisfies the requirement (17) by the assumption of Theorem 7,

produces a subset Y with µ(π−1
G (Y )) Ê 1

2 for which (18) holds true. It follows thatÏ
π−1

G (Y )×π−1
G (Y )

dFk
2 /G (Gx,G y)1−εdµ(x)dµ(y)

(18)∧(19)
. α

√
logk

Ï
(Fk

2 /G)×(Fk
2 /G)

dFk
2 /G (O,O′)1−εdϑ

1
β logk

Fn
2 /G (O,O′)

(5)É α
√

logk

ˆ
Fk

2×Fk
2

dFk
2
(x, y)1−εdϑ

1
β logk (x, y)

(12)= α
√

logk
k∑
`=0

`1−ε
(

k

`

)(
β

logk

)`(
1− β

logk

)k−`
Éα

√
logk

(
βk

logk

)1−ε
.

(20)
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Since |G| É 2k/2, by (6) there exists η& 1 such that, since µ(π−1
G (Y ))& 1, we have

µ×µ
({

(x, y) ∈π−1
G (Y )×π−1

G (Y ) : dF k
2

(Gx,G y) > ηk
})

Êµ(
π−1

G (Y )
)2 −µ×µ

({
(x, y) ∈ Fk

2 ×Fk
2 : dF k

2
(Gx,G y) É ηk

})Êµ(
π−1

G (Y )
)2 −2− k

3 & 1.

So, the first quantity in (20) is at least a constant multiple of k1−ε, and the desired lower bound on α follows. �

Proof of Lemma 9. Suppose that Z ⊆ X satisfies

1

4
É µFk /G (Z )

µFk /G (X )
É 2

3
. (21)

Writing q= µFk /G (Z ), the function (−1)
1
π−1

G (Z ) : Fk
2 → {−1,1} is G-invariant and its variance is equal to 4q(1−q) ³ 1. Let

β ∈ (2/logk,1) be a small enough universal constant that will be determined later. Also, let C ∈ (1,∞) be a large enough
universal constant, specifically take C to be the universal constant that appears in the statement of [25, Theorem 3.1].
If we denote m = dβ logke, then it follows from Fact 8 that, provided β is a sufficiently small constant, we have

max
j∈{1,...,k}

InfÉm
j

[
(−1)

1
π−1

G (Z )
]
É m

k
Var

[
(−1)

1
π−1

G (Z )
]
É
Var

[
(−1)

1
π−1

G (Z )
]4

C m .

This is precisely the assumption of [25, Theorem 3.1], from which we deduce the following Fourier tail bound.

∑
A⊆{1,...,k}

|A|>dβ logke

( á
(−1)

1
π−1

G (Z ) (A)

)2

= ∑
A⊆{1,...,k}
|A|>m

( á
(−1)

1
π−1

G (Z ) (A)

)2

&
Var

[
(−1)

1
π−1

G (Z )
]

p
m

³ 1√
β logk

. (22)

Next, by the identity (13), we have

ϑ
1

β logk

(
π−1

G (Z )× (
Fk

2 àπ−1
G (Z )

))= 1

4

∑
A⊆{1,...,k}

(
1−

(
1− 2

β logk

)|A|)( á
(−1)

1
π−1

G (Z ) (A)

)2

Ê 1

4

(
1−

(
1− 2

β logk

)dβ logke+1
) ∑

A⊆{1,...,k}
|A|>dβ logke

( á
(−1)

1
π−1

G (Z ) (A)

)2
(22)Ê γ√

β logk
,

(23)

for some universal constant γ ∈ (0,1). Therefore,

ϑ
1

β logk

(
π−1

G (Z )× (
π−1

G (X )àπ−1
G (Z )

))Êϑ 1
β logk

(
π−1

G (Z )× (
Fk

2 àπ−1
G (Z )

))−ϑ 1
β logk

(
Fk

2 ×
(
(Fk

2 àπ−1
G (X )

))
=ϑ 1

β logk

(
π−1

G (Z )× (
Fk

2 àπ−1
G (Z )

))−µ(
Fk

2 àπ−1
G (X )

) (17)∧(23)Ê γ√
β logk

− 1√
logk

(21)³ 1√
logk

· µFk /G (Z )

µFk /G (X )
,

(24)

where the final step of (24) holds provided 1 ³βÉ γ2/4, which is our final requirement from the universal constant β.
Observe that

ϑ
1

β logk

Fk
2 /G

(X ×X ) Êϑ 1
β logk

(
Fk

2 ×Fk
2

)−ϑ 1
β logk

((
Fk

2 àπ−1
G (X )

)×Fk
2

)
−ϑ 1

β logk

(
Fk

2 ×
(
Fk

2 àπ−1
G (X )

))
= 1−2µ

(
Fk

2 àπ−1
G (X )

)= 1−2
(
1−µFk

2 /G (X )
) (17)Ê 1− 2√

logk
³ 1.

(25)

Hence,

ϑ
1

β logk

Fk
2 /G

((
Z × (X àZ )

)∪ (
(X àZ )×Z

))
ϑ

1
β logk

Fk
2 /G

(X ×X )
=

2ϑ
1

β logk

(
π−1

G (Z )× (
π−1

G (X )àπ−1
G (Z )

))
ϑ

1
β logk

Fk
2 /G

(X ×X )

(24)
&

1√
logk

· µFk /G (Z )

µFk /G (X )
. (26)

We are now in position to apply [23, Lemma 6] with the parameters δ= 1
4 , α³ 1/

√
logk, and the probability measures

σ
def=

µFk
2 /G

µFk
2 /G (X )

: 2X → [0,1] and τ
def=

ϑ
1

β logk

Fk
2 /G

ϑ
1

β logk

Fk
2 /G

(X ×X )
: 2X×X → [0,1]. (27)

8



Due to (26), by the proof of [23, Lemma 6] (specifically, equation (7) in [23]) there exists a subset Y ⊆ Fk
2 /G with

σ(Y ) Ê 3/4, i.e., µFk
2 /G (Y ) Ê 3µFk

2 /G (X )/4, such that every f : Y → L1 satisfiesÏ
Y ×Y

‖ f (O)− f (O′)‖1 dµFk
2 /G (O)dµFk

2 /G (O′)
(21)∧(27)³

Ï
Y ×Y

‖ f (O)− f (O′)‖1 dσ(O)dσ(O′)

.
√

logk
Ï

Y ×Y
‖ f (O)− f (O′)‖1 dτ(O,O′)

(25)∧(27)³
√

logk
Ï

Y ×Y
‖ f (O)− f (O′)‖1 dϑ

1
β logk

Fn
2 /G (O,O′). �
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