MAT 577, Probabilistic Methods in Combinatorics:

Homework Assignment Number 4, due April 26, this deadline is strict

1. Show that for any \(\epsilon > 0 \) there is a \(C = C(\epsilon) \) such that every set \(S \) of at least \(\epsilon 4^n \) vectors in \(\mathbb{Z}_4^n \) contains four vectors so that the Hamming distance between any pair of them is at least \(n - C\sqrt{n} \).

 Hint: use an appropriate martingale to show that more than \(3/4 \) of the vectors are within distance \(C\sqrt{n}/2 \) of \(S \).

2. Let \(H \) be a graph with \(m \) edges and maximum degree at most 10. Let \(U \) be a random set of vertices of \(H \) obtained by picking each vertex, randomly and independently, with probability \(p = \frac{1}{\log m} \). Show that the probability that \(U \) is independent is \((1 - p^2)^{m}\cdot(1 - o(1)) \) (where the \(o(1) \) term tends to zero as \(m \) tends to infinity.)

3. Find a threshold function for the following property of a graph \(G \) on \(n \) vertices: every set of at least \(n/2 \) vertices of \(G \) contains a (not necessarily induced) cycle of length 5. (Recall that, by definition, \(t(n) \) is such a threshold function if when \(p(n) = o(t(n)) \), then with high probability, \(G(n, p(n)) \) does not satisfy the property, and if \(t(n) = o(p(n)) \) then with high probability \(G(n, p(n)) \) satisfies it.)