1. Prove that there is an absolute constant $c > 0$ so that any 3-uniform hypergraph $H = (V, E)$ with n vertices, m edges and no isolated vertices contains an independent set (that is, a set of vertices containing no edge) of size at least $cn^{3/2}/m^{1/2}$.

2. (i). Show that for any two integers k and ℓ and for any real p, $0 < p < 1$, and any integer n, the Ramsey number $r(k, \ell)$ is at least

$$n - \binom{n}{k}p^{\binom{k}{2}} - \binom{n}{\ell}(1 - p)^{\binom{\ell}{2}}.$$

(ii). Apply the above to prove that the Ramsey number $r(4, k)$ satisfies $r(4, k) \geq c(k/\ln k)^{\alpha}$ for some absolute constant $c > 0$ and for the largest $\alpha > 0$ for which you can derive this inequality from the result in (i).

3. Prove that there is an absolute constant $c > 0$ so that the random graph $G = G(n, 100/\sqrt{n})$ contains, with high probability (that is, with probability that tends to 1 as n tends to infinity) a set of at least $cn^{3/2}$ pairwise edge disjoint triangles.

4. Let S_1, S_2, \ldots, S_k be a collection of subsets of $\{1, 2, \ldots, n\}$. Prove that if n is sufficiently large and $k \leq 1.99 \frac{n}{\log_2 n}$ then there are two distinct subsets X, Y of $\{1, 2, \ldots, n\}$ so that $|X \cap S_i| = |Y \cap S_i|$ for all $1 \leq i \leq k$.

5. Prove that there is an absolute constant $c > 0$ so that the following holds. For every prime p and every set $A \subset \mathbb{Z}_p$, $|A| = k$, there is an $x \in \mathbb{Z}_p$ so that the set $\{xa(mod p) : a \in A\}$ intersects every interval of length at least $c\frac{p}{\sqrt{k}}$ in \mathbb{Z}_p.