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Abstract

A graph G is universal for a (finite) family H of graphs if every H € H is a subgraph of G. For a
given family H, the goal is to determine the smallest number of edges an H-universal graph can have.
With the aim of unifying a number of recent results, we consider a family of graphs with bounded
density. In particular, we construct a graph with

Ou (2>~

edges which contains every n-vertex graph with density at most d € Q (d > 1), which is close
to a Q(n*~ /) lower bound obtained by counting lifts of a carefully chosen (small) graph. When
restricting the maximum degree of such graphs to be constant, we obtain near-optimal universality.
If we further assume d € N, we get an asymptotically optimal construction.

1 Introduction

A graph G is universal for a (finite) family H of graphs if every H € H is a (not necessarily induced)
subgraph of G. The complete graph with n vertices is universal for the family of all graphs with n vertices,
and this is clearly the smallest universal graph for this family. However, if we restrict our attention to
a family of graphs with some additional properties, more efficient (in terms of the number of edges)
universal graphs might exist. This is a natural combinatorial question, with applications in VLSI circuit
design [15], data storage [23], and simulation of parallel computer architecture [14].

The problem of estimating the minimum possible number of edges in a universal graph for various
families has received a considerable amount of attention. The previous work deals with families of
graphs with properties which naturally bound their density, such as graphs with bounded maximum
degree [5, 7, 6, 8, 9], forests [20, 21, 22, 28] and, more generally, graphs with bounded degeneracy [2, 33],
as well as families of graphs with additional structural properties such as planar graphs [12, 26] and graphs
with small separators [17, 18, 19]. Our focus is on the former case. Aiming to unify these results, we
initiate the study of universality for a family of graphs with bounded density and no other assumptions.
The density of a graph H is defined as

e(H")
U = 9 )

where e(H') is the numbers of edges of H' and v(H') is the number of its vertices. In plain words, a
graph G has density at most d € Q if not only the number of edges of G is at most v(G)d, but this also

holds for every subgraph of G. For d € Q and n € N, we denote by H4(n) the family of all graphs with
n vertices and density at most d.
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As already hinted, the family of graphs with bounded density generalises many interesting families.
For example, graphs with maximum degree d have density at most d/2. Forests have density arbitrarily
close to 1, and d-degenerate graphs and, more generally, graphs of arboricity d, have density arbitrarily
close to d (a graph is d-degenerate if every subgraph has minimum degree at most d). Note that every
graph of density at most d is also |2d|-degenerate, thus bounded density implies bounded degeneracy.
However, as we are aiming for an optimal dependence on the parameters, this implication does not
suffice. A number of (almost-)optimal results have been obtained in some of these cases [2, 7, 21], and
we conjecture that for all such families the bound on the size of a smallest universal graph is largely
governed by the density. Therefore, generalising all of these results, we believe the following is true.

Conjecture 1.1. For everyd € Q, d > 1, and n € N, there exists a graph G with
e(G) < On?71/d
edges which is Hq(n)-universal, where C' = C(d).

If true, the bound in Conjecture 1.1 is the best possible up to the constant C. Indeed, a simple
counting argument shows that if e(G) = o(n?>~'/%) then the number of graphs with density at most d
which can possibly appear in G is less than the total number of such graphs. Moreover, we obtain such a
lower bound even when restricting H4(n) to graphs with bounded maximum degree. This is summarised
in the following proposition.

Proposition 1.2. For every d € Q (d > 1) there exists D € N and o > 0 such that the following holds
for every sufficiently large n. If G is an HE (n)-universal graph then

e(@) > an* /4,

where HY (n) is the family of all graphs H € Hq(n) with maximum degree at most D.

A careful reader will notice that we require d > 1 in Conjecture 1.1. Indeed, if a graph H has density
at most 1 then each connected component of H contains at most one cycle, thus H is almost a forest.
For the family of all forests it is known that ©(nlogn) edges are both necessary and sufficient [20, 21].
This seems to be an artefact of the fact that having only ©(n) edges is simply too restrictive with how
we can arrange them, which we believe is not the case when we have O(n'*¢) edges for any constant
€ > 0. While this justification is vague, one can draw analogy with the theory of random graphs, where
the multiplicative logn factor becomes unnecessary when moving from Hamilton cycles to, say, powers
of Hamilton cycles [30] (signifying the difference between unicyclic graphs and those of density d > 1).

A reader familiar with random graph theory [16] will notice that a random graph with n vertices
and w(n?~1/?) edges is likely to contain any fixed given graph H with m(H) < d, provided v(H) is
significantly smaller than n. However, it is known that if v(H) is large then, in some cases such as when
H is a collection of many triangles, a significantly denser random graph is needed in order for H to
appear. It is interesting that from the point of view of constructing universal graphs, this phenomenon
does not happen.

A recent result of Allen, Bottcher, and Liebenau [2] establishes the bound in Conjecture 1.1 (up to
a log??(n) factor) in the special case where we restrict attention to the graphs in Hq(n) which are also
d-degenerate (for d an integer). Moreover, using the fact that a graph of density d is |2d]-degenerate,
their result also implies an upper bound of order

for Hq(n)-universality. Our first main result, Theorem 1.3, significantly improves this starting from
d>1.5.

Theorem 1.3. For everyn € N and d € Q, d > 1, there exists a graph G with
e(@) < Cn2-1/(d1+1)
edges which is Hq(n)-universal, where C = C(d).

As a further support towards Conjecture 1.1, we consider the family HZ (n) of graph H € H4(n) with
maximum degree D. In this case, we get a nearly-optimal bound.



Theorem 1.4. For every D,n € N and d € Q, d > 1, there exists a graph G with
€(G) < n271/d . 2Cw/logn

edges which is HY (n)-universal, where C = C(D,d).
Finally, in case d is an integer, we obtain an optimal bound.

Theorem 1.5. For every D,n € N and d € N, there exists a graph G with
e(G) < On?71/d
edges which is HY (n)-universal, where C = C(D,d).

Let us briefly compare these results with the previous ones. Alon and Capalbo [7] constructed a graph
with Op(n?~2/P) edges which is universal for the family of all n-vertex graphs with maximum degree at
most D. Theorem 1.5 implies this result, and further generalises it, in the case D is even. In the case

D is odd, Theorem 1.4 provides a bound which is by a factor of 2°(V1°8™) weaker than the one from
[7]. However, in comparison with the proof from [7] which relies on the fact that bounded degree graphs
can be decomposed into path-like pieces, we use a much more general decomposition (Lemma 3.1) which
applies to all graphs with bounded density. Moreover, Theorem 1.5 improves a result of the fifth author
[33] on universality of d-degenerate graphs with bounded degree, to an optimal one. That being said,
improving Theorem 1.4 is a natural first step towards Conjecture 1.1.

Conjecture 1.6. For every D,n € N and d € Q, d > 1, there exists a graph G with
e(G) < Cn2~1/d
edges which is HY (n)-universal, where C = C(D,d).

Unlike in the case of graphs with arbitrarily large degree, an additional multiplicative logn factor is
not needed even in the case of forests [28]. Thus we can relax the condition to d > 1.

Finally, let us briefly note that our constructions of universal graphs are based on a product construc-
tion first used by Alon and Capalbo [6, 7], refining an earlier approach by Alon, Capalbo, Kohayakawa,
Rédl, Ruciniski, and Szemerédi [9]. The proofs here also apply some of the ideas of Beck and Fiala [13]
from Discrepancy Theory, results of Feldman, Friedman and Pippenger [27] (see also [24]) from the the-
ory of nonblocking networks, and random walks on expanders, together with the Matroid Decomposition
Theorem of Edmonds [25].

The paper is organised as follows. In the next section we prove that the bound in Conjecture 1.1, if
true, is optimal even if we only restrict attention to H? (n) C Ha(n), where the bound D on the maximum
degree depends on d. Section 3 collects some results used in two or all three proofs. We then proceed
with proofs of our main theorems. Comments on differences between proofs are given when appropriate.
Throughout the paper we assume, whenever this is needed, that the parameter n is sufficiently large as a
function of any other parameter. To simplify the presentation we omit all floor and ceiling signs whenever
they are not crucial.

2 Lower bound

Consider a (fixed) graph F such that m(F) = e(F)/v(F). Such graphs are called balanced. Let n € N be
sufficiently large and divisible by v(F"). We obtain a large family of n-vertex graphs H with m(H) = m(F)
as follows. Set V(H) = Vi U...U V,(p), where the V;’s are pairwise disjoint sets of size n/v(F’), and for
each ij € E(F) put a perfect matching between V; and V;. The resulting graph H is called a lift of F'.
It is not difficult to check that regardless of which perfect matchings we choose, we have m(H) = m(F).
The number of such (labelled) graphs H is

()" i)™

We use this bound to prove Proposition 1.2.




Proof of Proposition 1.2. The result of Rucifiski and Vince [34] implies that for every d € Q, d > 1, there
exists a balanced graph F' with m(F') = d. As a lift H of F' has maximum degree at most D = v(F), we
have H € HE (n).

Suppose that a graph G contains every lift of F' of order n, and let M = e(G). As every lift contains
exactly ne(F)/v(F) edges, by (1) we necessarily have

(ieor) > (i) @

as otherwise there is a lift of F' which does not appear in G. Note that the n! term on the left hand
side takes into account that every choice of ne(F)/v(F) edges accounts for at most n! different labeled
subgraphs. We can further upper bound the left hand side of (2) as follows:

M g\ e E) /o (F) 3M ne(F)/v(F)
n! < - nn = —_— .
(ne(F)/v(F)> ( n ) (n1v<F>/e<F>>

Comparing this with the right hand side of (2), we conclude

1
2—v(F)/e(F) _ 2—1/m(F)
> = — .
QU(F)n 911(F)n

3 Preliminaries

In the following lemma we identify a graph with its edge set. For example, if H is a graph then |H| = e(H).
Unless explicitly stated otherwise, if H' C H then V(H') is the set of vertices supporting the edges of
H’. That is, V(H’) does not contain isolated vertices in the graph given by the edges H'.

We say that a graph is unicyclic if it contains at most one cycle. The proofs of all our three main
theorems are based on the decomposition given by the following lemma. Its proof applies some basic
results from Matroid Theory, see, e.g, [35] for the relevant notions.

Lemma 3.1. Let H be a simple graph, and for b € N let H®) be the multigraph obtained from H
by duplicating each edge b times. Then there exists a partition H®) = Hy U ... U Hy, where k = [b -
max{l,m(H)}], such that, for every i € [k], each component of H; is a simple unicyclic or a simple
acyclic graph.

Proof. We first argue that it suffices to prove the lemma in the case H is a connected graph. Suppose
H is not connected, and let Ki,..., K, be the connected components of H. For each acyclic K; set
Hi=H)=... H}C For each acyclic K;, the lemma gives us a partition KY = Hiu... H,i. Then setting

H; = UjE(Z Hf gives us a desired partition of H®. Note that it is crucial here that k > b.

Consider a connected graph H. Let B be the family of all maximal B C H® such that the graph B is
simple and each of its connected components is unicyclic. Here ‘maximal’ refers to the fact that B U {e}
fails one of these two properties for every e € H®) \ B. We will shortly prove that M = (H® B) is a
matroid, with B being the family of bases of M.

Assume for now that (H®,B) is a matroid. Consider some H' C H® and let H” be the graph
obtained from H' by removing duplicate edges. Note that V(H') = V/(H"). Let us denote by Cy,...,Cy C
H" the sets of edges corresponding to connected components of H”. For each component C;, let ¢(i) = 0
if C; contains a cycle, and ¢(i) = 1 if C; is a tree. The rank r(H’) of H' in M is then

This implies

B _be(H") _ b3, |G )
r(H) = r(H) S e(C) = ei)
For C; such that ¢(i) = 0 we have |C;|/v(C;) < m(H), by the definition. For C; with ¢(i) = 1 we have
|C;] = v(C;) — 1, thus |C;|/(v(C;) — 1) = 1 < m(H). Together with (3), this implies

[H'|
r(H’) = b-m{H)




By a result of Edmonds [25], one can cover H with [b-m(H)] disjoint independent sets from M, which
proves the lemma.

It remains to verify that M is indeed a matroid. Let us start with an observation that if X € B then
each connected component of X has to contain a cycle. Suppose, towards a contradiction, that this is
not the case for some X € B and a connected component C' in X. It cannot be that V(C) = V(H) as the
maximality of X implies that H itself is a tree. This violates the assumption m(H) > 1. Otherwise, since
H is connected there exists an edge in H between V(C) and V(H) \ V(C). Adding such an edge to X
would result in a graph with all connected components being unicyclic, thus contradicting the maximality
of X.

Consider some distinct bases X,Y € B. Without loss of generality, we may assume X,Y C H (that
is, if they both contain an edge between some v and u then it is the same edge, which we identify with
the one from H). For a given e € X \ 'Y, we aim to find ¢/ € Y \ X such that (X \ {e}) U {e’'} € B. Let
C denote the connected component of X which contains e. Recall that C' contains a cycle.

Case 1: ¢ lies on the cycle in C. The graph C'\ {e} is then a tree. If there is an edge ¢/ € Y\ X
with both endpoints in V(C), we can add it as then (C'\ {e}) U {e’} contains exactly one cycle and it is
a connected component in (X \ {e}) U{e’'}. Otherwise, since e € Y, we conclude that the subgraph of Y
induced by V(C) is a subgraph of tree C'\ {e} — thus a forest. Since no component of Y is a tree, there
has to be an edge ¢’ € Y with one endpoint in V(C') and the other in V(H) \ V(C'). This edge is not in
X as C' is a connected component of X. Each connected component of (X \ {e}) U {e'} is unicyclic, as it
attaches a tree C'\ {e} to a unicyclic component.

Case 2: e is not on the cycle in C'. Removing e from C splits it into two connected components, say
C7 and (s, where C contains a cycle and C5 is a tree. Applying the same argument as in the previous
case, since no component of Y is a tree there has to be an edge ¢’ € Y \ X with one endpoint in V(C5)
and the other in V(H) \ V(C3). Note that ¢’ is not in X. If its other endpoint is in V(H) \ V(C), then
it contradicts the maximality of X. The set of edges (X \ {e}) U {¢’} satisfies the properties of 5. O

Given a graph G, we denote by G? the graph obtained from G by adding an edge between any two
vertices at distance at most 2 in G. In the proofs of Theorem 1.4 and Theorem 1.5, we use the following
observation.

Lemma 3.2. Let H be a graph such that each connected component is unicyclic. Then there exists a tree
T on the same vertex set such that A(T) < A(H) and H C T?.

Proof. Suppose first that H is connected and it contains a cycle. Let vy,...,v; € V(H) be the vertices
along the cycle in H. Form a tree T by removing the edges on the cycle in H, and adding the edges on
the path v1vgv2VE_1V3VE_2 ... vk, where k' = [(k +1)/2].

If H is not connected, apply the above argument on each connected component to obtain a forest F
such that H C F?2. By connecting leaves as necessary, we obtain a tree T with the desired property. [

In the proofs of Theorem 1.3 and Theorem 1.5, we make use of the following simple known lemma
(see, e.g., [3, Lemma 2.2]).

Lemma 3.3 ([3]). For every forest F with n vertices and every r € N, there exists a subset R C V(F)
of size |R| < r such that each connected component in F'\ R is of size at most n/r.

In the proofs of Theorems 1.3 and Theorem 1.4, we use the notion of a graph blowup, thus we define
it here for later reference.

Definition 3.4. Given a graph G and b € N, we define a b-blowup of G to be a graph I' on the vertex
set V(I') = UuEV(G) Vi, where each V,, is of size b and they are all disjoint, and there is an edge between

z€V,and y € V, iff uv € E(G) or v = v. In particular, T has v(G)b vertices and v(QG) (12’) + e(G)b?
edges.

In the proofs of Theorem 1.4 and Theorem 1.5 we make use of the so-called (n,t, \)-graphs. These are
t-regular graphs with n vertices such that every eigenvalue A’ of the adjacency matrix, save the largest one
(which is always exactly t), satisfies |\'| < A. For small A such graphs are known to be good expanders.
We use the following result of the first author [4] which provides an explicit construction of such graphs
for an almost optimal value of A (note that a construction of Lubotzky, Phillips, and Sarnak [31] can be
used as well, even though it does not provide a construction for every t).



Theorem 3.5. For every t € N and n > ng(t) such that nt is even, there exist an explicit construction
of an (n,t,\)-graph with A < 3+/t.

It is worth noting that the proof in [4] and the known results about the Linnik problem imply that
no(t) < t9M) | In particular, this is relevant for the proof of Theorem 1.4.

4 Graphs with bounded density

We need the following lemma from Discrepancy Theory. The proof applies the Beck-Fiala method [13].
We only use it with ¢ = 1/2, however, as this does not make the proof any easier, we state it in greater
generality.

Lemma 4.1. The following holds for any positive integers t, d and real ¢ € [0,1]. Let vi,va,...,v; be a
sequence of vectors in RY, each having ¢1-norm at most 1. Then there is a subset I C {1,2,...,t} so that
t
Z vVi—q Z Vi < 1.

iel i=1 .
Proof. Associate each vector v; = (v;1,v;9, ..., 0;q) with a real variable z; € [0,1]. Starting with z; = ¢

for all ¢, we describe an algorithm for rounding each z; to either 0 or 1 without changing the sum >_ a;v;
by much. During this algorithm, call a variable z; floating if x; lies in the open interval (0, 1), otherwise
(that is, if x; € {0,1}) call it fized. Once a variable becomes fixed it will stay fixed until the end.
In each phase, the algorithm proceeds as follows. If all variables are fixed, terminate. Otherwise, let

F C {1,2,...,t} denote the set of all indices of floating variables and consider the following linear system
of equations in these variables: For every coordinate j € {1,2,...,d} for which
> lvil > 1, (4)
ieF

include the equation
t t
waij = qzvij' (5)
i=1 i=1

Note that only the floating variables {z;: ¢ € F'} are considered as variables at this point; the fixed
variables are already fixed and are treated as constants. During the algorithm, we maintain the property
that for every coordinate j for which (4) holds, the equality (5) holds as well. This is certainly true at
the beginning, when x; = ¢ for all 3.

By the assumption about the ¢1-norm of the vectors v;, we have

d
DO oyl < |F)

ieF j=1

and therefore the number of indices j for which (4) holds is strictly smaller than |F|. There are more
variables than equations and hence there is a solution, and moreover a line of solutions. One can move
along this line starting with the existing point on it (that corresponds to the current value of the floating
variables x;) until the first point in which at least one of the floating variables x; becomes 0 or 1. Fix
this variable (as well as any other floating variables that become 0 or 1, if any), and continue with the
next phase. Note that the desired property is maintained since no new coordinate j can satisfy (4) as F
gets smaller.

Since each phase fixes at least one floating variable, the algorithm must terminate when all the
variables z; are fixed. Now, for a coordinate j, consider the first phase when condition (4) is not satisfied.
The equality (5) holds at this phase since it is the first time (4) is not satisfied. Moreover, for the rest
of the algorithm, the value of the sum Zﬁzl x;v;; can only change by strictly less than ), |vi;| < 1,
since only the floating variables change after that. This shows that upon termination, for every index

je {1527"'5d}a
t t
ZCEiUz‘j - qzvij
i=1 i=1

Therefore the set I = {i : z; = 1} of all indices in which the final value of z; is 1 satisfies the conclusion
of the lemma. O

< 1.




By repeated application of the previous lemma, we get the following.

Corollary 4.2. The following holds for any three positive integers t,d,m = 2*. Let vi,va,...,Vv; be a
sequence of vectors in RY, each having f1-norm at most 1. Then there is a partition [t] = I, U...U I,,,
such that for every p € [m]| we have

1 ¢ .
vV, — — V; < 27 < 2.
Proof. We prove the statement by induction on k. For k = 1 it follows from Lemma 4.1 with ¢ = 1/2.
Suppose that it holds for m = 2¥~!, for k > 2. We show that then it also holds for m = 2*.
Apply Lemma 4.1 with ¢ = 1/2 to split the vectors into two collections, [t] = C; U Cy, such that for
i € {1,2} we have

t
Zvj—%ZVj <1 (6)
j=1

jeC; o

By the induction hypothesis, there is a partition C; = I; U... U I,,/5 such that for each p € [m/2] we
have

2 )
Z‘_i ’L < 2_2. 7
dovim— Y i < (7)

iel, iecy ||, i=0

By the triangle inequality, from (6) and (7) we conclude

t t k—2
Zvilevi = ZW*EZW +2<Zvi;Zvi> §Z2*i+2/m.
icly m =1 0o icly m 1€Cq m 1€Cq i=1 o i=0

The same argument applies to Co, which gives a desired partition [t] = I; U...U I,,. O

Proof of Theorem 1.3. Note that it suffices to prove the theorem for d € N and n large enough with
respect to d.

Let m be the smallest power of 2 that is at least n!/(@*1) and suppose m > 4. First, form a graph
[ on the vertex set [m|? where two vertices u = (uy,ug, ..., uq) and v = (v1,va,...,vq) are connected if
u; = v; for some i € [d]. The graph I' has m? vertices and at most dm - m2(@=1) edges. The graph I't
is the (3m + 3)-blowup of I" (see Definition 3.4) together with another set V' of 2dn/m vertices and all
edges incident with at least one vertex from V*. Note that I't has at most

md % ((3m+3)> +dm - m2(d—1) % (3m+ 3)2 + 2d7n % (md(3m+ 3) + 2dn) _ O(n2—1/(d+1))

2 m m

edges. We proceed to show that 't is H4(n)-universal.

Consider some H € Hg(n). Let H = Hy U...U Hy be a decomposition given by Lemma 3.1 (with
b =1), and recall that each component, of each H;, is either acyclic or unicyclic. First form R’ C V(H)
as follows: For every i € [d] and every component of H; of size at least m, take one vertex from a cycle
in that component (if such exist). This adds up to at most dn/m vertices. Next, let F; denote the forest
consisting of all connected components of size at least m in H; \ R’ (each such component is a tree).
By adding further edges, we may assume that F; is a tree. Applying Lemma 3.3 with F; and r = n/m,
for each ¢ € [d], we obtain a set R C V(H) of size |R| < dn/m such that each connected component of
F;\ (RUR'), and therefore of H;\ (RUR'), is of size at most m. All the vertices of RUR’ will be mapped
into V*. Set H = H\ (RUR') and H = H; \ (RUR').

Let C; = (K C V(H'"))jes, denote the partition of V(H') corresponding to the vertices in connected
components in H} (we think of H/ as being a spanning subgraph of H’; some vertices may be isolated).
For each h € V(H'), let ¢;(h) denote the component K € C; that contains h. We show, by induction on

i, that there exist functions ¢;: C; — [m] such that for each i € [d] and every v = (v, va,...,v;) € [m]’
we have n
IS(V)| < — +2m+3 (8)
ml
where

S(v) ={h e V(H') : $1(c1(h)) = v1, p2(c2(h)) = va,. .., ilci(h)) = vi}.



Suppose we have obtained such a mapping for ¢ = d. Consider an arbitrary injection of S(v) into the
blowup Vi, in I't, for v € [m]?, and an arbitrary injection of R U R’ into V*. An image of a vertex
from RU R’ is adjacent to every other vertex in I'". Images of any two vertices h,h’ € S(v), for some
v € [m]%, are adjacent as they belong to the complete subgraph Vi. Finally, consider {h,h'} € E(H’)
where h € S(v) and b’ € S(u) for v # u. As h and b’ are adjacent in H’', they are adjacent in some H/.
But then they belong to the same connected component in H/, thus v and u agree on the i-th coordinate.
Therefore they are adjacent in I', thus the images of h and h’ are adjacent in I'". To summarise, this
shows that H is a subgraphs of I'".

Inequality (8) trivially holds for ¢ = 0. Suppose that (8) holds for some i — 1, for i € [d]. We show
we can find ¢; so that it holds for i. For each connected component K € C; define a vector vk of length
m'~1 indexed by the vectors u = (u1,us,...,u;_1) € [m]*~! as follows: The coordinate of vy indexed
by u is the number of vertices h € K such that

¢1(C1(h)) = Uy, ¢2(62(h)) = U2,..., ¢i—1(ci—1(h)) = Ui—1-

Note that the ¢1-norm of each vy is the number of vertices of K, which is at most m. In addition, the
sum of all the vectors v in each coordinate u is exactly |S(u)|, which, by the induction hypothesis, is
at most n/m*~! + 2m + 3.

By Corollary 4.2 these vectors can be partitioned into m pairwise disjoint collections so that the sum
of the vectors in each collection, and with respect to each coordinate, is at most

i—1 2 3 .
n/m 4 2m + +2m <n/m'+2m+ 3.

The value of ¢;(K) is now set to be the index of the collection containing K, implying the required
inequality for ¢« and completing the proof. O

5 Graphs with bounded density and degree

The basic idea behind the proofs of Theorem 1.4 and Theorem 1.5 is similar to that in the proof of
Theorem 1.3. In Theorem 1.3 we obtain n~/(¢+1) instead of the desired n~='/? because, in each of the
d steps, we assign the same coordinate to all the vertices of a connected component in H;. Intuitively,
if some vertices of H belong to the same connected component across each H;, this is not sufficient to
disambiguate them and we are forced to take a small blowup at the end.

When H has bounded maximum degree, we avoid this by using the following idea, at least in the case
d € N: Our basic graph T is again defined on the vertex set [m]? (now with m ~ n'/?), however this
time we connect v,u € [m]¢ by an edge if some v; and u; are connected by an edge in a bounded-degree
expander G on the vertex set [m], which we fix upfront. Instead of mapping all the vertices of one
component of H; into a single coordinate, we disperse them across [m] by using edges of the expander G.
In Theorem 1.5 we can make this approach disambiguate all the vertices of H, thus avoiding the use of
a final blowup altogether. In Theorem 1.4 the number of vertices which are pairwise ambiguous ends up

being of order 2°(V1°6™) thus we take a very small blowup at the end — significantly smaller than in the
proof of Theorem 1.3 — to deal with this.

The proof of Theorem 1.4, presented next, borrows ideas of using random walks in expanders from
[6]. One significant difficulty in the proof of Theorem 1.4 is that we are not able to split H; into
small connected components and we have to deal with the whole H; at once, which further emphasises
dispersion via expanders. The proof of Theorem 1.5 generalises the approach from [7] from embedding
paths in expanders, in a specific way, to embedding bounded-degree trees. This is done using some of
the ideas from [24] and [27].

5.1 Density bounded by a rational
We use the following well known property of random walks on expanders, see, e.g., [29, Theorem 3.3].

Lemma 5.1. Let G be an (n,t, \)-graph, and consider a random walk starting in a given vertex v € V(G).
The probability that after exactly € steps we finish in a vertex w € V(Q) is at most

1/n+ (Nt



Randomized tree homomorphism. Given a tree T with the designated root r and a graph G, we
use the following randomized procedure for constructing a homomorphism ¢: T — G:

(i) Consider any ordering hy,...,h, of V(T) such that hy = r and, for each ¢ > 2, h; has exactly one
neighbour within {hq,...,h;—1}.

(ii) Take s1 € V(G) to be some upfront chosen vertex in V(G).

(iif) For i = {2,...,n}, sequentially, take s; to be a neighbour of s; in G chosen uniformly at random,
where j <4 is the unique index such that h;h; € T

The homomorphism is then given by ¢(h;) := s;. Note that the ordering of the vertices ha, ..., h, plays
no role in the distribution of ¢, as long as each vertex other than h; has exactly one predecessor.

Lemma 5.2. Let G be an (m,t,3v/t)-graph where t = 2V log8n and n > m. Suppose T is a tree with the
root r, and U C V(T)\ {r} a subset such that every two t,t' € UU{r} are at distance at least 16/logn
inT. Let ¢ be a random homomorphism ¢: T — G obtained by the described procedure. Then, for any
v € V(G), the size of the set

U, ={ueU: ¢(u) =v}

is stochastically dominated by a binomial random variable B(|U|,1/m+1/n3). That is, if X ~ B(|U|,1/m+
1/n3) then, for any x >0, Pr(|U,| > z) < Pr(X > x).

Proof. Let uq,...,u, be an ordering of the vertices in U such that if u; is closer to r than w;, then j < 4.
Let P; be the path from r to u; and set x1 = r. For each 2 < ¢ < k, define the path P; as follows:

o Let 2; € V(T) be the first vertex on a path from u; to r which belongs to ,_; V(F;);
e Set P; to be the path from x; to u;.

Importantly, for every i € [k] we have |P;| > 8y/logn. Let us quickly prove this. As z; € |J;, V(P;) we
have z; € V(P;), for some j < ¢. That implies u; is not further from r than w;, thus the path from x;
to w; is not larger than |P;|. Therefore u; and u; are at distance at most 2|P;|, which gives the desired
lower bound.

We now describe an equivalent way of generating ¢:

(i) Set ¢(r) to be the upfront chosen vertex s; in V(G).

(ii) For each i € [k], sequentially, extend the partial mapping ¢ to V(P;) \ {z;} by taking a random
walk of length |P;| which starts in ¢(z;).

(iii) Let f1,..., fir be an ordering of the vertices in
Ve = v\ U vir)
i€ (k]
such that each f; has exactly one neighbour f! € |J el V(P;) U{fi,..., fi—1}. Sequentially, for
1 € [K'], extend ¢ to f; by taking a random neighbour of ¢(f}).

2

By Lemma 5.1 we have
Prio(u;) = v | ¢(u1),...,¢(ui—1)] < 1/m + (3/\/2)|P£| <1/m+1/n°
thus the conclusion of the lemma follows. O

We are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Suppose d = a/b, for some a,b € N with a > b. Let m = nt/e and t = 2V1°8™ and
let G be an (m,t,3+/t)-graph on the vertex set [m] (see Theorem 3.5). We form the graph T' as follows:
V(T') = [m]*, and two vertices v = (v1,...,v,) and w = (w1, ...,w,) are connected by an edge iff there
exist at least b distinct indices iy, ..., € [a] such that v;w; € G?, for each j € {i1,...,4,}. Note that
I' has n vertices and O(n?~%/%) edges. Finally, take I't to be a (2°V!°8")-blowup of T, for C' being a
sufficiently large constant. The graph 't has at most

9] (n2—b/a . 220\/10gn)



edges. It remains to show that I'" is HZ (n)-universal.

Consider some H € H?(n). Applying Lemma 3.1 with b, we obtain subgraphs Hi, ..., H, C H such
that each connected component, of each H;, is either acyclic or unicyclic, and each edge e € H belongs
to exactly b of these subgraphs. By Lemma 3.2, there exists a tree T; on the vertex set V(H) such that
H; C T? and A(T;) < D. Therefore, any homomorphism of T} into G is also a homomorphism of H; into
G?. Let r € V(H) be an arbitrary vertex which will serve as the root of every tree Tj.

Form an auxiliary graph A by taking an edge between h,h' € V(H), b’ # h, iff they are at distance

at most 164/logn in some 7;. That is, A = Ti16 VI®™ e
A(A) < aDlG\/logn'

Take Uy C V(H) to be the set of all vertices in V' (H) which are neighbours of r in A, together with r
itself. Arbitrarily partition V(H) \ Up into independent sets Uy, ..., Ux(a)+1 in A.

Our goal is to find homomorphisms ¢;: T; — G such that, for each i € [a], v = (v1,...,v;) € [m]* and
je{l,...,A(A) + 1}, we have

157 (v)| < max{2'n(*=/% 4logn}, 9)

where ‘
SJ(V) = {h S Uji ¢1(h) = V1,.. ,qﬁl(h) = Ui}~
This implies that, for every v = (v1,...,v4) € [m]?, the set

S(v) ={h e V(H): o1(h) =v1,..., ¢a(h) = va}

is of size
IS(v)| < |Uo| + (A(A) 4+ 1) -4logn < 9C\/logn.

Suppose we have such homomorphisms ¢z, ..., ¢,. One easily verifies that ¢ : H — I' given by ¢(h) =
(¢1(Rh), ..., Pa(h)) is also homomorphism. By injectivelly mapping S(v) into the blowup of V5 of v in
['*, for each v € [m]?, we obtain a copy of H in I'".

Suppose that we have found ¢y, ..., ¢;—1 such that (9) holds. Let ¢;: T; — G be a random homomor-
phism generated as described at the beginning of this section. By Lemma 5.2 and standard estimates of
the binomial distribution, this holds for one particular choice of v = (v1,...,v;) and j € {1,..., A(A)+1}
with probability at least 1 — 1/n?. Therefore, by the union-bound, it holds for all choices with positive
probability, thus a desired homomorphism exists. O

5.2 Density bounded by an integer

The following lemma replaces the use of randomness in the proof of Theorem 1.4 and is the core of the
proof of Theorem 1.5.

Lemma 5.3. For every D € N there exists tg € N such that the following holds. Let G be an (n,t,3v/t)-
graph, for some to <t < n/2, and let T be a tree with v(T) < fn vertices, for some absolute constant
B > 0, and mazimum degree A(T) < D. Then for any family of subsets {S, C V(G)}yev(r) with
[Sy] > (1 — B/4)n for each v € V(T), there exists an embedding ¢: T — G such that ¢(v) € S, for every
veV(T).

The main machinery underlying the proof of Lemma 5.3 is a result from the theory of nonblocking
networks, due to Feldman, Friedman, and Pippenger [27, Proposition 1]. An efficient algorithmic version
of this result was obtained by Aggarwal et al. [1].

Definition 5.4. Given t,s € N, we say that a bipartite graph B = (V3 U V4, E) is (¢, s)-nonblocking if
there exists a family S of subsets of F, called the safe states, such that the following holds:

(P1) D e S,
(P2) if E” C E' and E’ € S then E” € S, and

(P3) given E' € S of size |E'| < s and a vertex v € V; with degg, (v) < ¢ (that is, v is incident to less
than ¢ edges in E'), there exists an edge e = (v,w) € E'\ E’ such that £’ U {e} € S and w is not
incident to any edge in E’.

10



Lemma 5.5 ([27]). Let B = (V1 U Va, E) be a bipartite graph and a,t € N. If
Np(X)] > 211X]
for every X CVy of size 1 < |X| < 2a, then B is (t,ta)-nonblocking.
We are now ready to prove Lemma 5.3.

Proof of Lemma 5.3. The constant 8 > 0 is chosen such that the inequality (10) below holds.

Let hq,...,h, be an ordering of the vertices of T" such that for each 2 < i < r = v(T), h; has exactly
one neighbour within {hy,...,h;—1}. For i € {r,... 1}, iteratively, define the set A; C Sy, as follows: If
h; does not have a neighbour within {h;41,...,h,}, set A; = Sj,; otherwise, let R, = {j > i: h;h; € T}
and set

A; ={v € Syt [Na(v, 4j)| = (1 — B)t for every j € R;},

where 8 > 0 is a sufficiently small constant we will specify shortly. We show that each A; is of size
|A;| > (1 — /2)n. This clearly holds for ¢ = r. Suppose that it holds for A;yi,...,A,, for some
1 < i <r—1. We show that it then holds for A; as well. We can assume R; # (0, as otherwise we are
immediately done. Suppose, towards a contradiction, that |A4;] < (1 — 5/2)n. As |R;| < D, there exists
j € R; such that the set

X ={ve S |[Na(v, 4j)] < (1-p)t}

is of size |X| > fn/(2D). By the definition of X and [11, Theorem 9.2.4], we have

IX1(8 = B8/2)° <> (INa(v, A;)| = (1= B/2)t)* < 9t - Bn/2.
veX
For t > to := 36D/ this gives | X| < Bn/(2D), thus a contradiction.
Before we move to the embedding of T', we need another bit of preparation. Let B be the bipartite

graph on the vertex set V(G) x {1,2} where (v,4) and (w, j) are connected by an edge iff vw € G and
i # j. By, e.g. [10, Lemma 2.4], for sufficiently small 8 > 0 we have

INp(X x {1})] = 45t| X| (10)

for each X C V(QG) of size | X| < 2n/t. Therefore, by Lemma 5.5, B is (2/t,20n)-nonblocking.

We find distinct vertices s1,...,s. € V(G) such that mapping h; to s; gives a copy of T in G.
Throughout the procedure we maintain a safe subset E C B (see Definition 5.4), which is initially empty.
First choose an arbitrary s; € A;. Then, for each 2 <i < r, sequentially, do the following:

(i) Let j < i be the unique index such that hjh; € T.
(ii) Obtain E C E’ € S by repeatedly applying (P3) with v = (s;, 1), such that at the end we have
degp:((s5,1)) = 2pt.
(iii) Choose an edge ((s;,1), (w,2)) € E’\ E such that w € A;\ {s1}. Set s; := w and E = EU{(s;,2)}.
Note that E remains a safe subset throughout the procedure. It is also evident from the description of
the procedure that degp(v) < A(T) for every v € V(G) x {1}, and |E| < v(T). As v(T) + 26t < 20n,

step (ii) is well-defined. Tt remains to show that a desired edge in (iii) always exists. Consider some step
i. As s; € A; and degg/(s;) = 20t, by the definition of A; we have

|NE’(Sj7A’L')| Z Btv

thus degy(s;) < D < Bt —1 (by choosing ¢ to be sufficiently large) implies the desired edge indeed exists.
Note that we need to explicitly exclude s; in (iii) as (s1,2) is not an endpoint of any edge in E. O

Note that in the previous proof, one could as well use [24, Theorem 2.8]. For our purposes, we find
Lemma 5.5 to provide cleaner framework.

Proof of Theorem 1.5. Let t € Nand § > 0 be as given by Lemma 5.3, and set ¢ = §/8. Furthermore, let
m = Cn'/?, where C > 1/¢, and let G be an (m,t, 3v/f)-graph on the vertex set [m] (see Theorem 3.5).
We first construct T' as follows: V(T') = [m]¢ and two vertices v = (v1,...,v4) and w = (wy, ..., w,y) are
connected by an edge iff there exists i € [d] such that v;w; € G?. Note that I' has O(n) vertices and
O(n*~1/?) edges. Finally, we construct I't by adding a new set V¥ of 2dn/(m) vertices and adding all
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the edges incident to at least one vertex in V*. The number of edges of I't remains O(n?~/?). We show
that 't is H2 (n)-universal.

Consider some H € HY (n). Let H = H;U...UHy be a decomposition of H given by Lemma 3.1 (with
b=1). We clean up H;’s using the combination of ideas from the proofs of Theorem 1.3 and Theorem
1.4. First form R’ C V(H) as follows: For every i € [d] and every component of H; of size at least Sm,
take one vertex from a cycle in that component (if such exist). This adds up to at most dn/(8m) vertices.
Next, let F; denote the forest consisting of all connected component of H; \ R’ which are of size at least
fm (note that each such component is a tree). By adding further edges, we may assume that F; is a
tree. Applying Lemma 3.3 with F; and r = n/(m), for each i € [d], we obtain a set R C V(H) of size
|R| < dn/(Bm) such that each connected component of F; \ R, and therefore of H; \ (RUR'), is of size at
most fm. Finally, for each i € [d] and each connected component K of H; \ (RU R’), apply Lemma 3.2
to obtain a tree Tk on the vertex set V(K ) and with maximum degree at most D, such that K C T%.
Let J; denote the forest consisting of all such trees Tk. In particular, we have H; \ (RU R') C J?. This
implies that a homomorphism of J; into G is a homomorphism of H; \ (RU R') into G2.

We iteratively find homomorphisms ¢;: J; — G such that, for each v = (v1,...,v;) € [m]?, we have

|Si(v)] < nl4=/4, (11)

where
Si(v)={h e V(H): ¢1(h) =v1,...,¢i(h) = vi}.

Once we have this, the homomorphism ¢: H — I" given by ¢(h) = (¢1(h), ..., ¢a(h)) is an injection. By
mapping vertices of R U R’ into VT injectively, we obtain a copy of H in I't.

Suppose we have found homomorphisms ¢1, ..., ¢;—1, for some i € [d], such that (11) holds. Consider
the components of J; one at a time and define ¢; on each such component in turn, using Lemma 5.3
as follows. Suppose we have defined ¢; on some components of J; and we now want to define it on the
component T' of J;. Consider some w € T, and let w = (¢1(w),...,¢;i—1(w)) € [m]*~1. We would like
the vertex w to be mapped to V(G) \ R,,, where

Ry = {v € V(O): [Si(v)| = [n] for v = (w,v)}

and S;(v) is defined with respect to the current partial homomorphism ¢;. By the induction hypothesis,
we have

‘Sifl(w)| < n(d—i—&-l)/d-

From -
1Sici(w)[ > D7 [Si(w, )| > [Ry| - 0470/,
veV(G)

we conclude
|Ry| < 2n'/4 < em.

As |T| < fm, Lemma 5.3 can be applied to extend the homomorphism ¢; to the current tree T with
¢i(w) € V(G) \ Ry, for each w € T. Once the process has finished, we have obtained a homomorphism
satisfying (11). O

Finally, we are in position to say something about the difference between the proofs of Theorem
1.4 and Theorem 1.5. In Theorem 1.5 we are able to ‘cut’ forests in such a way that each tree is of
size o(v(@G)), where G is an expander. This greatly helps us with planning how to embed the vertices
such that the homomorphisms are as dispersed as possible: Embed one tree, revise forbidden subsets for
images of some vertices, embed the next tree, revise, and so on. The fact that for each next tree we can
freely choose where the root is embedded makes it possible to implement this strategy. In contrast, in the
proof of Theorem 1.4 we cannot ‘cut’ forests in this way: We would need to remove O(n'~1/¢) vertices,
resulting in O(n2_1/ @) edges in I'" which is way too much. Instead we need to find a homomorphism
of the whole H; at once, and consequently we cannot do the planning one tree at a time. We resort to
randomness, and drift away from the optimal bound in order to beat a certain union bound. It would be
interesting to improve this and resolve Conjecture 1.6.
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6 Concluding remarks and open problems

o It is possible to decrease the number of vertices in the constructions in all three main theorems to (1+
€)n, increasing the number of edges by a factor of ¢(¢). This can be done following the construction
in Theorem 5 of [9] which is based on an appropriate concentrator (unbalanced expander).

o The proofs of all theorems provide efficient (deterministic or randomized) algorithms for embedding
a given input graph H of the corresponding family in the appropriate universal graph.

e The proof of Theorem 1.3 can be easily extended to provide economical universal graphs for any
family of graphs on n vertices in which the edges of each graph in the family can be partitioned into
a given number d of subgraphs from a family with strongly sublinear separators. Indeed it need
only be possible to break each of these subgraphs into small connected components by removing a
relatively small number of vertices. The number of edges will depend on the size of the separators.

e There are several natural classes of sparse graphs that are subsets of the family of graphs with
appropriate bounded density. Notable examples are graphs with a bounded acyclic chromatic
number, graphs with a bounded arboricity, degenerate graphs and graphs with a bounded maximum
degree. Here are some brief details.

The acyclic chromatic number of a graph H is the minimum integer k so that there is a proper
vertex coloring of H by k colors and the vertices of each cycle of H receive at least 3 distinct
colors. Equivalently this means that there is a proper vertex coloring of H by k colors so that the
induced subgraph on the union of any two color classes is acyclic, that is, a forest. A graph H is
k-degenerate if every subgraph of it contains a vertex of degree at most k. A graph has arboricity
k if its edge-set can be partitioned into k forests.

It is not difficult to check that if the acylic chromatic number of a graph H is k, then every
nonempty subset U of its vertices spans at most (k — 1)(|U| — 1) edges. Therefore, by Edmonds’
Matroid Decomposition Theorem [25] (which for the graphic matroid that is the one relevant here
has been proved earlier by Nash-Williams [32]), the arboricity of H is at most k—1. If the aroboricity
is at most k£ — 1 then the density m(H) is also clearly at most k — 1. Another simple observation
is that if H is d-degenerate, then its arboricity (and hence also its density) is at most d. Finally
it is obvious that if the maximum degree of H is ¢ then its density is at most ¢/2. It follows that
the main theorems in this paper also provide economical constructions of universal graphs for the
families of n-vertex graphs in each of these classes.

e The main open problem remaining is the assertion of Conjecture 1.1 for all rationals d > 1. The
results proved here as well as the special cases established in [2, 7, 21] indicate that it is likely to
hold in full generality.
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