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Abstract

In this paper we consider the problem of testing whether
a graph is triangle-free, and more generally, whether it is
H-free, for a fixed subgraph H . The algorithm should
accept graphs that are triangle-free and reject graphs
that are far from being triangle-free in the sense that
a constant fraction of the edges should be removed in
order to obtain a triangle-free graph. The algorithm is
allowed a small probability of error.

This problem has been studied quite extensively in
the past, but the focus was on dense graphs, that is,
when d = Θ(n), where d is the average degree in the
graph and n is the number of vertices. Here we study
the complexity of the problem in general graphs, that
is, for varying d.

Our main finding is a lower bound of Ω(n1/3) on the
necessary number of queries that holds for every d <
n1−ν(n), where ν(n) = o(1). Since when d = Θ(n) the
number of queries sufficient for testing has been known
to be independent of n, we observe an abrupt, threshold-
like behavior of the complexity of testing around n. This
lower bound holds for testing H-freeness of every non-
bipartite subgraph H .

Additionally we provide sub-linear upper bounds
for testing triangle-freeness that are at most quadratic
in the stated lower bounds, and we describe a trans-
formation from certain one-sided error lower bounds
for testing subgraph-freeness to two-sided error lower
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bounds.
Finally, in the course of our analysis we show that

dense random Cayley graphs behave like quasi-random
graphs in the sense that relatively large subsets of
vertices have the “correct” edge density. The result for
subsets of this size cannot be obtained from the known
spectral techniques that only supply such estimates for
much larger subsets.

1 Introduction

In this work we consider the problem of testing
subgraph-freeness, and in particular triangle-freeness, in
general graphs. Let n denote the number of vertices in
the graph, let d denote the average degree, and let dmax

denote the maximum degree. Given a distance parame-
ter ε > 0, we would like to design an algorithm that dis-
tinguishes with high probability between the case that
the graph contains no triangles and the case in which
more than ε · nd edges should be removed so that no
triangles remain. To this end we allow the algorithm
query access to the graph. In particular, for any vertex
of its choice, the algorithm may ask for the degree of the
vertex, it may ask to get the i-th neighbor of the vertex
for every i ≤ n (if the vertex has less than i neighbors
then a null answer is returned), and it may ask whether
there is an edge between any two vertices.

Subgraph-freeness, and more specifically, triangle-
freeness, is one of the most basic problems studied in
property testing. The interest in this problem is both
due to the fact that triangle-freeness is a fundamental
and simple graph property, and it is due to the relation
between triangle-freeness and the study of dense sets of
integers with no three-term arithmetic progression.

Dense graphs. Most of the focus in previous
works was on testing triangle-freeness in dense graphs,
that is, when d = Θ(n). The authors of [2] showed that
it is possible to test triangle-freeness in dense graphs
using a number of queries that is independent of n, and
is of tower-type behavior in 1/ε. Alon [1] proved that
a super-polynomial dependence on 1/ε is necessary for
testing subgraph-freeness of all non-bipartite subgraphs.
When the fixed subgraph is bipartite then O(1/ε)
queries suffice [1]. It is also observed in [1] (and much
earlier, though implicitly, in [14]) that the problem
of testing triangle-freeness is intimately related to the



famous (and very hard) problem of the existence of
dense sets of integers without a three-term arithmetic
progression. Alon’s lower bound, which was proved for
one-sided error algorithms, was extended in [7] to two-
sided error algorithms. Other related results include [6].

Bounded-Degree graphs. In the other extreme,
as was observed in [9], when dmax = O(1) then O(1/ε)
queries suffice for testing triangle-freeness. More gen-
erally, O(dτ/ε) queries suffice for testing H-freeness in
graphs with maximum degree O(d), where τ is the di-
ameter of H .

General graphs. In this work we study the com-
plexity of testing triangle-freeness of graphs that lie be-
tween the two extremes. Namely, we would like to un-
derstand the dependence of the query complexity on
the average degree d, and we do not want to necessar-
ily assume that dmax = O(d). In the latter aspect we
follow the work [13] on testing the diameter of sparse,
but unbounded-degree, graphs, and in both aspects we
follow the work [12] on testing bipartiteness of general
graphs. Note that the fact that the graph has varying
degrees makes the task of testing triangle-freeness sig-
nificantly harder. Consider for example sparse graphs,
that is, graphs with average degree d = O(1). As we
mentioned before, when dmax = O(1), O(1/ε) queries
suffice for testing triangle-freeness. However, our work
shows that when dmax = Θ(n), Ω(

√
n) queries are re-

quired for testing triangle-freeness.
Our contributions. The main contributions of

this paper, on a qualitative level, are as follows:

• We discover a threshold-type behavior in testing
H-freeness, for every non-bipartite fixed graph H :
whenever d = O(n1−ν(n)), where ν(n) is a function
that satisfies ν(n) = o(1), the number of queries
that are necessary to test H-freeness is Ω(n1/3),
while, as discussed above, for d = Θ(n) the query
complexity is a function of ε only. This is in sharp
contrast with the results of [12], where a smooth
behavior of the complexity of testing bipartiteness
as a function of d was described;

• We provide a transformation from lower bounds for
testing H-freeness using one-sided error algorithms
to those for two-sided error algorithms; though
the suggested transformation carries some technical
restrictions, it is general enough to capture a variety
of lower bounds of this sort;

• We give quantitative lower and upper bounds for
testing triangle-freeness in general graphs;

• We show that the edge distribution in random
Cayley graphs is close to that of truly random
graphs of the same edge density. This is proven by
direct combinatorial and probabilistic arguments,

without relying on the eigenvalue machinery, which
is incapable of proving such results for subsets that
are too small. Although we need this result for
property testing purposes, we feel it is of enough
independent interest to be stated here.

1.1 A lower bound and a sharp threshold

Our main result is:

Theorem 1. There is a lower bound of Ω(n1/3) for
testing triangle-freeness in general graphs. The lower
bound holds for algorithms that are allowed two-sided er-
ror, and for every d that is upper bounded by O(n1−ν(n))
where ν(n) = log log log n+4

log log n . For some values of d the

lower bound reaches Ω(n1/2).

Theorem 1 is actually the union of three lower bounds
(whose one-sided error versions are stated in Lem-
mas 1, 2 and 3), which are applied to different values of
d. The exact expression for the lower bound is

Ω
(

max
{

√

n/d, min{d, n/d},

min
{
√

d, n2/3/d1/3
}

· n−o(1)
})

For a schematic illustration see Figure 1.
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Figure 1: A schematic illustration of our lower bounds.
The x-axis represents d and the y-axis represents the
lower bound. Notice that the lower bound lies entirely
above the horizontal line at height n1/3.

Recall that when d = Θ(n) then testing can be
performed using a number of queries that is independent
of n [2]. Thus we observe a sharp transition between our
lower bound of Ω(n1/3) that holds until d = n1−ν(n)

(recall that ν(n) = o(1)), and the upper bound at
d = Θ(n), which does not depend on n. The exact
behavior of the complexity of testing triangle-freeness
when n1−ν(n) ≤ d ≤ n remains open.

Using techniques that were previously applied in [1]
it is possible to extend Theorem 1 to testing subgraph-
freeness of other non-bipartite subgraphs.



Theorem 2. There is a lower bound of Ω(n1/3) for
testing H-freeness in general graphs where H is a
fixed non-bipartite graph. The lower bound holds for
algorithms that are allowed two-sided error, and for
every d that is upper bounded by n1−ν(n) (for ν(n) =
o(1) as in Theorem 1). For some values of d the lower
bound reaches Ω(n1/2).

We wish to note that the difference between the
complexity of testing bipartite and non-bipartite graphs
is caused by the difference in the behavior of their Turán
numbers – they are subquadratic for the former and
quadratic for the latter. A more detailed discussion can
be found in [1].

1.2 Upper bounds

We show that for every graph density, there exists
an algorithm for testing triangle-freeness whose query
complexity is sublinear in n. Furthermore, the upper
bound is always at most quadratic in the corresponding
lower bound.

Theorem 3. There is an upper bound of O(n6/7) for
testing triangle-freeness in general graphs for every
value of d. The upper bound can go down to O(n1/2)
for some values of d. In all cases the upper bound is
at most quadratic in the lower bound that holds for that
density. If dmax = O(d) then the upper bound is O(n4/5)
for all values of d.

The exact expression for our upper bound is

O
(

min
{√

nd/ε3/2, (n4/3/d2/3)/ε2
})

, where in the case

that dmax = O(d), the first term is replaced by d/ε.

1.2.1 Tight results. There are two cases in which
our lower and upper bounds are tight. The first case
is graphs in which dmax = O(d) and d ≤ √

n. For this
case the complexity is Θ(d) (for constant ε). The second
case is general sparse graphs, that is, graphs for which
d = Θ(1). For these graphs the complexity is Θ(

√
n).

1.3 Our techniques

Behrend Graphs and Cayley graphs. In the
proof of our third lower bound (Lemma 3), we build
on graphs that are known as Behrend graphs, which
were previously used in the context of testing triangle-
freeness in [1]. Here we prove that random Behrend
graphs have a certain property that we can exploit
in order to obtain our lower bound. Behrend graphs
are variants of well studied Cayley graphs, and our
proof concerning properties of random Behrend graphs
extends to Cayley graphs.

Specifically, we show that for dense random Cayley
graphs the edge density in relatively large induced sub-

graphs is close to the edge density of the whole graph.
It was previously shown [5] that random Cayley graphs
are expanders and hence have the property that the
density of every induced subgraph on sufficiently many
vertices is very close to the density of the graph. How-
ever, the known techniques for proving this property
are based on estimating the second eigenvalue of the
graph’s adjacency matrix, and do not supply any infor-
mative bounds for sets of vertices that are much smaller
than the number of vertices divided by the square root
of the degree. Our results for Cayley graphs apply both
for Cayley graphs over abelian and non-abelian groups,
while Behrend graphs were considered only in an abelian
setting. Our techniques are somewhat reminiscent of
those of [4, 10].

A reduction from one-sided error lower
bounds to two-sided error lower bounds. We ob-
tain our two main lower bounds by first establishing
lower bounds that hold for one-sided error algorithms.
We then prove a transformation from one-sided error
lower bounds to two-sided error lower bounds that hold
under certain assumptions, and apply it to obtain our
two-sided error lower bounds. This transformation may
be of use in future lower bound proofs for subgraph free-
ness. We note that in [7] a transformation was given in
the case of dense graphs, but it is not applicable in gen-
eral.

2 Preliminaries

Let G = (V, E) be an undirected graph with n vertices
labeled 1, . . . , n, and let d denote the average degree in
G, where we assume that d = Ω(1).1 For each vertex
v ∈ V let deg(v) denote the degree of vertex v. The
edges incident to v (and their end-points, the neighbors
of v), are labeled from 1 to deg(v). Note that each edge
has two, possibly different, labels, one with respect to
each of its end-points. For a graph G and a subset of
vertices U ⊆ V , we refer to the edges in the subgraph
of G that is induced by U as the edges spanned by U in
G.

A graph G is said to be triangle-free if for every
three vertices u, v, w in G, at least one of the three
vertex-pairs (u, v), (v, w), or (w, u) is not an edge in
G. A graph G is ε-far from (being) triangle-free if it
is necessary to remove more than εnd edges from G in

1Our results can be extended to the case that d = o(1) (that
is, very sparse graphs). However, for the sake of simplicity, and
since we believe that the very sparse case is of less interest, we
assume that d = Ω(1).



order to obtain a triangle-free graph.2

A testing algorithm for triangle-freeness is required
to accept with probability at least 2/3 every graph that
is triangle-free and to reject with probability at least 2/3
every graph that is ε-far from being triangle-free, where
ε is a given distance parameter. If the algorithm always
accepts triangle-free graphs then it has one-sided error ,
otherwise it has two-sided error . In order to perform
this task the testing algorithm is allowed the following
types of queries:

• Degree queries: for any vertex u of its choice, the
algorithm can obtain deg(u).

• Neighbor queries: for any vertex u and index 1 ≤
i ≤ deg(u), the algorithm may obtain the i-th
neighbor of vertex u.

• Vertex-pair queries: for any pair of vertices (u, v),
the algorithm can query whether there is an edge
between u and v in G.

3 A lower bound of Ω
(

√

n/d
)

In this section we establish our first, and simplest lower
bound.

Lemma 1. Every algorithm for testing triangle-freeness
must perform Ω(

√

n/d) queries. This lower bound holds
for two-sided error algorithms as well.

Proof. In order to prove a two-sided error lower bound
of Ω(q) queries for testing triangle-freeness, it suffices to
describe two families of graphs for which the following
two conditions hold. (1) The graphs in the first family
are all triangle-free, while the graphs in the second
family are all Θ(1)-far from being triangle-free. (2) Any
algorithm that distinguishes with constant probability
between a graph selected uniformly in one family, and
a graph selected uniformly in the second family, must
perform Ω(q) queries.

In particular, consider the following two families of
graphs over n vertices and with average degree d. Each
family is determined by a single graph, and consists of
all possible n! labelings of the vertices of the graph.
Hence it suffices to describe the two graphs (one per
family). In one graph there is a clique of size

√
nd,

and in the other graph there is a complete bipartite
graph between two sets of vertices, each of size

√
nd. In

addition, in both graphs the remaining set of vertices
spans a d-regular triangle-free graph. The second graph
is clearly triangle-free, and it is not hard to verify

2Since the number of edges in the graph is (nd)/2, the standard
definition of ε-far would be that more than (εnd)/2 edges should
be removed so that the graph becomes triangle-free. In order to
simplify the presentation we slightly modify the definition.

that the first graph is Θ(1)-far from being triangle-
free. However, in order to distinguish between the
two graphs (or more precisely, in order to distinguish
between graphs that are selected uniformly from each
of the two families), the algorithm must obtain a vertex
in the clique / complete bipartite subgraph. To this
end the algorithm must perform Ω(n/

√
nd) = Ω(

√

n/d)
queries.

4 A lower bound of Ω (min{d, n/d})
Our next lower bound improves on the lower bound in
Section 3 when d > n1/3.

Lemma 2. Every one-sided error algorithm for testing
triangle-freeness must perform Ω(min{d, n/d}) queries.
This lower bound holds even when dmax = O(d).

The lower bound in Lemma 2 is extended to two-sided
error algorithms in Section 6. The proof of Lemma 2
appears in the full version of this paper [3]; here we give
a brief sketch.

We prove the lemma by describing a distribution
on graphs such that the following holds: On one hand
almost all of its support is on graphs that are far
from being triangle-free. On the other hand, if we
select a graph according to the distribution, then every
algorithm must perform Ω(min{d, n/d}) queries before
it reveals a triangle with probability bounded away from
zero. Since we currently focus on testing algorithms that
have one-sided error, this implies a lower bound on the
query complexity of such algorithms. We consider the
case that d = c ·√n for a particular constant c > 0. The
argument is easily extended to both smaller and larger
degrees.

The lower bound distribution, denoted D∆, is de-
fined as follows: A graph is generated by first selecting
a random partition of the vertices into equal-size sub-
sets of size n′ = n/3 denoted V1, V2, V3. Next, between
each pair of subsets, d′ = d/2 = c/2 · √n random per-
fect matchings are selected. In order to show that with
probability 1 − o(1) a graph chosen uniformly accord-
ing to D∆ is Ω(1)-far from being triangle-free we show
that with high probability a graph generated according
to D∆ contains α · nd edge-disjoint triangles for some
constant 0 < α < 1. It is not hard to show that the
expected number of triangles that do not share an edge
with any other triangle is Ω(nd). By exploiting the lim-
ited dependence between the different triangles, we can
prove that there are Ω(nd) edge-disjoint triangles with
high probability.

In order to prove that any algorithm must perform
Ω(min{d, n/d}) queries before it reveals (with probabil-
ity bounded away from zero) a triangle in a graph gen-
erated according to D∆, we apply an argument similar



to ones applied in other property testing lower bounds
(see, e.g, [9, 12]). Specifically, we define a process
that answers the algorithm’s queries while generating
a graph according to D∆. We show that if the algo-
rithm performs o(n/d) queries then the probability that
any vertex-pair query is answered positively is o(1), due
to the density of the graph. If we ask o(

√
n) neighbor

queries then due to the birthday paradox the probabil-
ity that any cycle (in particular, a triangle) is detected
is o(1) as well.

5 An improved lower bound for high degrees

In this section we establish the following lemma, which
improves on our previous lower bound of min{d, n/d}
when the degree of the graph is at least n2/3+o(1).

Lemma 3. Every one-sided error testing al-
gorithm for triangle-freeness must perform

Ω
(

min
{√

d, n2/3

d1/3

}

· n−ν(n)
)

queries, where

ν(n) = log log log n+4
log log n . This lower bound holds even

for d-regular graphs.

In order to prove the lemma, here too we define a
distribution over graphs that are far from being triangle
free. We then prove a lower bound on the number of
queries that are required in order to detect a triangle
with probability bounded away from zero in a graph
that is generated according to the distribution. As
we shall see, it will actually be convenient to consider
graphs over 3n vertices and degree 2d.

5.1 A variant of Behrend graphs

Our lower bound distribution builds on graphs that
are variants of what are known as Behrend Graphs
[8, 14, 15]. These graphs are defined by sets of in-
tegers that include no three-term arithmetic progres-
sion (abbreviated as 3AP). Namely, these are sets X ⊂
{1, . . . , n} such that for every three elements x1, x2, x3 ∈
X , if x2−x1 = x3−x2 (i.e., x1 +x3 = 2x2), then neces-
sarily x1 = x2 = x3. Below we describe a construction
of such sets that are large (relative to n), and later ex-
plain how such sets determine Behrend graphs. Our
construction of X uses similar ideas to those used in
known constructions [8, 15] and gives a slightly weaker
result. However, our alternative construction is some-
what simpler, and the size of the resulting set suffices
for our purposes.

Lemma 4. For every sufficiently large n there exists a

set X ⊂ {1, . . . , n}, |X | ≥ n1− log log log n+4

log log n , such that X
contains no three-term arithmetic progression.

Proof. Let b = log n and k = log n/ log b − 2. Since
log n/ log b = log n/ log log n we have that k < b/2 for

every n ≥ 8. We arbitrarily select a subset of k different
numbers {x1, . . . , xk} ⊂ {0, . . . , b/2−1} and define X =
{

∑k
i=1 xπ(i)b

i : π is a permutation of {1, . . . , k}
}

. By

the definition of X we have that |X | = k!. By using
z! > (z/e)z, we get that

|X | = k! = (
log n

log log n
)! > n1− log log log n+4

log log n(5.1)

Consider any three elements u, v, w ∈ X such that
u + v = 2w. By definition of X , these elements are of
the form u =

∑k
i=1 xπu(i)b

i, v =
∑k

i=1 xπv(i)b
i and w =

∑k
i=1 xπw(i)b

i ∈ X , where πu, πv , πw are permutations
over {1, . . . , k}. Since xi < b/2 for every 1 ≤ i ≤ k, it
must be the case that for each i, xπu(i)+xπv(i) = 2xπw(i)

This implies that for every i: x2
πu(i) + x2

πv(i) ≥ 2x2
πw(i)

where the inequality is strict unless xπu(i) = xπv(i) =
xπw(i). If we sum over all i’s and there is at least one
index i for which the inequality is strict we get that
∑k

i=1 x2
πu(i) +

∑k
i=1 x2

πv(i) >
∑k

i=1 2x2
πw(i) which is a

contradiction since we took permutations of the same
numbers. Thus, we get that u = v = w.

Remark. In fact, the set constructed above is also
3AP-free when all calculations are performed modulo n.
We will use this observation below.

Behrend graphs. Given a set X ⊂ {1, . . . , n}
with no three-term arithmetic progression we define the
Behrend graph BGX as follows. It has 3n vertices that
are partitioned into three equal parts: V1, V2, and V3.
For each i ∈ {1, 2, 3} we associate with each vertex in
Vi a different integer in {0, . . . , n− 1}. The edges of the
graph are defined as follows:

• The edges between V1 and V2: For every x ∈ X and
j ∈ {0, . . . , n − 1} there is an edge between j ∈ V1

and (j + x) mod n ∈ V2;

• The edges between V2 and V3: For every x ∈ X
and j ∈ {0, . . . , n − 1} there is an edge between
(j + x) mod n ∈ V2 and (j + 2x) mod n ∈ V3;

• The edges between V1 and V3: For every x ∈ X and
j ∈ {0, . . . , n − 1} there is an edge between j ∈ V1

and (j + 2x) mod n ∈ V3.

We shall say that an edge between j ∈ V1 and j′ ∈ V2

or between j ∈ V2 and j′ ∈ V3 is labeled by x, if j′ =
(j + x) mod n, and we shall say that an edge between
j ∈ V1 and j′ ∈ V3 is labeled by x, if j′ = (j+2x) mod n.

The graph BGX is 2|X |-regular and it contains
3|X |n edges. For every j ∈ {0, . . . , n − 1} and x ∈ X ,
the graph contains a triangle (j, (j + x) mod n, (j +
2x) mod n) where j ∈ V1, (j + x) mod n ∈ V2 and
(j + 2x) mod n ∈ V3. There are n · |X | such edge-
disjoint triangles and every edge is part of one such



triangle. Moreover, it is not hard to verify (based on
the assumption that X is 3AP-free) that there are no
other triangles in the graph.

5.2 The edge density of large sets in random
Behrend graphs

In this subsection we prove the following lemma, which
is central to the proof of Lemma 3. We shall use the
following notation: For a subset Y ⊆ X and a subset of
vertices C in BGY , we let eY (C) denote the number of
edges spanned by C in BGY .

Lemma 5. Let 0 < β < 1
2 and 0 < α ≤ 1 be such that

α − 2β > 1
log log n , and let X ⊂ {1, . . . , n}, |X | ≥ nβ.

Consider the random Behrend graph BGY obtained by

choosing a random subset Y ⊆ X, |Y | = d = |X|
nβ .

With high probability over the choice of Y , for every
subset C of vertices in BGY where |C| = nα, we have

eY (C) ≤ 90
α−2β

n2α

nβ edges.

The lemma states that for sufficiently large subsets C
(i.e., for |C| = nα, where α − 2β is a constant), the
number of edges eY (C) is not much larger than its
expected value. Note that the smaller we choose β (i.e.,
the larger we choose Y ), the smaller can α be. Thus,
the lemma can be applied to sets with of relatively small
size.

Before proving the lemma we introduce some nota-
tion and prove two claims. For a subset W ⊆ V1 ∪ V2,
|W | = s, consider the subgraph of BGX induced by W .
Let

∆(W ) = {(j2 − j1) mod n : j1 ∈ W1, j2 ∈ W2,

and (j2 − j1) mod n ∈ X}(5.2)

denote the set of differences in W . That is, it is
the set of labels of the edges between W1 and W2 in
BGX . Obviously, |∆(W )| ≤ s2. For every difference
x ∈ ∆(W ), we define the multiplicity of x in W as the
number of edges in BGX between vertices in W1 and
vertices in W2 that are labeled by x.

Let k = 5
α−2β . For β and α that satisfy the

condition of the lemma (α − 2β > 1
log log n ) we have

that k ≤ 5 log log n. We shall say that W is good if no
difference in ∆(W ) has multiplicity higher than k in W .

Claim 6. With high probability over the choice of Y ⊆
X, for every good W such that |W | = s ≥ nβ log n, we

have that eY (W ) ≤ 2ks2

nβ .

Claim 6 is easily established by using known bounds
on the tail of the Hypergeometric distribution (see, e.g.,
[11, Page 29]). We also need the following claim.

Claim 7. Let C be a subset of V1 ∪ V2, such that
|C| = nα. Suppose we uniformly and independently
select W ⊂ C, |W | = nβ log n. Then the probability
that W is not good is at most 1

nβ .

Proof. Note that by the definition of Behrend graphs,
the edges between vertices in C that are labeled by a
specific difference, form a matching. When we choose
a random subset W ⊂ C, the probability that there
exists a single difference of C (i.e. an element of ∆(C))
that has multiplicity at least k + 1 in W is bounded by

|C|2|C|k+1
( |C|−(2k+2)
|W |−(2k+2)

)( |C|
|W |

)−1
. Now,

|C|2|C|k+1
( |C|−(2k+2)
|W |−(2k+2)

)

( |C|
|W |

)
≤ |C|2 · |C|k+1 ·

( |W |
|C|

)2k+2

≤ n2α

(

log2 n

nα−2β

)

5
α−2β

≤ 1

n2
(5.3)

The last expression is upper bounded by 1
nβ as required.

Proof of Lemma 5. Consider a set C of vertices of
BGY such that |C| = nα. Let Ci = C∩Vi for 1 ≤ i ≤ 3,
and let C = C1∪C2. We will show that almost surely the

number of edges between C1 and C2 is at most 30
α−2β

n2α

nβ .
The argument for the number of edges between C2 and
C3 and between C1 and C3 is analogous, and hence the
lemma follows. We shall prove the claim for every C1,
C2 such that |C1 ∪ C2| = nα. Clearly this implies that
it holds for every C1, C2, s.t. |C1 ∪ C2| ≤ nα.

By Claim 6, with high probability over the choice of
Y the following holds. For every good W , W ⊂ C, such
that |W | = s ≥ nβ log n, the number of edges spanned
by W in BGY is at most 2ks2n−β. Assume from now
on that the selected Y has this property. We shall use
Claim 7 to derive an upper bound on the number of
edges in BGY that are spanned by the vertices of C.

By our assumption on Y , if W is good and |W | =
s ≥ nβ log n then eY (W ) ≤ 2ks2n−β . Clearly, eY (W ) ≤
s2. If we uniformly at random select W ⊂ C, such that

|W | = s then Exp[eY (W )] ≥ 1
2 · eY (C) · s2

n2α . We stress
that the expectation is taken only over the choice of W
and not over the choice of Y . Now,

Exp[eY (W )]

= Exp[eY (W ) | W is good ] · Pr[W is good ]

+ Exp[eY (W ) | W is not good ] · Pr[W is not good ]

≤ 2ks2 · n−β + s2 · n−β = (2k + 1)s2 · n−β

(5.4)

It follows that eY (C) ≤ (2k + 1) · 2|C|2 · n−β ≤ 5k|C|2 ·
n−β Since k = 5

α−2β , the lemma follows.

As a corollary of Lemma 5 we get:



Corollary 8. Let 0 < β < 1
2 and X ⊂ {1, . . . , n}

where |X | ≥ n1−ν(n) for ν(n) = log log log n+4
log log n . Consider

the random Behrend graph BGY obtained by choosing

a random subset Y ⊆ X, |Y | = d = |X|
nβ . With high

probability over the choice of Y , for every subset C

of vertices in BGY such that |C| ≤ min
{√

d, n2/3

d1/3

}

·
n−ν(n), the following bound applies: |C| · eY (C) ≤
n1−ν(n).

The proof of Corollary 8, which follows from Lemma 5
by a simple case analysis, appears in the full version of
this paper [3].

5.3 The lower bound distribution BG(n, d)

Let X ⊂ [n] be a set with no three-term arithmetic
progression, as constructed in Subsection 5.1, such
that |X | = n1−ν(n) (where ν(n) = log log log n+4

log log n ).
Consider the Behrend graph, denoted BGX , whose set
of generators is X . Recall that BGX , which is a graph
over 3n vertices, contains |X | ·n edge-disjoint triangles:
every edge belongs to exactly one triangle, and every
triangle corresponds to some x ∈ X .

For each subset Y ⊂ X , such that |Y | = d we
consider the subgraph of BGX that contains all its
vertices but only the edges labeled by differences y ∈ Y .
This (sub-)graph contains n · |Y | = nd edge-disjoint
triangles and is hence ε-far from being triangle free
for any 0 < ε < 1/3. Next we apply a permutation
π on the names of the vertices. More precisely, π
consists of 3 permutations, π(b), b ∈ {1, 2, 3}, each over
{0, . . . , n− 1}. If we denote each vertex v in BGX by a
pair (b, i) where b ∈ {1, 2, 3} is the index of the subset
that the vertex belongs to and i ∈ {0, . . . , n − 1}, then
π(v) = π(b, i) = (b, π(b)(i)). We denote the resulting
graph by BGY,π.

A graph is generated according to the distribution
BG(n, d) by uniformly selecting Y and π and outputting
the resulting graph BGY,π. We also assume that the
edges incident to a vertex v are ordered randomly in
the incidence list of v. For the sake of simplicity, we do
not include these random labelings in the notation.

5.4 Proving Lemma 3

In order to prove Lemma 3 it remains to show
that any algorithm which is given query access to a
graph generated according to BG(n, d) must perform

Ω
(

min
{√

d, n2/3

d1/3

}

· n−ν(n)
)

queries in order to detect

a triangle with probability bounded away from zero. We
wish to stress that the algorithm can be much more pow-
erful/sophisticated potentially than just one sampling a
random set of the input and looking for a triangle inside.
Details can be found in the full version of this paper [3].

Here we provide a sketch.
As in the proof of Lemma 2, we define a process

that answers queries of the algorithm while generating
a graph according to BG(n, d). In fact, the process will
provide the algorithm not only with answers to its neigh-
bor and vertex-pair queries but also with the “identity”
of the vertices involved. That is, the algorithm will be
provided with π−1(v) for vertices v that appeared in its
queries or answers to them. The main observation is
the following. Let Et denote the set of edges that the
algorithm has observed up till time t. On one hand,
by applying Corollary 8 we can upper bound |Et| (with
high probability). On the other hand, since the trian-
gles in the generated graph are edge disjoint, in order
to get a triangle, the algorithm must hit one of the |Et|
vertices that closes a triangle with the edges it has ob-
served. Given the definition of the process (which is
consistent with the generation of graphs according to
D∆), we are able to bound the probability that such an
event occurs. Further details appear in the full version
of this paper [3].

6 From 1-sided error to 2-sided error
In this section we establish that under certain condi-
tions, a one-sided error lower bound for triangle-freeness
can be transformed into a two-sided error lower bound.
Since these conditions hold for our one-sided error lower
bounds, we obtain two-sided error lower bounds.

Theorem 4. Let D∆ be a distribution over graphs with
n vertices and average degree d, and let q(n, d) be a
function of these parameters. Assume the following
holds:

1. With probability 1− o(1) a graph selected according
to D∆ is ε-far from being triangle-free for some
constant ε.

2. One of the following two conditions holds:

• In all graphs in the support of D∆, the triangles
are edge-disjoint, and for any algorithm A,
the probability that A reveals a triangle in a
graph selected according to D∆ using o(q(n, d))
queries is less than 2/3.

• For any algorithm A, the probability that A re-
veals a cycle (of any length) in a graph selected
according to D∆ using o(q(n, d)) queries is less
than 2/3.

Then any two-sided error algorithm for testing triangle-
freeness that has success probability at least 5/6 must
perform Ω(q(n/2, d)) queries.

In what follows we show that if the first condition
of Theorem 4 applies, then the theorem holds. The



complete proof of this theorem appears in the full
version of this paper [3].

Proof. Given the distribution D∆ we define two distri-
butions over graphs that have n′ = 2n vertices and av-
erage degree d. One distribution, denoted D′

∆, gener-
ates graphs that are ε-far from being triangle free, and
the other distribution, denoted D∆̄ generates graphs
that are triangle free. Assume, contrary to what is
claimed in the theorem that there exists a two-sided
error algorithm A′ for testing triangle freeness that per-
forms o(q(n′/2, d)) queries and has success probability
at least 5/6. Then, in particular, using o(q(n′/2, d)) =
o(q(n/d)) queries, A′ should be able to distinguish with
sufficiently high probability between graphs generated
by D′

∆ and graphs generated by D∆̄. We shall show
that we can then use A′ to obtain an algorithm A that
performs o(q(n, d)) queries and with probability at least
2/3 reveals a triangle in a random graph generated ac-
cording to D∆.

Defining the two distributions. In both distributions,
a graph G′ over n′ = 2n vertices is generated by first
selecting a graph G from D∆. Every vertex v in G is
replaced by two vertices, v0 and v1. Every edge (u, v) in
G is replaced by two edges: either the two edges (u0, v0)
and (u1, v1) (so that they are “in parallel”) or the two
edges (u0, v1) and (u1, v0) (so that they are “crossing”).
If v is the j’th neighbor of u and u is the `’th neighbor
of v, then in both cases we maintain the ordering on
neighbors. Namely, in the case of parallel edges we
have that v0 is the j’th neighbor of u0 and v1 is the
j’th neighbor of u1, u0 is the `’th neighbor of v0 and u1

is the `’th neighbor of v1 (an analogous correspondence
holds for crossing edges). The difference between the
distributions is in the choice (distribution on the choice)
between the above two options.

Recall that the triangles in G are edge-disjoint.
Hence, for each triangle in G, the edges between the
corresponding vertices in G′ can be determined inde-
pendently from the edges that belong to other trian-
gles. Consider a particular triangle (u, v, w) in G. There
are 23 = 8 ways to select the edges between the ver-
tices u0, u1, v0, v1, w0, w1 (depending on whether we se-
lect parallel or crossing edges). In 4 of these ways
we get 2 edge-disjoint triangles (e.g., (u0, v0, w0) and
(u1, v1, w1)), and in 4 of these ways we get a single cy-
cle of length 6 (e.g. (u0, v0, w0, u1, v1, w1)). The graph
generated by D′

∆ simply selects one of the former 4 ways
uniformly, and the graph generated by D∆̄ selects one
of the latter 4 ways uniformly.

The basic, but important observation is that for
both distributions the following holds: If we consider
any edge that belongs to a particular triangle in G, then
the probability that the corresponding pair of edges in

G′ are parallel is equal to the probability that they are
crossing. Moreover, this remains true if we condition on
any other (single) edge in the triangle being transformed
to either parallel or crossing edges. Independence breaks
down only when we consider all 3 edges in a triangle.
We shall refer to this observation as the Independence
Observation.

Using a two-sided error algorithm to find triangles. Let
A′ be a two-sided error algorithm for testing triangle
freeness that performs o(q(n′/2, d)) queries when testing
graphs over n′ = 2n vertices and has success probability
at least 5/6. We next show how to use it in order
to detect triangles in a graph G over n vertices that
is generated randomly according to D∆. The idea is
that by performing queries to G and flipping some
coins, we shall actually be emulating the execution of
A′ on graphs generated by either D′

∆ or D∆̄. Since
A′ is supposed to test graphs over n′ = 2n vertices,
we denote the vertices in the queries it performs by
{v1,0, v1,1, . . . , vn,0, vn,1}.

Thus let G be a graph generated according to D∆.
Algorithm A (whose goal is to detect a triangle in G)
runs A′ as a subroutine and answers its queries by
performing queries to G and transforming the answers
to the queries in an appropriate manner described
below. In this process A maintains a knowledge graph,
denoted Ĝ, which contains all the edges it has observed
in G as well as the “non-edges” (i.e., pairs (u, v) that do
not have an edge between them). In addition, A records
all the answers it has already given to A′.

Whenever A′ performs a degree query for a vertex
vi,b (b ∈ {0, 1}), algorithm A queries the degree of vi

and returns it as an answer. Whenever A′ performs a
vertex-pair query (vi,b, vj,b′) (b, b′ ∈ {0, 1}), if (u, v) is an

edge or a non-edge in the knowledge graph Ĝ then the
answer to A′ is determined. If this is not the case then
A performs the vertex-pair query (vi, vj). If the answer
is that there is no edge between the two vertices, then
the answer given to A′ is “no” as well. If the answer is
that there is an edge, then there are two cases. If this
edge closes a triangle with two other edges in Ĝ then
A terminates successfully. Otherwise, with probability
1/2 A answers that there is an edge between vi,b and
vj,b′ and with probability 1/2 it answers that there is no
such edge. In addition, in the former case A′ is provided
with the information concerning which neighbor is vj,b′

of vi,b.
Whenever A′ performs a neighbor query (vi,b, `)

(that does not correspond to an edge already in Ĝ),
algorithm A performs the neighbor query (vi, `). Let
the answer be (vj , t). Namely, there is an edge between
vi and vj , where vj is the `’th neighbor of vi, and vi is
the t’th neighbor of vj . Here too, if a triangle in G is



detected then A terminates successfully. Otherwise it
answers the query of A′ in an analogous manner to the
way a vertex-pair query is answered. If A′ terminates
before A has found a triangle, then A terminates
unsuccessfully.

Completing the proof. Since A always terminates
when or before it finds a triangle, by the Independence
Observation, the distribution on the answers it gives to
the queries of A′ is exactly the one we would get if the
queries of A′ were answered by a graph that is selected
either according to D′

∆ or according to D∆̄. We claim
that this implies that the probability that A′ terminates
before A finds a triangle (thus causing A to terminate
unsuccessfully) is less than 1/3. Here the probability is
taken over the choice of G, the coin flips of A and the
possible coin flips of A′.

Assume, contrary to the claim, that the probability
that A′ terminates before A finds a triangle is at least
1/3. Consider the distribution over graphs that results
from selecting with probability 1/2 a graph G′ according
to D′

∆, and with probability 1/2 a graph G′ according to
D∆̄. By our counter-assumption (and the Independence
Observation) the probability that A′ terminates before
it sees three edges of the form (vi,b1 , vj,b2), (vj,b3 , vk,b4)
and (vk,b5 , vi,b6) (where b1, . . . , b6 ∈ {0, 1}) is greater
than 1/3. In such a case, the distribution on the answers
to the queries of A′ (and hence on its queries conditioned
on these answers) is the same if the graph G′ is selected
according to D′

∆ or according to D∆̄. Therefore, the
probability that A′ terminates with an incorrect output,
is greater than 1/6. But this contradicts our assumption
on A′.

Since the number of queries performed by A before
it terminates is upper bounded by the number of queries
performed by A′, the theorem follows.

Since the distributions that are defined for our one-
sided error lower bounds, which are stated in Lemmas 2
and 3, are as required by Theorem 4, we get the
following corollary.

Corollary 9. Any algorithm for testing triangle-
freeness must perform

Ω
(

max
{

min{d, n/d}, min
{√

d, n2/3/d1/3
}

· n−ν(n)
})

queries. This lower bound holds even if the algorithm is
allowed two-sided error and dmax = O(d).

7 Upper bounds

7.1 An upper bound of O(
√

nd/ε3/2) for general
graphs

Lemma 10. It is possible to test triangle-freeness by
performing O(

√
nd/ε3/2) queries. If dmax = O(d) then

O(d/ε) queries suffice.

Proof. Let G be a graph with average degree d over
n vertices that is ε-far from being triangle-free. By
definition, G must contain at least εnd edges that belong
to triangles. If dmax = O(d) then by uniformly selecting
Θ(1/ε) vertices and for each uniformly selecting an
incident edge, with high probability we obtain an edge
that belongs to a triangle. Conditioned on this event,
if we now perform all O(d) neighbor queries to the end-
points of each selected edge, we reveal a triangle.

If the maximum degree of the graph differs signifi-
cantly from its average degree, then the above argument
cannot be applied: First, the suggested edge selection
process might not select with sufficiently high probabil-
ity an edge that belongs to a triangle. Second, even if
we obtain such an edge, its end-points might have a very
high degree. To address these issues, we first introduce
some notation.

We say that a vertex has high degree if its degree
is more than c

√
nd (where we set c momentarily). We

shall say that an edge is covered by these high degree
vertices, if both its end-points have high degree. But the

high-degree vertices can cover at most
(

(1/c)
√

nd
)2

=
(1/c2)nd edges. Hence, among the edges that belong to
triangles, there are at least (ε − (1/c2))nd edges that
have at least one end-point with degree at most c

√
nd.

If we set c =
√

2/ε then we have at least (ε/2)nd such
edges.

In order to obtain one of these edges, we would
like to sample edges uniformly in G. In fact, it suffices
to sample edges “almost uniformly” as defined in [12].
In [12] an algorithm is described that uses Õ(

√

n/δ)
queries to a graph G and for which the following holds:
For all but at most δ/4-fraction of the edges of G the
probability that the edge is selected is at least 1

32nd . We
refer to this algorithm as “Edge-Select”. By definition
of the algorithm, if we set δ = ε, we get that there
are at least (ε/4)nd edges that can be returned by
“Edge-Select” such that these edges belong to triangles
and have at least one end-point with degree at most
√

2/ε
√

nd. It follows that at a cost of O(
√

n/ε3/2)
queries we obtain such an edge with a high constant
probability. Thus the algorithm for detecting a triangle
runs “Edge-Select” Θ(1/ε) times. For each selected
edge, if it has one end-point with degree less than
√

2/ε ·
√

nd then it asks all neighbor queries for that
vertex, and for each of them it asks all pair queries
with the other end point. (If both end-points have high
degree then the algorithm does nothing).



7.2 An improved upper bound for relatively
dense general graphs

Lemma 11. It is possible to test triangle-freeness by

performing O
(

max
{

n4/3

ε2/3d2/3 ,
d2
max

ε2d2

})

queries.

Corollary 12. It is possible to test triangle-freeness
of graphs with average degree d = Ω(

√
n) by performing

O
(

n4/3

d2/3ε2

)

queries.

Proof. Let G be a graph over n vertices with average
degree d and maximum degree dmax that is ε-far from
being triangle-free. We shall show that if we take a

uniform sample of Θ
(

max
{

n2/3

ε1/3d1/3 , dmax

εd

})

vertices of

G, and ask vertex-pair queries between all pairs in the
sample, then a triangle is detected with probability at
least 2/3.

Since G is ε-far from being triangle-free, it must
contain at least εnd triples of vertices that form a
triangle. This lower bound on the number of triangles
implies that the expected number of triangles in a set
of s uniformly selected vertices is at least s3 · εnd

n3 . It

follows that for s ≥ n2/3/(εd)1/3, the expected number
of triangles spanned by the sample is at least 1. This
unfortunately does not imply in general that a uniform
sample of s = Ω(n2/3/(εd)1/3) vertices spans a triangle
with probability at least 2/3. Rather, the size of the
sample should depend on the ratio between dmax and d.

Let s = c · max
(

n2/3

(εd)1/3 , dmax

εd

)

, where c > 0 is a

sufficiently large constant. Since G is ε-far from being
triangle-free, it easily follows that G must contain a
family T of (εnd)/3 pairwise edge-disjoint triangles. Fix
such a family, and for every v ∈ V (G), let dT (v) be
the number of triangles in T containing v; obviously,
dT (v) ≤ d(v)/2 ≤ dmax/2. We sample a set S of
s vertices of G uniformly at random. Let X be the
random variable counting the number of triangles of T
spanned by S. Due to the Chebyshev inequality, it is
enough to prove that Exp[X ] is at least a large constant,
and the ratio Var[X ]/Exp2[X ] is at most a small enough
constant. We will estimate both quantities.

Observe that each triangle of T falls into S with
probability (1 + o(1))s3/n3. It follows that

Exp[X ] = (1 + o(1))
s3

n3
|T | = Θ

(

εds3

n2

)

.(7.5)

Thus, taking c large enough, we get: Exp[X ] is large
enough, too. Also,

Var[X ] ≤
∑

t,t′∈T

t∩t′ 6=∅

Pr[t, t′ ⊂ S]

=
∑

v∈V (G)

(

dT (v)

2

)

(1 + o(1))s5

n5
(7.6)

(the latter estimate is due to the fact that, since T is
pairwise edge-disjoint, for any t, t′ ∈ T with t ∩ t′ 6= ∅,
the union t ∪ t′ contains exactly five vertices). Recall
that dT (v) ≤ dmax. Due to convexity, we get:

Var[X ] = O

(

εnd

dmax
· d2

max

)

s5

n5
.(7.7)

Using the assumption s = Ω
(

dmax

εd

)

, we derive:

Var[X ]/Exp2[X ] is small enough, as required.
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