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Abstract

The number of spanning trees of a graph G, denoted τ(G), is a well studied graph parameter with numerous connec-
tions to other areas of mathematics. In a recent remarkable paper, answering a question of Sedláček from 1969, Chan,
Kontorovich and Pak showed that τ(G) takes at least 1.1103n different values across simple (and planar) n-vertex graphs
G, for large enough n. We give a very short, purely combinatorial proof that at least 1.49n values are attained. We also
prove that exponential growth can be achieved with regular graphs, determining the growth rate in another problem
first raised by Sedláček in the late 1960’s. We further show that the following modular dual version of the result holds.
For any integer N and any u < N there exists a planar graph on O(logN) vertices whose number of spanning trees is u

modulo N .

1 Introduction
Given a graph G, we denote by τ(G) the number of spanning trees of G. This simple quantity has numerous interpretations,
with perhaps the simplest and most classical being its expression as the determinant of a certain type of symmetric matrices
via Kirchoff’s matrix tree theorem [13] from 1847. The notion has a long history dating back to 1860 and the first proof of
Cayley’s formula [4]. It can also be viewed as capturing a certain notion of “complexity” of G. Besides being extensively
studied in combinatorics, it has many, often surprising, connections to other areas of mathematics and beyond, including
Commutative algebra, Probability theory, Theory of Lie groups, Combinatorial Optimization and Electrical Networks.

In the present short paper we are interested in one of the most basic questions that can be asked about the function τ ,
namely how large is its range, when evaluated on, say, all n vertex graphs? This question was first raised by Sedláček in the
1960’s [19, 22, 23] and has since been reiterated many times, the earliest of which being the book [17] of Moon from 1970.
In fact, he raised this question for three natural families of graphs: Gall

n , Gplanar
n , Gk-regular

n – the families of all, planar, and
k-regular graphs on n vertices, respectively. With this in mind, given a family of simple1 graphs G, let us define its tree
spectrum T (G) := {τ(G) | G ∈ G}. It is immediate that |T (Gall

n )| ≥ |T (Gplanar
n )|, and somewhat remarkably, historically, the

essentially best known lower bounds on |T (Gall
n )| came from lower bounds on |T (Gplanar

n )|, despite a seemingly vast amount
of additional freedom afforded to graphs in Gall

n compared to Gplanar
n . In particular, for any G ∈ Gplanar

n , by exploiting
degeneracy, it is easy to see that τ(G) ≤ 6n, and the current best upper bound is τ(G) ≤ 5.2852n [8] (compared to nn−2

for G ∈ Gall
n ). This also gives the essentially best known upper bound on |T (Gplanar

n )|.

The first lower bound on |T (Gplanar
n )| was given already in one of the original papers by Sedláček in 1969 [22], who proved

that |T (Gplanar
n )| = Ω(n2). In [2], Azarija obtained a major improvement, by showing that |T (Gplanar

n )| ≥ 2Ω(
√

n/ logn).
Subsequently, a result of Stong [25], who was interested in a certain dual question which we will discuss later, implies that
|T (Gplanar

n )| ≥ 2Ω(n2/3). In a remarkable recent paper, Chan, Kontorovich and Pak [9] showed that |T (Gplanar
n )| ≥ 1.1103n,

for large n. Their argument uses combinatorial ideas combined with ideas concerning the theory of continued fractions.

We give a purely combinatorial, short and simple proof with a significantly stronger exponential bound.

Theorem 1.1. |T (Gall
n )| ≥ |T (Gplanar

n )| ≥ 1.49n, for large enough n.

In fact, we give an even simpler, one page proof of a slightly weaker bound |T (Gplanar
n )| ≥ 2n/2−1, which holds for all n.

Turning to regular graphs, we note that the natural question of determining |Gk-regular
n | has also been originally raised by

Sedláček [22] in 1969 and has since been reiterated several times over the years by various authors [2, 9, 17, 20, 21]. In the
original paper, Sedláček proved for k = 3 that |Gk-regular

n | grows at least linearly in n (provided n is even2). In a subsequent
paper [20], he extended this result to any fixed k. We improve these linear bounds to exponential ones.
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Theorem 1.2. For any fixed integer k ≥ 3 there are at least 2Ω(n) different values of τ(G) among k-regular connected
graphs G on n vertices, provided that kn is even.

Note that the exponential growth rate can be easily seen to be tight since the number of spanning trees in a k-regular
connected graph for a fixed k is always exponential (see e.g. [1, 16]).

We note that a natural approach to understanding the growth rate of the tree spectrum, already introduced in 1970 by
Sedláček [19], is to consider a “dual” problem. Namely, given t > 2, what is the minimum number of vertices in a planar
graph with exactly t spanning trees? Let us denote the answer by α(t). By considering a cycle on t vertices we obtain a
trivial upper bound of α(t) ≤ t, observed by Sedláček [19] already in 1970. Following a number of subsequent improvements
[2, 3, 11, 18] the current state of the art bound of α(t) ≤ O(log3/2(n)/ log log n) is due to a recent result of Stong [25]
(a stronger bound in an appropriate sense is known for multigraphs, see [10]). A natural conjecture which remains open,
raised explicitly in [9], is that α(t) ≤ O(log t). In [9] the authors show, relying on the Bourgain-Kontorovich [6] machinery
developed towards proving Zaremba’s conjecture, that this conjecture is true for a positive proportion of integers smaller
than any large n. We prove a natural modular analogue of the full conjecture.

Theorem 1.3. For any u ∈ ZN there exists a planar graph G on O(logN) vertices with τ(G) ≡ u mod N .

In fact, our result is in several ways even stronger, see Theorem 3.1 for more details.

While we do not use the connection to continued fractions which was used to prove the exponential growth of |T (Gplanar
n )|

in [9], we do obtain several interesting (simple) consequences in the opposite direction. Here, given a sequence of integers
a1, . . . , aℓ ≥ 1, where ℓ ≥ 0, the corresponding continued fraction is defined as follows:

[a1, . . . , aℓ] :=
1

a1 +
1

. . . + 1
aℓ

.

The classical Zaremba’s conjecture [26] asserts that there exists C > 0 such that for any u there is a coprime t < u such that
t
u = [a1, . . . , aℓ] with a1, . . . , aℓ ≤ C. It is known that the conjecture is not true for C = 4 but Hensley [12] conjectured in
1996 that C = 2 is enough for large enough u. While the conjecture is still open in general, in a remarkable paper Bourgain
and Kontorovich [6] showed that it holds for (1− o(1))n of the values of u smaller than n for any large enough n. We give
a very simple proof of the following weaker result (ignoring the ai ∈ {1, 2} part).

Theorem 1.4. For any N , there are at least N1/4/2 − 1 values of u < N such that there exists a coprime t < u, an
ℓ ≤ 1

2 logN and a1, . . . , aℓ ∈ {1, 2}, such that t
u = [a1, 1, . . . , aℓ, 1].

Theorem 1.3 (in reality its strengthening Theorem 3.1) has as an essentially immediate consequence the following “modular”
version of Zaremba’s Conjecture. We note that a similar result is described in [14].

Theorem 1.5. Let N be large enough. For any u < N there exist ℓ ≤ O(logN) and a1, . . . , aℓ ∈ {1, 2} such that 3

u ≡ [a1, 1, . . . , aℓ, 1] mod N.

Notation. All our logarithms are in base two and all our graphs are simple unless otherwise specified.

2 Counting spanning trees
Given a graph G and its edge e we denote by G \ e the (multi)-graph obtained by contracting e and by G − e the graph
obtained by deleting e. Note that τ(G−e) counts the number of spanning trees of G which do not use e, and τ(G\e) counts
the number of spanning trees using e. In particular, this establishes the classical recursive formula τ(G) = τ(G\e)+τ(G−e)

for computing the number of spanning trees.

We say that a vector
[
t

u

]
is n-planar-feasible if there exists a planar graph G on up to n vertices and an edge e ∈ E(G)

such that t = τ(G \ e) and u = τ(G− e). We call the edge e the witness for the n-planar-feasibility of
[
t

u

]
. Note that if a

3We note here that one should first compute [a1, 1, . . . , aℓ, 1] over Q and only then evaluate it modulo N
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vector is n-planar-feasible then it can also be realized by a planar graph with exactly n vertices, by attaching leaves (which
does not change the number of spanning trees).

The next simple lemma shows that in order to get good lower bounds on |T (n)| it suffices to show that there are many
distinct planar feasible vectors.

Lemma 2.1. If there are at least N distinct n-planar-feasible vectors, then |T (n)| ≥
√
N.

Proof. Let
[
x1

y1

]
, . . . ,

[
xN

yN

]
be distinct n-planar-feasible vectors. Note that either there is some y such that yi = y for at

least
√
N of these vectors, or |{y1, . . . , yN}| ≥

√
N . In the latter case we are done since each yi denotes the number of

spanning trees of some G−e for some n-vertex planar graph G and its edge e, which is also an n-vertex planar graph. In the
former case, note that |{x1 + y1, . . . , xN + yN}| ≥

√
N since all the (at least

√
N) vectors agreeing in the second coordinate

must have a different sum of their coordinates (since they are different vectors). Since xi + yi is the number of spanning
trees of some n-vertex planar graph, we again get at least

√
N distinct values taken by the spanning tree function.

The following lemmas establish a way of recursively generating planar-feasible vectors. Similar considerations were also
used in [9].

Lemma 2.2. If
[
t

u

]
is n-planar-feasible then

[
t+ u

u

]
=

(
1 1

0 1

)[
t

u

]
is (n+ 1)-planar-feasible.

Proof. Take the witness edge e and subdivide it with a single vertex to create a new graph G′. Let f, f ′ be the two newly
created edges. Then, τ(G′ \ f) counts the number of spanning trees of G′ using f , which equals the sum of the number of
those using both f and f ′, plus the number of those using f but not f ′. The former equals τ(G\e) = t, namely the number
of spanning trees of G using e, and the latter equals τ(G− e) = u, namely the number of spanning trees of G not using e.
Hence, τ(G′ \ f) = t+ u. On the other hand τ(G′ − f) counts the number of spanning trees of G′ not using f (forcing us

to use f ′), which equals τ(G− e) = u. Thus, f is the witness for
[
t+ u

u

]
being (n+ 1)-planar-feasible, as desired.

Lemma 2.3. If
[
t

u

]
is n-planar-feasible then

[
2t

t+ 2u

]
=

(
2 0

1 2

)[
t

u

]
is (n+ 1)-planar-feasible.

Proof. Take the witness edge e, add an extra vertex v and join it to both endpoints of e to create a new graph G′. We

claim that e is the witness for (n + 1)-planar-feasibility of
[

2t

t+ 2u

]
. Indeed, τ(G′ \ e) = 2τ(G \ e) = 2t since we have to

pick one of the two new edges to connect v as well as connect G \ e. For τ(G′ − e), we can either use exactly one of the
two new edges giving a contribution of 2τ(G − e) = 2u, or both new edges giving a contribution of τ(G \ e) = t. Hence,
τ(G′ − e) = t+ 2u, as desired.

Lemma 2.4. If
[
t

u

]
is n-planar-feasible then

[
2t+ u

t+ u

]
=

(
2 1

1 1

)[
t

u

]
is (n+ 1)-planar-feasible.

Proof. Take the witness edge e, add an extra vertex v and join it to both endpoints of e to create a new graph G′. Denote

the two new edges by f, f ′. We claim that f is the witness for the (n+ 1)-planar-feasibility of
[

2t

t+ 2u

]
. Indeed, τ(G′ \ f)

is equal to the number of spanning trees of G with the edge e doubled (i.e., replaced with two parallel edges), which equals
to 2τ(G \ e) + τ(G− e) = 2t+ u. Furthermore, τ(G′ − f) = τ(G) = t+ u, because every spanning tree of G′ not using f is
obtained from a spanning tree of G by adding f ′. This proves the lemma.

Let us denote by

A :=

(
1 1

0 1

)
B :=

(
2 0

1 2

)
C :=

(
2 1

1 1

)
D :=

(
1 0

1 1

)
Observe the relations B2 = 4D and C = AD = 1

4AB2, which we will use often.

We start with a weaker result which only makes use of the operations corresponding to the matrices A and C.
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Theorem 2.5. There are at least 2n distinct (n+ 2)-planar-feasible vectors.

Proof. Note that
[
1

0

]
is 2-planar-feasible. This implies that for any choice of t and a1, . . . at ≥ 0, by repeated use of

Lemmas 2.2 and 2.4, the vector

u⃗(a1, . . . , at) := Aa1CAa2C · · ·AatC

[
1

0

]
= Aa1+1DAa2+1D · · ·Aat+1D

[
1

0

]
(1)

is (n+ 2)-planar-feasible for n = a1 + a2 + . . .+ at + t.

We further claim that all vectors u⃗ = u⃗(a1, . . . , at) are distinct. To see this, we need the following simple fact: for every

vector v =

[
x

y

]
of positive numbers, Av =

[
x+ y

y

]
has its first coordinate larger than the second, whereas Dv =

[
x

x+ y

]
has its second coordinate larger than the first. Now, given u⃗ as in (1), we can determine a1 by multiplying the vector by
A−1 so long as the first coordinate is larger than the second. The number of times we did this is equal to a1 + 1, because

DAa2+1D · · ·Aat+1D

[
1

0

]
has its second coordinate larger than the first. We then multiply by D−1. Repeating allows us

to decode a2, . . . , at in the same way, where the argument stops once the current vector equals
[
1

0

]
and the number of

iterations gives t.

Hence, for a given n, the number of vectors we can obtain is the number of solutions to a1 + a2 + . . . + at + t ≤ n in
non-negative integers (with variable t). By the usual “balls and bins” argument, this equals

∑n
t=0

(
n
t

)
= 2n, as desired.

We note that the construction we used above is equal to the one used in [9]. We also note that the uniqueness of vectors
u⃗(a1, . . . , at) can also be concluded from the classical fact that the matrices A,D generate a free semigroup [7] (although
they do not generate a free group). The following corollary is an immediate consequence of Theorem 2.5 and Lemma 2.1.

Corollary 2.6. For any positive integer n we have |T (Gplanar
n )| ≥ 2n/2−1.

We next prove a stronger bound on the number of planar-feasible vectors using the operations behind all three matrices
A,B, and C. We note that we did not choose the optimal value of the parameters in the following result for the sake of
simplicity, since even after optimization the base of the exponent here is extremely unlikely to be best possible and only does
slightly better than Theorem 2.5. The main purpose of the stronger theorem here is to showcase that one can substantially
improve Theorem 2.5 by using additional operations and to showcase a route towards further improvement.

Theorem 2.7. For large enough n, there are at least 2.23n distinct (n+ 2)-planar-feasible vectors.

Proof. We will first assume that 10 | n and prove a slightly stronger bound, which combined with monotonicity implies
the claimed one for any n. We set t = 2n/5.

Note that
[
4

4

]
= B2

[
1

0

]
is 4-planar-feasible. This implies that for any choice of t and any choice of a1, . . . at ≥ 1 and

b1, . . . bt ≥ 2, by repeated use of Lemmas 2.2 to 2.4, the vector

v⃗(a1, . . . , at; b1, . . . , bt−1) := Aa1Bb1Aa2Bb2 · · ·AatBbt

[
1

0

]
= 4t ·Aa1−1CBb1−2Aa2−1CBb2−2 · · ·Aat−1CBbt−2

[
1

0

]
is (n + 2)-planar-feasible for n = a1 + a2 + . . . + at + b1 + b2 + . . . + bt − 2t. We note here that the purpose of replacing
AB2 with 4C is that multiplying by C only “costs” us one vertex, whereas multiplying by B twice and then by A would
“cost” three (we would produce different witness graphs for the same vector). Thus, the identity 4C = AB2 allows us to
lower the number of vertices we use.

We will only restrict attention to vectors v⃗(a1, . . . , at; b1, . . . , bt) with 2 | bi for all i ≤ t. We claim that for all such choices
of ai’s and bj ’s the v⃗’s are distinct. Indeed, given v⃗, to determine a1 one only needs to multiply the vector by A−1 so long
as the first coordinate is larger than the second. The number of times we did this is equal to a1 since B2 = 4D times any
vector has second coordinate at least as large as the first, while A times any vector with positive coordinates has the first
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coordinate larger than the second. Similarly to determine b1 we multiply by B−2 so long as the second coordinate is larger
than the first.

Hence, the number of distinct vectors we can obtain is at least the number of solutions to a′1+a′2+. . .+a′t+b′1+. . .+b′t = n−t in
non-negative integers where all b′i are even. We will only count sequences where a′1+a′2+. . .+a′t = 2n/5 and b′1+. . .+b′t = n/5.
By the usual “balls and bins” argument there are

(
4n/5−1
2n/5

)
such choices for a′1, . . . , a′t and

(
n/2−1
2n/5

)
such choices for b′1, . . . , b′t

(since they are required to be even) giving us in total at least(
4n/5− 1

2n/5

)
·
(
n/2− 1

2n/5

)
≥ 2(0.8+0.36−o(1))n ≥ 2.234n,

where the first inequality uses the entropy bound
(

n
αn

)
≥ 2(H(α)−o(1))n, and the last one holds for large enough n.

We note that the construction we used above is different compared to the one used in [9] and Theorem 2.5, both of which
would correspond to only using b1 = b2 = . . . = bt = 2. Note also that we made no particular effort to optimize the base
here since our goal was mainly to show that one can improve upon the construction used in Theorem 2.5. We suspect that
most of the vectors u⃗(a1, . . . , at, b1, . . . , bt) with ai ≥ 1, bj ≥ 2 are unique, which would lead to a slightly better bound of
about 2.61n. This is essentially the limit of what can be achieved by using matrices generated by A and B. The issue here
is that A and B do not generate a free semigroup [7]. Similarly, as before, Lemma 2.1 combined with Theorem 2.7 gives
Theorem 1.1.

As written, our constructions do not produce regular graph witnesses. The following argument shows how we can regularize
them to obtain Theorem 1.2.

Proof of Theorem 1.2. We first show that we can attain exponentially many values among planar graphs with maximum
degree at most 3. To see this, suppose that we have a graph G with this property and note that if e is an edge of G with
both endpoints having degree at most two, then by adding i ≥ 2 vertices in such a way that together with e they make a
Ci+2, we preserve the maximum degree property. Note also that since i ≥ 2, one of the new edges will have both endpoints

having degree equal to two, denote it by f and the new graph by G′. Then, we have
[
τ(G′ \ f)
τ(G′ − f)

]
= Ai−1C

[
τ(G \ e)
τ(G− e)

]
.

This can be easily seen directly or by noticing that the construction used in Lemma 2.4 places a triangle on top of e and
marks one of the new edges by f . We can then subdivide f for i− 1 times using Lemma 2.2, giving us the stated product.
Starting with an edge and repeatedly applying this operation, this implies that for every t ≥ 1 and a1, . . . , at ≥ 1, the
vector

w⃗(a1, . . . , at) := Aa1CAa2C · · ·AatC

[
1

0

]
is (n+2)-planar-feasible for n = a1 + . . .+ at + t with a graph whose degrees are all equal to 2 or 3. As argued in the proof
of Theorem 2.5, all these vectors are distinct, giving at least

∑n/2−1
t=1

(
n−t−1
t−1

)
≥ 2(2/3−o(1))n different such vectors.

By the same argument as in the proof of Lemma 2.1, this implies there are at least 2(1/3−o(1))n/6 planar graphs G with
distinct τ(G), each with at most n/6 vertices, and having all degrees equal to 2 or 3 (we can always remove vertices of
degree one without changing the number of spanning trees). By a pigeonhole argument, we conclude that there is some
0 ≤ i ≤ n/6 such that there are at least 2(1/3−o(1))n/6/(n/6 + 1) ≥ 2(1/3−o(1))n/6 such graphs with exactly i vertices of
degree 2. For any such G we now append to each of its i vertices v of degree 2 a fixed connected graph H which has exactly
one vertex of degree two which we connect to v, and with the remaining vertices of H having degree 3. Namely, we take H

to be K4 with one edge subdivided once. Note that the number of vertices in our new graph is at most n, that it remains
planar, and that it is cubic. Moreover, note that the number of its spanning trees is equal to τ(G) · (τ(H))i. Since we fixed
i, the term (τ(H))i is independent of G from our family, and we obtain at least 2(1/18−o(1))n different values taken by τ(G)

on planar cubic graphs on at most n vertices. This completes the proof in the cubic case.

If k > 3, we can in our construction first add a triangle on top of our witness edge, while keeping the same witness edge, and
then add another one where we move it to a new edge and then subdivide. Our first operation is captured by multiplying
by matrix B (by Lemma 2.3) so each iteration corresponds to multiplication by Ai−1CB. By the same argument we still
have 2Ω(n/k) of such graphs on up to Ω(n/k) vertices with the key difference being that the graphs we construct all have
degrees 2 or 4. Now our pendant graph H will be a graph with exactly k − 2 vertices of degree k − 1 and the remaining
vertices all of degree k, so that when appending to a degree two vertex, we simply join it to the k − 2 vertices of degree
k − 1. For degree 4 vertices, we join them to k − 4 vertices of their copy of H and simply join the remaining two vertices
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of degree k − 1 in H by an edge. To see that such an H exists we may take Kk+1, remove a path of length k − 1 and add
a new vertex joined to all vertices on the removed path.

This shows that for every k ≥ 3, we can find 2Ω(n/k) k-regular graphs on up to n vertices. In order to get graphs on exactly
n vertex, we simply pigeonhole again, pay a factor of up to n/k to make sure we have the same number of vertices m in
remaining graphs, and then modify in each of them one of the copies of H we use to start from an arbitrary k-regular graph
on k + 1 + n−m vertices, remove a path of length k − 1 and add a new vertex joined to all the vertices of the path. This
only multiplies the tree counts of every graph in our family by the same amount, leaving them all distinct.

3 Hitting any value modulo N

In this section we prove our modular version of the dual question asking how large a (planar) graph G do we need to take
in order to attain a given value of τ(G). The following is our stronger variant of Theorem 1.3.

Theorem 3.1. Let N be sufficiently large. For any coprime a, b, there exists t ≤ O(logN) and i1, . . . , it ∈ {1, 2} such that[
a

b

]
≡ Ai1DAi2D . . . AitD

[
1

0

]
mod N.

In particular, there exists a O(logN)-planar-feasible vector
[
x

y

]
such that x ≡ a mod N and y ≡ b mod N .

Before turning to the proof, we will need a few definitions and a well known fact about the expansion in Cayley graphs of
SL2(ZN ). We say that an n-vertex graph is a c-expander if any subset U on up to n/2 vertices has its external neighborhood
N(U) of size at least c|U |. Given a group G and a subset of its elements S, the Cayley digraph of G generated by S,
denoted Cay(G,S), is the graph whose vertex-set is G and where an edge from a to b exists if and only if a−1b ∈ S. In
case S is symmetric (i.e., a ∈ S =⇒ a−1 ∈ S), we have an edge from a to b if and only if we have an edge from b to a, so
it is customary to drop the directions and refer to this as the Cayley graph of G generated by S.

Selberg’s Theorem [24] implies that Cay((SL2(ZN ), S ∪ S−1) is an expander provided S ∪ S−1 generates SL2(Z) (in fact
whenever it generates a subgroup of finite index). It is well known that for S = {A,D} we have that S ∪ S−1 generates
SL2(Z). If we set X = AD,Y = A2D we have A = Y X−1 and D = XY −1X so X,Y,X−1, Y −1 generate SL2(Z). This
implies the following proposition, see also [5, 15] for more details on the expansion of Cayley graphs in SL2(ZN ).

Proposition 3.2. There exists c > 0 so that for any large enough N the Cayley graph Cay(SL2(ZN ), S ∪ S−1), with
S = {AD,A2D}, is a c-expander.

Another ingredient is an observation that having expansion in the Cayley graph Cay(SL2(ZN ), S ∪ S−1) implies expansion
in the Cayley digraph Cay(SL2(ZN ), S). Here, we say that an n-vertex digraph is a c-out-expander if any subset U on up
to n/2 vertices has its external out-neighborhood N+(U) of size at least c|U |.

Proposition 3.3. Let G be a finite group and S ⊂ G \ e (where e is the identity element). If Cay(G,S ∪ S−1) is a
c-expander for some c > 0, then Cay(G,S) is a c

2|S| -out-expander.

Proof. Let n = |G| and let U ⊆ G have size u = |U | ≤ n/2. By the c-expansion of H = Cay(G,S ∪ S−1), H has at least
c|U | edges between U and G \ U . Since D = Cay(G,S) is Eulerian, we have

0 =
∑
v∈U

(d+D(v)− d−D(v)) =
∑
v∈U

(d+D(v,G \ U)− d−D(v,G \ U)) +

������������:0∑
v∈U

(d+D[U ](v)− d−D[U ](v)) =⇒

∑
v∈U

d+D(v,G \ U) =
∑
v∈U

d−D(v,G \ U) =
1

2

∑
v∈U

dH(v,G \ U) ≥ c

2
· |U |.

Since the maximum indegree in D is |S|, we obtain that there are at least c
2|S| · |U | vertices in N+(U) in D, as desired.

We are now ready to prove Theorem 3.1.
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Proof of Theorem 3.1. Let S = {AD,A2D}. By Proposition 3.2 Cay(SL2(ZN ), S ∪S−1) is a c-expander for some c > 0.
By Proposition 3.3, both Cay(SL2(ZN ), S) and Cay(SL2(ZN ), S−1) are c

4 -out-expanders. Starting from an arbitrary vertex
of Cay(SL2(ZN ), S), by repeatedly expanding we reach at least (1 + c/4)i vertices after i steps and in particular, we reach
more than half of the vertex set in at most log1+c/4(N

3) steps. Similarly, starting from any vertex, by repeatedly expanding
Cay(SL2(ZN ), S−1) we reach more than half the vertices in at most log1+c/4(N

3) steps. This shows that starting from, say,
the identity matrix, we can reach any other matrix in SL2(ZN ) in at most 2 log1+c/4(N

3) ≤ O(logN) multiplications by
elements of S.

Now, given coprime a, b we choose e, f ∈ Z such that ae− bf = 1, so that M :=

(
a e

b f

)
∈ SL2(ZN ). By the above, we can

write M as the product of O(logN) elements of S. The elements of S, i.e. AD = C and A2D = AC, both correspond to

graph operations (via Lemmas 2.2 and 2.4). Hence, M
[
1

0

]
=

[
a

b

]
is a O(logN)-feasible vector, as required.

We note that Theorem 3.1 gives another proof of the exponential growth of the tree spectrum function.

4 An application to continued fractions

The connection to the theory of continued fractions goes via the following, well-known association between continued
fractions and matrix products. We note that the second equivalence was observed in [9] and involves precisely the matrices
A and D we encounterd in the previous sections. Given 0 ≤ t < u such that gcd(t, u) = 1 we get:

t

u
= [a1, b1, . . . , aℓ, bℓ] ⇔

[
u

t

]
=

(
a1 1

1 0

)(
b1 1

1 0

)
· · ·

(
aℓ 1

1 0

)(
bℓ 1

1 0

)[
1

0

]
⇔

[
u

t

]
=

(
1 a1
0 1

)(
1 0

b1 1

)
· · ·

(
1 aℓ
0 1

)(
1 0

bℓ 1

)[
1

0

]
⇔

[
u

t

]
= Aa1Db1 · · ·AaℓDbℓ

[
1

0

]
. (2)

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let n =
⌊
logN

2

⌋
. As argued in the proof of Theorem 2.5, if we pick ℓ ≤ n and 1 ≤ a2, . . . aℓ ≤ 2

the vectors

v⃗(a2, . . . , aℓ) := ADAa2D · · ·AaℓD

[
1

0

]
are all distinct and there are at least 1 + 2 + . . . + 2n−1 = 2n − 1 of them. Note that if v⃗(a2, . . . , aℓ) =

[
u

t

]
, then

t < u ≤ 4n ≤ N, since the maximum entry of (A2D)n is at most 4n. Note further that the ratio t
u has the required

continued fraction expansion by (2). In addition, we know that gcd(t, u) = 1 since multiplying a vector with coprime
coordinates by either A or D preserves this property (since gcd(x+ y, y) = gcd(x, y) = gcd(x, x+ y)).

Now by the same argument behind Lemma 2.1 we conclude that either at least 2n/2 − 1 of the vectors have distinct first
coordinates or at least 2n/2 − 1 of them have distinct sums. In the former case we are done immediately, and in the latter
we may multiply our vectors by A to obtain a vector with first coordinate being the sum, which are in particular then all
distinct and still smaller than N . In either case we get at least 2n/2 − 1 ≥ N1/4/2− 1 distinct u < N for which there is a
coprime t with the desired properties.

We note that one can easily improve the exponent in Theorem 1.4 by for example by restricting attention in the above
proof to only vectors which have precisely n/2 exponents equal to 1/2. It can also be improved a bit further by relaxing
either the restriction ai ∈ {1, 2} to allow them to be smaller than a fixed constant C or by removing the requirement that
the second entry is one. However, the limit of our approach here is always N1/2 due to the use of the argument behind
Lemma 2.1.
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