Testing Subgraphs in Directed Graphs

Noga Alon * Asaf Shapira †

Abstract

Let H be a fixed directed graph on h vertices, let G be a directed graph on n vertices and suppose that at least ϵn^2 edges have to be deleted from it to make it H-free. We show that in this case G contains at least $f(\epsilon, H)n^h$ copies of H. This is proved by establishing a directed version of Szemerédi's regularity lemma, and implies that for every H there is a one-sided error property tester whose query complexity is bounded by a function of ϵ only for testing the property P_H of being H-free.

As is common with applications of the undirected regularity lemma, here too the function $1/f(\epsilon, H)$ is an extremely fast growing function in ϵ . We therefore further prove the following precise characterization of all the digraphs H, for which $f(\epsilon, H)$ has a polynomial dependency on ϵ : a homomorphism $\varphi: V(H) \mapsto V(K)$, from a digraph H to K, is a function that satisfies $(u,v) \in E(H) \Rightarrow (\varphi(u),\varphi(v)) \in E(K)$. The core of a digraph H is the smallest subgraph K of H, for which there is a homomorphism from H to K. We show that for a connected H, $f(\epsilon, H)$ has a polynomial dependency on $1/\epsilon$, if and only if the core of H is either an oriented tree or a directed cycle of length 2. This implies that there is a one sided error property tester for testing H-freeness, whose query complexity is polynomial in $1/\epsilon$ if and only if H is of the above two types. We further show that the same characterization applies for two-sided error property testers as well. A special case of this result settles an open problem raised by the first author in [1]. It turns out that if P_H has a polynomial query complexity, then there is a two-sided ϵ -tester for P_H that samples only $O(1/\epsilon)$ vertices, whereas any one-sided tester for P_H makes at least $(1/\epsilon)^{\Omega(d)}$ queries, where d is the average degree of H. We show that the complexity of deciding if for a given directed graph H, P_H has a polynomial query complexity, is NP-complete, marking an interesting distinction from the case of undirected graphs.

For some special cases of directed graphs H, we describe very efficient one-sided error propertytesters for testing P_H . As a consequence we conclude that when H is an undirected bipartite graph, we give a one-sided error property tester with query complexity $O((1/\epsilon)^{h/2})$, improving the previously known upper bound of $O((1/\epsilon)^{h^2})$. The proofs combine combinatorial, graph theoretic and probabilistic arguments with results from additive number theory.

^{*}Schools of Mathematics and Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel. Email: noga@math.tau.ac.il. Research supported in part by a USA-Israeli BSF grant, by the Israel Science Foundation and by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University.

[†]School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel. Email: asafico@math.tau.ac.il. This work forms part of the author's Ph.D. Thesis.

1 Preliminaries

1.1 Definitions

All directed graphs (=digraphs) considered here are finite and have no loops and no parallel directed edges. They may have anti-parallel edges, i.e., directed cycles of length 2, or in short, 2-cycles. We call a cycle obtained from an undirected cycle by directing its edges an oriented cycle. An oriented cycle in which all edges point to the same direction is a directed cycle. Oriented paths and directed paths are defined in an analogous manner. A digraph is an oriented tree if it does not contain any oriented cycle. A digraph is bipartite if it does not contain any oriented cycle of odd length.

Let P be a property of digraphs, that is, a family of digraphs closed under isomorphism. A digraph G with n vertices is ϵ -far from satisfying P if no digraph \tilde{G} with the same vertex set, which differs from G in no more than ϵn^2 places, (i.e., can be constructed from G by adding and removing no more than ϵn^2 directed edges), satisfies P. An ϵ -tester, or property tester, for P is a randomized algorithm which, given the quantity n and the ability to make queries whether a desired pair of vertices of an input digraph G with n vertices are adjacent or not, distinguishes with probability at least $\frac{2}{3}$ between the case of G satisfying P and the case of G being ϵ -far from satisfying P. Such an ϵ -tester is a one-sided ϵ -tester if when G satisfies P the ϵ -tester determines that this is the case (with probability 1). Obviously, the probability $\frac{2}{3}$ appearing above can be replaced by any constant smaller than 1, by repeating the algorithm an appropriate number of times.

The property P is called *strongly-testable*, if for every fixed $\epsilon > 0$ there exists a one-sided ϵ -tester for P whose total number of queries is bounded only by a function of ϵ , which is independent of the size of the input digraph. This means that the running time of the algorithm is also bounded by a function of ϵ only, and is independent of the input size.

1.2 Related work

The general notion of property testing was first formulated by Rubinfeld and Sudan [29], who were motivated mainly by its connection to the study of program checking. The study of the notion of testability for combinatorial objects, and mainly for labelled graphs, was introduced by Goldreich, Goldwasser and Ron [21], who showed that all graph properties describable by the existence of a partition of a certain type, and among them k-colorability, have efficient ϵ -testers. The fact that k-colorability is strongly testable is, in fact, implicitly proven already in [13] for k = 2 and in [27] (see also [2]) for general k, using the Regularity Lemma of Szemerédi [30], but in the context of property testing it is first studied in [21], where far more efficient algorithms are described. These have been further improved in [7].

In [5] it is shown that every first order graph property without a quantifier alternation of type " $\forall \exists$ " has ϵ -testers whose query complexity is independent of the size of the input graph (but has a huge dependence on ϵ). In [1] it is shown that there is a one-sided error ϵ -tester for checking

H-freeness for undirected graphs H, whose query complexity is polynomial in $1/\epsilon$, if and only if H is bipartite.

The notion of property testing has been investigated in other contexts as well, including the context of regular languages, [6], functions [20], [9], [3], computational geometry [15], [4], graph and hypergraph coloring [14], [9], [12] and other contexts. See [28] and [19] for surveys on the topic.

2 The Main Results

For a fixed connected digraph H (with at least one edge), let P_H denote the property of being H-free. Therefore, G satisfies P_H if and only if it contains no (not necessarily induced) subgraph isomorphic to H. Our first result is that for each fixed digraph H, the property P_H is strongly-testable.

Theorem 1 For every fixed digraph H, the property P_H is strongly-testable.

The proof relies on a variant of the regularity lemma of Szemérédi [30] adapted for directed graphs, which we formulate and prove. This version of the regularity lemma might prove useful for other problems. The application for getting the strong-testability of each property P_H is similar to the proof for the undirected case, given (implicitly) in [2], see also [5], [1].

The one-sided ϵ -tester for P_H for arbitrary digraphs H, has query-complexly bounded by a function which, though independent of the size of the input digraph G, has a huge dependency on ϵ and the size of H. For some digraphs H, however, there are more efficient ϵ -testers; for example, if H is a single directed edge, it is easy to see that there is a one-sided ϵ -tester for P_H , which makes only $O(1/\epsilon)$ queries. Our main result here is a precise characterization of all digraphs H for which there are one-sided ϵ -testers whose query-complexity (and running time) is polynomial in $1/\epsilon$. We further show that the same characterization applies for two-sided error ϵ -testers as well. As a special case of the argument we conclude that for an undirected graph H, the property of being H-free has a two-sided error ϵ -tester whose query complexity is polynomial in $1/\epsilon$, if and only if H is bipartite. This settles an open problem raised in [1]. Somewhat surprisingly, it turns out that if P_H has an ϵ -tester whose query complexity is polynomial in $1/\epsilon$, then it has a two-sided error property-tester that samples only $O(1/\epsilon)$ vertices, although any one-sided error ϵ -tester for P_H has to sample at least $(1/\epsilon)^{\Omega(d)}$ vertices, where d is the average degree of H.

The characterization of the digraphs H, for which the property of being H-free has query complexity polynomial in ϵ , relies on some properties of digraph homomorphisms and cores of digraphs. Let H and K be two digraphs. A function φ mapping vertices of H to vertices of K is a homomorphism if it satisfies $(u,v) \in E(H) \Rightarrow (\varphi(u),\varphi(v)) \in E(K)$. The core of a digraph H is the subgraph of H with the smallest number of edges, for which there is a homomorphism from H to K. We can clearly assume that the core does not contain isolated vertices. It is also easy to see that this notion is well defined in the sense that up to isomorphism the core is unique. We refer the reader to [10],

[25] for more background and references on digraph homomorphisms, and to [24] for more information and references on cores of graphs. Our main result is the following precise characterization of the digraphs H for which testing P_H with one-sided error, has query complexity polynomial in $1/\epsilon$. Here, and throughout the paper, we measure query-complexity by the number of vertices sampled, assuming we always examine all edges spanned on them.

Theorem 2 Let H be a fixed digraph on h vertices, and let K be its core.

(i) If K is a 2-cycle, then for every $\epsilon > 0$, there is a one-sided error ϵ -tester for P_H whose query-complexity is bounded by

$$O((1/\epsilon)^{h/2}).$$

(ii) If K is an oriented tree, then for every $\epsilon > 0$ there is a one-sided error ϵ -tester for P_H whose query-complexity is bounded by

$$O((1/\epsilon)^{h^2}).$$

(iii) If H is not as in (i), (ii), then there exists a constant c = c(H) > 0 such that the query-complexity of any one-sided error ϵ -tester for P_H is at least

$$\left(\frac{1}{\epsilon}\right)^{c\log(1/\epsilon)}$$
.

A special case of the first part of the above theorem improves the previous result from [1] which had query complexity $O((1/\epsilon)^{h^2})$.

We also prove the following theorem, that says that in case H is a tree, we can design an optimal ϵ -tester for P_H .

Theorem 3 If H is an oriented tree, then there is a one-sided error ϵ -tester for P_H , with optimal query complexity

$$\Theta(1/\epsilon)$$
.

The result in the last part of Theorem 2 can be extended for two-sided error ϵ -testers as well.

Theorem 4 Let H be a fixed digraph on h vertices, and let K be its core.

(i) If K is a 2-cycle or an oriented tree, then the property P_H has a two-sided error ϵ -tester with optimal query complexity

$$\Theta(1/\epsilon)$$
.

(ii) If K is neither a directed 2-cycle, nor an oriented tree, then there exists a constant c = c(H) > 0 such that the query-complexity of any two-sided error ϵ -tester for P_H is at least

$$\left(\frac{1}{\epsilon}\right)^{c\log(1/\epsilon)}$$
.

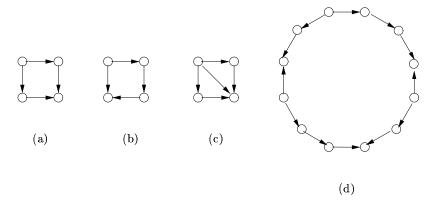


Figure 1: (a) Core is a path (b) Core is the entire digraph (c) Core is a triangle (d) Core is the entire digraph although the graph is balanced.

It is not difficult to show, by considering an appropriate random digraph, that the one-sided error query complexity of P_H for any digraph H with average degree d is at least $(\frac{1}{\epsilon})^{\Omega(d)}$. Therefore, the first part of the theorem exhibits an interesting difference between the query complexity of the best one-sided and the best two-sided error ϵ -testers of P_H for many digraphs H.

The second part implies a similar result for undirected non bipartite graphs, thus solving a problem raised in [1].

As is apparent from the statement of Theorem 2, the characterization of the digraphs H for which P_H has polynomial query complexity, is far more complicated than the characterization for undirected graphs, which states that P_H has polynomial query complexity if and only if H is bipartite. The characterization for undirected graphs is also simple in the sense that one can check it in polynomial time. It turns out that the characterization for digraphs is not complicated by chance, and in fact we show that the problem of deciding whether for a given digraph H, the property P_H has query complexity polynomial in $1/\epsilon$, is NP-complete. This fact follows easily by combining Theorem 2 with a theorem of Hell, Nesetril, and Zhu [25] about cores of digraphs.

Note that although this implies that the problem of deciding if P_H has a polynomial query complexity in $1/\epsilon$ is hard for large digraphs H, this problem is interesting for small fixed digraphs as well, and for those the decision is simple. Thus, for example, Theorem 2 implies that the property P_C has a polynomial query complexity in $1/\epsilon$ for the oriented cycle C on the vertices v_1, \ldots, v_{2k} , that consists of two edge-disjoint directed paths from v_1 to v_{k+1} (see Figure 1 (a)), as each path is a core of C. Theorem 2 also implies that the property $P_{C'}$ has a non-polynomial query complexity in $1/\epsilon$ for every oriented cycle C' that is obtained from the above cycle C, by changing the direction of any single edge (see Figure 1 (b)), because in this case the core of C' is the entire digraph. This example shows that the testability of P_H does not rely solely on the structure of H as an undirected graph. Additional comments on this subject appear in Section 8.

2.1 Organization

The paper is organized is follows: In Section 3, we use some of the ideas used in the proof of Szemerédi's regularity lemma for undirected graphs, in order to prove a more general result that applies also to digraphs. In Section 4 we apply the above lemma in order to prove Theorem 1.

The main result consists of two parts. The first one (Theorem 2, parts (i),(ii)) appears in Section 5, and is proved using probabilistic arguments and tools from extremal graph theory. Unlike the corresponding result for undirected graphs, the techniques required here are rather complicated, and apply some delicate arguments. To prove the third part of Theorem 2, we have to construct, for any digraph H as in (iii) and any small $\epsilon > 0$, a digraph G which is ϵ -far from being H-free and yet contains relatively few copies of H. The proof of this part, described in Section 6 uses the approach of [1], but requires some additional ideas. It applies some properties of digraph homomorphisms as well as certain constructions in additive number theory, based on (simple variants of) the construction of Behrend [11] of dense subsets of the first n integers without three-term arithmetic progressions. In Section 7 we describe the proof of Theorem 4. We assume, throughout these three sections, that the underlying undirected graph of the digraph H considered is connected. In the final section, Section 8, we observe that it is easy to extend the result for the disconnected case and discuss the complexity of the problem of deciding whether for a given input digraph H, P_H is polynomially testable. This final section contains some concluding remarks and open problems as well.

Throughout the paper we assume, whenever this is needed, that the number of vertices n of the digraph G is sufficiently large. In order to simplify the presentation, we omit all floor and ceiling signs whenever these are not crucial, and make no attempt to optimize the absolute constants.

3 A Regularity Lemma for Digraphs

3.1 Statement of the Lemma

In this section we prove a regularity lemma for digraphs, by using some of the ideas in the proof of Szemerédi's regularity lemma for undirected graphs. For the proof of Szemerédi's regularity lemma the reader is referred to the original proof in [30], and to [16] which was used as a reference for the proof here. In order to state the lemma we need some definitions. Let G = (V, E) be a digraph, and let $X, Y \subseteq V$ be disjoint. Let $\overrightarrow{E}(X, Y)$ denote the set of edges going from X to Y, and let $\overleftarrow{E}(X, Y)$ denote the set of pairs of edges that form 2-cycles between X and Y. Define

$$\overrightarrow{d}\left(X,Y\right):=\frac{|\overrightarrow{E}(X,Y)|}{|X||Y|}, \qquad \overleftarrow{d}\left(X,Y\right):=\frac{|\overleftarrow{E}(X,Y)|}{|X||Y|}, \qquad \overline{d}(X,Y):=\frac{|\overline{E}(X,Y)|}{|X||Y|}$$

the directed densities of the pair (X, Y). Observe that all three densities of any pair are real numbers between 0 and 1. Given some $\epsilon > 0$, we call a pair (A, B) of disjoint sets $A, B \subseteq V$ ϵ -regular if all

 $X \subseteq A$ and $Y \subseteq B$ with

$$|X| \ge \epsilon |A|$$
 and $|Y| \ge \epsilon |B|$,

satisfy

$$|\overrightarrow{d}(X,Y) - \overrightarrow{d}(A,B)| \le \epsilon, \quad |\overleftarrow{d}(X,Y) - \overleftarrow{d}(A,B)| \le \epsilon, \quad |\overline{d}(X,Y) - \overline{d}(A,B)| \le \epsilon.$$

We will later need the following trivial claim about a regular pair (A, B). The claim simply says that if we take a large enough subset $Y \subseteq B$, then for most vertices in the other side, Y behaves almost like B. In order to state the claim we need the following notation which will be used later as well: $\overrightarrow{N}_Y(v)$ is the set of vertices $y \in Y$ for which $(v, y) \in E$, $\overleftarrow{N}_Y(v)$ is the set of vertices $y \in Y$ for which $(y, v) \in E$ and $\overline{N}_Y(v)$ is the set of vertices $y \in Y$ for which (v, y) is a 2-cycle.

Claim 3.1 Let (A,B) be an ϵ -regular pair with densities \overrightarrow{d} , \overleftarrow{d} and \overrightarrow{d} , and let $Y \subseteq B$ be of size at least $\epsilon |B|$. Then for all but at most $3\epsilon |A|$ vertices $v \in A$, the inequalities $\overrightarrow{N}_Y(v) \geq (\overrightarrow{d} - \epsilon)|Y|$, $\overleftarrow{N}_Y(v) \geq (\overleftarrow{d} - \epsilon)|Y|$ and $\overleftarrow{N}_Y(v) \geq (\overrightarrow{d} - \epsilon)|Y|$ hold.

Proof. Assume that for some X such that $|X| \geq 3\epsilon |A|$ at least one of the inequalities does not hold. Then for some $Z \subseteq X$, $|Z| \geq \epsilon |A|$ the same inequality does not hold, hence the pair (Z, Y) contradicts the ϵ -regularity of the pair (A, B).

Consider a partition $\{V_0, V_1, \ldots, V_k\}$ of V in which one set V_0 has been singled out as an exceptional set $(V_0 \text{ may be empty})$. We call such a partition an ϵ -regular partition of a digraph G if it satisfies the following three conditions:

- (i) $|V_0| \le \epsilon |V|$;
- (ii) $|V_1| = \ldots = |V_k|$;
- (iii) all but at most ϵk^2 of the pairs (V_i, V_j) with $1 \le i < j \le k$ are ϵ -regular.

Our objective is to prove the following generalization of Szemerédi's regularity lemma.

Lemma 3.1 For every $\epsilon > 0$ and every $m \ge 1$ there exists an integer $DM = DM(m, \epsilon)$ such that every digraph of order at least m admits an ϵ -regular partition $\{V_0, V_1, \ldots, V_k\}$ with $m \le k \le DM$.

The statement of the lemma for symmetric digraphs, that is, digraphs in which (u, v) is a directed edge if and only if (v, u) is a directed edge, is equivalent to the statement of the regularity lemma for undirected graphs.

3.2 The Regularity Lemma for Undirected Graphs

We start with the regularity lemma for undirected graphs, and some of the definitions used in the course of its proof. In the context of undirected graphs there is only one density between a pair of disjoint subsets $A, B \subseteq V$, and it is defined as d(A, B) := |E(A, B)|/|A||B|, where E(A, B) is the set of edges between A and B. A pair of disjoint sets $A, B \subseteq V$ is ϵ -regular if all $X \subseteq A$ and $Y \subseteq B$ with $|X| \ge \epsilon |A|$ and $|Y| \ge \epsilon |B|$, satisfy $|d(X, Y) - d(A, B)| \le \epsilon$.

An ϵ -regular partition is defined in a way analogous to the definition of a regular partition for digraphs. The following is Szemerédi's regularity lemma for undirected graphs

Lemma 3.2 [30] For every $\epsilon > 0$ and every $m \geq 1$ there exists an integer $M = M(m, \epsilon)$ such that every graph of order at least m admits an ϵ -regular partition $\{V_0, V_1, \ldots, V_k\}$ with $m \leq k \leq M$.

The proof for undirected graphs uses the following definitions that will be used in our proof as well. Let G = (V, E) be a graph and n = |V|. For disjoint sets $A, B \subseteq V$ we define

$$q(A, B) = \frac{|A||B|}{n^2} d^2(A, B).$$

For a partition $P = \{C_1, \ldots, C_k\}$ of V we let

$$q(P) = \sum_{i < j} q(C_i, C_j).$$

However, if $P = \{C_0, C_1, \dots, C_k\}$ has an exceptional set C_0 , we treat C_0 as a set of singletons and define

$$q(P) = q(P'),$$

where $P' = \{C_1, \dots, C_k\} \cup \{\{v\} : v \in C_0\}.$

It can be easily shown that for any partition P,

$$q(P) \le \frac{1}{2}.\tag{1}$$

We say that a partition P' refines a partition P, if any set in P is the union of some sets in P'. We will also need the following lemmas from [16] that establish relations between partitions and their refinements.

Lemma 3.3 If P and P' are partitions of V, and P' refines P, then $q(P') \ge q(P)$.

Lemma 3.4 Let $0 \le \epsilon \le 1/4$ and let $P = \{C_0, C_1, \ldots, C_k\}$ be a partition of V, with exceptional set C_0 , of size $|C_0| \le \epsilon n$ and $|C_1| = \ldots = |C_k|$. If P is not ϵ -regular, then there is a partition $P' = \{C'_0, C'_1, \ldots, C'_\ell\}$ of V with exceptional set C'_0 , where $k \le \ell \le k4^k$, such that $|C'_0| \le |C_0| + n/2^k$, $C_0 \subseteq C'_0$, all other sets C'_i have equal size, and

$$q(P') \ge q(P) + \epsilon^5/2.$$

Comment: Although the above claim in [16] does not explicitly state it, the partition P' is a refinement of P.

Note that combining lemma 3.4 with (1), the proof of the regularity lemma for undirected graphs is immediate (up to some technicalities). We can apply lemma 3.4 over and over again until we get an ϵ -regular partition. This must happen after at most $1/\epsilon^5$ iterations.

3.3 The Proof of Lemma 3.1

Given a digraph G = (V, E), and a partition of V, $P = \{C_1, \ldots, C_k\}$, consider a partition of E into 3 (not necessarily disjoint) sets

$$\overrightarrow{E} = \{(u, v) \in E : u \in C_i, v \in C_j, i < j\}$$

$$\overleftarrow{E} = \{(u, v) \in E : u \in C_i, v \in C_j, i > j\}$$

$$\overline{E} = \{(u, v) \in E : (v, u) \in E, u \in C_i, v \in C_j, i \neq j\}$$

Now we can view a partition P as three different partitions \overrightarrow{P} , \overleftarrow{P} , \overleftarrow{P} , of undirected graphs (all three partition V in the same way, but the sets of edges among the partition sets are different). The first is obtained by removing \overleftarrow{E} , \overleftarrow{E} and considering the directed edges as undirected. The second is obtained by removing \overrightarrow{E} , \overleftarrow{E} and again considering the directed edges as undirected edges. The third is obtained by removing \overrightarrow{E} , \overleftarrow{E} , and considering each cycle of length 2 as an undirected edge. We can also define the values $q(\overrightarrow{P})$, $q(\overleftarrow{P})$ and $q(\overrightarrow{P})$, as the function $q(\cdot)$ on a partition of V with edge sets \overrightarrow{E} , \overleftarrow{E} and \overleftarrow{E} respectively, by considering the directed edges and cycles of length 2, as undirected edges.

The key observation now, is that if the above three partitions are ϵ -regular in the context of undirected graphs, then P is an ϵ -regular partition in the context of directed graphs. Thus we can view the task of obtaining an ϵ -regular partition in a digraph, as the task of obtaining a partition that is ϵ -regular in the sense of undirected graphs, over three subsets of E. We next refer to \overrightarrow{P} , \overleftarrow{P} and \overline{P} sometimes not as a specific partition, but as the set of partitions of \overrightarrow{E} , \overleftarrow{E} and \overline{E} respectively, obtained in the course of creating the ϵ -regular partition.

Proof (of Lemma 3.1): Let G = (V, E) be given. For any partition P of V, we can define the partitions \overrightarrow{P} , \overleftarrow{P} and \overrightarrow{P} as described above. Also note that all three values $q(\overrightarrow{P}), q(\overleftarrow{P})$ and $q(\overrightarrow{P})$ are always at most 1/2 by (1). Thus we can apply lemma 3.4, circularly once for each partition until all three are ϵ -regular. For example, when we apply lemma 3.4 to \overrightarrow{E} , we choose a new partition of V, according to the previous \overrightarrow{P} , and this induces a new partition of \overleftarrow{P} and \overrightarrow{P} as well. By the condition of lemma 3.4 and the comment following it, this cannot happen more than $s = 3 \cdot 1/\epsilon^5 = 3/\epsilon^5$ times, before we obtain an ϵ -regular partition of the digraph G. Observe that, for example, when

we apply lemma 3.4 to \overrightarrow{P} , we do not necessarily increase $q(\overleftarrow{P})$ by $\epsilon^5/2$ (In fact, it might even be the case that \overleftarrow{P} was an ϵ -regular partition of \overleftarrow{E} and now it is not!), but by lemma 3.3 and the comment following lemma 3.4, we also do not decrease its value. Hence, in each iteration one of the values $q(\overrightarrow{P}), q(\overleftarrow{P}), q(\overleftarrow{P})$ is increased by at least $\epsilon^5/2$, while the other two do not decrease. An important technicality is that as the definition of each partition depends on the numbers given to its sets (see beginning of the subsection), we must make sure that if, for example, edge (u, v) was part of partition \overrightarrow{E} then it does not "move" to another partition. To this end, we can simply give consecutive numbers in the new partition, to all the subsets of a set of the previous partition.

We are left only with the simple technicalities of making sure that C_0 does not get too large, and of defining the function $DM(m, \epsilon)$. These are straightforward, and are left to the reader.

Note that our process for obtaining the regular partition does *not* apply the regularity lemma for undirected graphs recursively, and that the bound for the function $DM(\epsilon, k)$ in the lemma for digraphs is similar to the bound of the function $D(\epsilon, k)$ in the lemma for undirected graphs, that is, both are towers of 2's of height $O(1/\epsilon^5)$. By a result of Gowers [23], both functions must grow at least as fast as a tower of 2's of height $poly(1/\epsilon)$.

4 Testing for Arbitrary Subgraphs

In this section we use our version of Szemerédi's regularity lemma, Lemma 3.1 from the previous section, in order to prove Theorem 1. To this end, we prove the following lemma, which is similar to previously known results for undirected graphs. See, for example, Theorem 2.1 in [26], and Lemma 3.2 in [5].

Lemma 4.1 For every fixed ϵ and h, there is a constant $c(h, \epsilon)$ with the following property: for every fixed digraph H of size h, and for every digraph G of a large enough size n, that is ϵ -far from being H-free, G contains at least $c(h, \epsilon)n^h$ copies of H.

Proof. Let ϵ_1 be a constant whose value will be decided later. On inputs $1/\epsilon_1$ and ϵ_1 , Lemma 3.1 returns an ϵ_1 -regular partition with partition classes $V_1, \ldots, V_t, |V_i| = k$ such that $1/\epsilon_1 \leq t \leq DM(1/\epsilon_1, \epsilon_1)$. Obtain from G the digraph G' by removing the following sets of edges:

- (i) Edges that touch V_0 . There are at most $(\epsilon_1 n)^2 + 2\epsilon_1 n^2 < 3\epsilon_1 n^2$ edges of this type.
- (ii) Edges within some class V_i . There are at most $t(n/t)^2 = n^2/t \le \epsilon_1 n^2$ such edges.
- (iii) Edges between non ϵ_1 -regular classes. There are at most $\epsilon_1 t^2 \cdot 2n^2/t^2 \leq 2\epsilon_1 n^2$ such edges.
- (iv) If for some pair of partition classes, one of the densities \overrightarrow{d} , \overleftarrow{d} , \overrightarrow{d} is less than $\epsilon/4$, remove all corresponding edges (i.e. all edges that define that density). There are at most $\binom{t}{2} \epsilon n^2/t^2 \le \epsilon n^2/2$ such edges.

Altogether we have removed less than $\epsilon n^2/2 + 6\epsilon_1 n^2$ edges from G. Thus, as G is ϵ -far from being H-free, for any $\epsilon_1 \leq \epsilon/13$ the digraph G' is obtained from G by removing less that ϵn^2 edges, and

therefore still contains a copy of H. Moreover, for each directed edge (u, v) in H, u and v belong to an ϵ_1 -regular pair $(U, V), u \in U, v \in V$, such that $\overrightarrow{d}(U, V) \geq \epsilon/4$. The same applies for a pair of edges (u, v), (v, u) in H but this time with respect to the density $\overline{d}(U, V)$.

Having established the existence of one such H, we show that there are actually many more copies of H, provided that ϵ_1 is sufficiently small. Let u_1, \ldots, u_h be the vertices of the copy of H in G, and assume that $u_i \in V_{\sigma(i)}$. We wish to show that for a small enough $\epsilon_1 \leq \epsilon/13$ we can build $c(h, \epsilon_1)n^h$ copies of H, where for each copy, u_i would belong to $V_{\sigma(i)}$. This would imply the lemma.

For our scheme to work we need to take $\epsilon_1 \leq \epsilon/13$ small enough that it satisfies,

$$(3h+1)\epsilon_1 \le (\epsilon/4 - \epsilon_1)^h. \tag{2}$$

Note, that we must also take $\epsilon_1 \leq \epsilon/13$ so that we will be able to assume the properties of G' discussed above. Also, note that the value of ϵ_1 is a function of ϵ and h only, and is independent of n.

The idea is to build the copies iteratively, where in iteration i, we find many candidates to play the role of u_i . To this end, we keep a set $C_{i,j} \subseteq V_{\sigma(i)}$, which includes the vertices that may play the role of u_i after we have already found vertices for u_1, \ldots, u_j . Initially, $C_{i,0} = V_{\sigma(i)}$, $|C_{i,0}| = k$. Consider the stage when we come to select the vertices that will play the role of u_j . When we select a vertex to be u_j we have to update the sets $C_{i,j}$. For example, if for i > j (u_j, u_i) is an edge of H, then after selecting v to be v_j we have to update $v_j = v_j$ and when there are two edges $v_j = v_j$ and $v_j = v_j$ and when there are two edges $v_j = v_j$ and $v_j =$

The crucial observation now, is that we made sure that all edges of H go between ϵ_1 -regular pairs, and moreover we have a relatively high density in the direction of these edges. Therefore, if $|C_{i,j-1}| \geq \epsilon_1 |V_{\sigma(i)}|$ then by claim 3.1 all but at most $3\epsilon_1 |V_{\sigma(j)}|$ vertices in $V_{\sigma(j)}$ are such that the three inequalities of claim 3.1 hold (with $d = \epsilon/4$ and $\epsilon = \epsilon_1$). That is,

$$|C_{i,j}| \ge (\epsilon/4 - \epsilon_1)|C_{i,j-1}|. \tag{3}$$

As H contains h vertices, and each i > j excludes at most $3\epsilon_1 |V_{\sigma(j)}|$ from being u_j , then altogether we have at least $|C_{j,j-1}| - 3\epsilon_1 h |V_{\sigma(j)}|$ candidates for the role of u_j . For our scheme to work we must make sure that $|C_{j,j-1}| \ge h$, because up to h vertices belong to the same $V_{\sigma(j)}$, and also that $|C_{i,j}| \ge \epsilon_1 |V_{\sigma(i)}|$ so that we may apply lemma 3.1. But by our previous assumptions the following holds for any i > j,

$$|C_{i,j}| - 3\epsilon_1 h |V_{\sigma(j)}| \ge (\epsilon/4 - \epsilon_1)^h k - 3\epsilon_1 h k \ge \epsilon_1 k \ge h.$$

The first inequality follows from (3), the second from (2), and the third is valid for large enough n. In particular we get that $|C_{j,j-1}| \geq h$, and $|C_{i,j}| \geq \epsilon_1 |V_{\sigma(i)}|$ as needed. Finally as lemma 3.1 partitions V into a constant number of classes we get that,

$$k = \frac{n - |V_0|}{t} \ge \frac{n(1 - \epsilon_1)}{DM(1/\epsilon_1, \epsilon_1)}$$

Thus, for each iteration i, we have at least

$$\epsilon_1 k = \frac{\epsilon_1 (1 - \epsilon_1) n}{DM(1/\epsilon_1, \epsilon_1)}$$

choices for u_i . Therefore, as ϵ_1 is a function of ϵ and h only by (2), G' contains at least

$$\left(\frac{\epsilon_1(1-\epsilon_1)}{DM(1/\epsilon_1,\epsilon_1)}\right)^h n^h = c(h,\epsilon)n^h$$

copies of H. As G' is a subgraph of G, G contains at least as many copies.

The proof of Theorem 1 now follows easily.

Proof (of Theorem 1): The tester simply picks, say, $4/c(h, \epsilon)$ sets of vertices of G, where each set consists of h vertices, at random. If at least one of these sets spans a copy of H, it reports that G is not H-free, else, it declares that G is H-free. If G is H-free, then the algorithm will certainly report that this is the case. If G is ϵ -far from being H-free then, by the above lemma, the algorithm will find a copy of H with probability at least 2/3.

5 Easily Testable Digraphs

In this section we prove parts (i) and (ii) of Theorem 2 as well as Theorem 3. We first show that the property of being H-free is testable with query complexity polynomial in $1/\epsilon$, whenever the core of H is a 2-cycle. We then prove the same for all digraphs H for which the core of H is a tree. In Section 6 we show that for any other digraph H, the property of being H-free cannot be tested with query complexity polynomial in $1/\epsilon$.

We next prove that if the core of a digraph H is a 2-cycle, then testing H-freeness has query complexity polynomial in $1/\epsilon$. Observe, that the core of a digraph can not be a bipartite digraph with at least one 2-cycle, and not be a two cycle, because there is a homomorphism from any such digraph to a 2-cycle.

Proof of Theorem 2, part (i) Let H be a bipartite digraph with at least one 2-cycle, with color classes of size s and t, and assume $s \leq t$. Our tester samples some c/ϵ^s vertices, for an appropriate c = c(s, t), and reports that G is not H-free if and only if there is a copy of H spanned by a subset of these vertices. Clearly, if G is H-free, the algorithm will report this is the case. If G is ϵ -far from being H-free, then it must contain at least ϵn^2 cycles of length 2. Now, consider an undirected graph G', obtained from G by putting an edge (u, v) in G' if and only if (u, v) is a 2-cycle in G. We show how to find in G' a set of vertices that span a copy of $K_{s,t}$. From the definition of G', it implies that in G the same set spans a copy of H.

Randomly and independently, pick s vertices (with repetitions). The expected number of vertices that are connected to all the chosen vertices is

$$\sum_{v} \left(\frac{d_v}{n}\right)^s \ge n \left(\frac{\sum_{v} d_v}{n^2}\right)^s \ge n(2\epsilon)^s,$$

where d_v is the degree of v, the first inequality follows from convexity of the function x^s , and the second from our assumption that G' contains at least ϵn^2 edges.

It follows that with probability at least $\frac{1}{2}(2\epsilon)^s$, at least $\frac{1}{2}(2\epsilon)^s n$ vertices are adjacent to all the s chosen vertices, as otherwise the expectation would have been smaller than $n(2\epsilon)^s$. Therefore, after $10/(2\epsilon)^s$ rounds in which s vertices are chosen, with probability at least 15/16 at least $\frac{1}{5}(2\epsilon)^s n$ of the vertices are adjacent to all the s vertices chosen in one of the rounds. Fix these s vertices. If we now choose another vertex, it has probability at least $\frac{1}{2}(2\epsilon)^s$ of being adjacent to all these s vertices. We conclude that the expected number of additional vertices that we need to sample, in order to find t vertices that are connected to the s fixed ones, is at most $2t/(2\epsilon)^s$. By Markov's inequality. after sampling $8t/(2\epsilon)^s$ vertices, the probability of not finding a set of t vertices that is connected to all the s vertices is at most 1/4. The algorithm has probability at most 1/16 of failing to find the s vertices in the first step, a probability of at most 1/4 of failing to find the t vertices in the second step, and a probability of o(1) that in each of the two steps, the chosen set does not consist of distinct vertices (notice that we sampled with repetitions). Altogether, the failure probability is at most 1/3, hence, the algorithm finds a copy of $K_{s,t}$ with probability at least 2/3. As for the sample size, the first part uses a sample of size $10/(2\epsilon)^s$, while the second is of size $8t/(2\epsilon)^s$. Altogether, we use a sample of size $O((1/\epsilon)^s) = O((1/\epsilon)^{h/2})$. This completes the proof of Theorem 1, part (i). **Comment:** By the discussion above, every digraph G on sufficiently many vertices with $\Omega(n^2)$ 2cycles, contains a copy of every fixed bipartite digraph. Therefore there is a very simple and efficient two-sided error algorithm for testing P_H , for every H whose core is a 2-cycle, based on sampling $O(1/\epsilon)$ pairs of vertices and checking if they span an edge. The proof above is needed as we deal here with one-sided error ϵ -testers.

We now proceed with the proof of Theorem 2 part (ii). In the proof we will use the following construction of a digraph G' obtained from a digraph G which is ϵ -far from being H-free. The process is described with respect to some tree K which is a subgraph of H. We therefore denote G' = G'(G, K). The reason to make the description general is that we would later use it with respect to different trees. Let G be a digraph that is ϵ -far from being H-free, and let K be some subtree of H. Let us also name the vertices of K as $1, \ldots, t$. We define the digraph G' = G'(G, K) in the following constructive manner with respect to K: assign each vertex v of G a list L(v) containing the numbers $1, \ldots, t$. This list should eventually contain $i \in \{1, 2, \ldots, t\}$ if and only if there is a homomorphism $\varphi: K \mapsto G'$ in which $\varphi(i) = v$. We also define $N^+(v,i)$ to be the set of vertices u, for which there is an edge (v,u), and $i \in L(u)$. We define $N^-(v,i)$ analogously only with respect to incoming edges into v. The process executes the following two actions while it can: (i) If for some directed edge (i,j) in K, there is a vertex v in G, for which $i \in L(v)$ and $|N^+(v,j)| < \frac{\epsilon}{2l}n$, remove all edges $\{(v,u): u \in N^+(v,j)\}$, remove i from i for which i edges and i for which i edges and i for which i edges and i for which i edges i for which i edges and i for which i edges i for i edges i for i edges i for i edges i edges i edges i for i edges i edges i edges i for i edges i

sets $N^+(\cdot, j)$ of vertices in G.

Lemma 5.1 If G is ϵ -far from being H free, and K is a subgraph of H which is a tree, then the digraph G' = G'(G, K) described above satisfies the following properties: (1) It contains a copy of K. (2) $i \in L(v)$ if and only if there is a homomorphism $\varphi : K \mapsto G'$ for which $\varphi(i) = v$.

Proof. As K is a subgraph of H, and G is ϵ -far from being H free, we may show that G' satisfies (1), simply by showing that the above process for obtaining G', does so by removing less than ϵn^2 edges. To this end, consider any vertex v. Each execution of items (i) and (ii) removes an element from L(v), therefore we can execute them at most t times on v. As in each execution we remove less than $\frac{\epsilon}{2t}n$ edges, it follows that the process removes less than ϵn edges that touch v, and altogether less than ϵn^2 edges.

To prove (2) we first prove the implication that asserts that if $i \notin L(v)$ then there is no homomorphism $\varphi: K \mapsto G'$ for which $\varphi(i) = v$. We proceed by induction on m, the number of steps of the process. At the beginning, all the lists are full, therefore the desired property trivially holds. Assume it holds for m steps and consider step m+1: if we execute (i), then some i was removed from some L(v), after removing all edges that go from v to vertices $N^+(v,j)$ for some j that is a neighbor of i in K. It follows from the induction hypothesis, that no homomorphism can map j to an out-neighbor of v, and therefore, as i and j are neighbours in K, no homomorphism can map i to i. The case of executing (ii) is identical. To prove the second implication, assume that at the end of the process, for some vertex v, we have $i \in L(v)$ but there is no homomorphism $\varphi: K \mapsto G'$ for which $\varphi(i) = v$. Let K' be the largest connected subgraph of K that contains i, for which there is a homomorphism $\varphi: K' \mapsto G'$ that satisfies $\varphi(i) = v$ and for all $j \in K'$ $j \in L(\varphi(j))$. As K is connected, there is some vertex $i' \in K'$ that is connected to $i' \in K \setminus K'$ in K. By the maximality of K', There is no edge connecting $\varphi(i')$ to a vertex i for which $i' \in L(i)$. This is impossible, as it means that the process should have removed i' from $L(\varphi(i'))$.

We now turn to the proof of Theorem 2, part (ii). The proof is based on a variant of a powerful probabilistic technique, which may be called *dependent random choice*, and which has already found several recent combinatorial applications. See, e.g., [8] and some of its references. Given a subset of vertices $V_i \subseteq V(G)$ and a vertex $v \in V(G)$, let N(v, i) denote the set neighbors of v within V_i . We need the following lemma.

Lemma 5.2 Let G = (V, E) be an undirected graph on n vertices, and let $V_1, V_2, \ldots, V_{d+1}$ be (not necessarily disjoint) subsets of V. Put $\alpha = |V_1|/n$. Assume that for every vertex $v \in V_1$ and for every $2 \le k \le d+1$, $|N(v,k)| \ge \epsilon |V_k|$. Then, sampling $32h \log(1/\delta)/(\alpha \epsilon^d)$ vertices from G, finds with probability at least $1 - \delta$, an h-tuple of distinct vertices $s = \{v_1, \ldots, v_h\} \subseteq V_1$, that satisfies

$$\left| \bigcap_{i=1}^{h} N(v_i, k) \right| \ge \frac{1}{4} \epsilon^{dh} |V_k|, \quad \forall \ 2 \le k \le d+1.$$
 (4)

Proof. The result is trivial for h = 1, and we thus assume that $h \ge 2$. For $0 \le k \le d+1$, choose uniformly and independently a vertex t_k from each set V_k . Let X be the set of vertices $v \in V_1$, for which $t_k \in N(v, k)$ for all $0 \le k \le d+1$. For each $0 \in X$ let $0 \in X$ be an indicator random variable for the event that $0 \in X$. It follows from the assumption on the large number of neighbours of each vertex of $0 \in X$ in each set $0 \in X$.

$$E(|X|) = \sum_{v \in V_1} E(X_v) \ge \epsilon^d |V_1|.$$

By Jensen's inequality, it follows that

$$E(|X|^h) \ge E(|X|)^h \ge \epsilon^{dh} |V_1|^h.$$

Therefore, there is an expected number of at least $\epsilon^{dh}|V_1|^h$ h-tuples $s=(v_1,\ldots,v_h)$ (where the vertices v_i are not necessarily distinct) of vertices in V_1 , with the property that $t_k \in N(v_i,k)$, for all $2 \le k \le d+1$ and $1 \le i \le h$. We now turn to show, that the expected number of these h-tuples that violate (4) is small. To this end, define Z to be the set of all h-tuples $s \in V_1^h$, that do not satisfy (4), and let Y be the set of all members of Z that lie in X^h . For each $s \in Z$ let Y_s denote the indicator random variable for the event that $s \in X^h$. Note that $|Y| = \sum_{s \in Z} Y_s$. Thus

$$E(|Y|) = \sum_{s = (v_1, ..., v_h) \in Z} E(Y_s) = \sum_{s \in Z} \prod_{k=1}^d \frac{\left| \bigcap_{i=1}^h N(v_i, k) \right|}{|V_k|} \le \sum_{s \in V_1^h} \frac{1}{4} \epsilon^{dh} \le \frac{1}{4} \epsilon^{dh} |V_1|^h,$$

where the first inequality follows from our assumption that for some k, $\left|\bigcap_{i=1}^{h} N(v_i, k)\right| < \frac{1}{4} \epsilon^{dh} |V_k|$. We conclude that,

$$E(\frac{1}{2}|X|^h - |Y|) = \frac{1}{2}E(|X|^h) - E(|Y|) \ge \frac{1}{2}\epsilon^{dh}|V_1|^h - \frac{1}{4}\epsilon^{dh}|V_1|^h = \frac{1}{4}\epsilon^{dh}|V_1|^h.$$

Therefore, there is some choice of t_2, \ldots, t_{d+1} , for which the sets X and Y satisfy,

$$|X|^h - |Y| \ge \frac{1}{2}|X|^h + \frac{1}{4}\epsilon^{dh}|V_1|^h.$$

Fix one such choice of t_1, \ldots, t_k . The above inequality implies that more than half of the h-tuples in X^h satisfy (4), and that X is of size at least $\frac{1}{4^{1/h}}\epsilon^d|V_1| \geq \frac{\alpha}{2}\epsilon^d n$. Therefore, a randomly chosen vertex from G, has probability at least $\frac{\alpha}{2}\epsilon^d$ to lie in X. It follows that, the expected number of samples needed to find an h-tuple from X is at most $2h/(\alpha\epsilon^d)$. Hence, by Markov's inequality, choosing $8h/(\alpha\epsilon^d)$ random vertices, finds an h-tuple from X with probability at least $\frac{3}{4}$. As at least half of the h-tuples in X^h satisfy (4), it follows that with probability at least $\frac{3}{8}$ we find an h-tuple satisfying (4). This is not necessarily an h-tuple of distinct vertices. But the probability of finding an h-tuple with non distinct vertices is o(1), as $|X| = \Omega(n)$. Therefore with probability at least $\frac{1}{4}$ we find an h-tuple of distinct vertices satisfying (4). Thus, choosing $32h \log(1/\delta)/(\alpha\epsilon^d)$ vertices finds such an h-tuple with probability at least $1 - \delta$ as needed.

Proof of Theorem 2, part (ii) As in the proof of part (i), (and as can be done for any one-sided property tester for a problem which is closed under taking induced subgraphs), the algorithm simply samples the stated number of vertices randomly and reports that G is H-free if and only if it finds no copy of H on them. Clearly, if G is H-free, the answer is correct. Let G be ϵ -far from being H free, and let K denote the core of H which is, by assumption, a tree. Number the vertices of K by $1, \ldots, k$ in a BFS order, and let h_i be the number of vertices of H that are mapped to $i \in \{1, 2, \ldots, k\}$. Note that if i and j are neighbors in K, it does not necessarily hold, that all the neighbors that are mapped to i, are adjacent to all the neighbors that were mapped to j, but it does hold, that all existing edges are in the same direction. We would show however, that we can find a copy of H in which all these edges exist. This copy clearly contains a copy of H.

Let N(i) be the neighbours of vertex i in K, that appear after it in the BFS order, and $d_i = |N(i)|$. Apply the process described before the proof of Lemma 5.1 with respect to K, that is, obtain G' = G'(G, K). It follows from Lemma 5.1 that G' contains a copy of K. Let v_1, \ldots, v_k be such a copy. By Lemma 5.1, for all $1 \le i \le h$, $i \in L(v_i)$. Denote by V_i the set of vertices u_i for which $i \in L(u_i)$. Clearly $v_i \in V_i$. In order to make the presentation simple, from now until the end of the proof, we would not specify the direction of an edge between $u_i \in V_i$ and $u_j \in V_j$, but we would always be speaking about an edge that is directed as the direction of an edge between i and j in K.

Let $N(1)=\{2,\ldots,d_1+1\}$ be the d_1 neighbors of vertex 1 in K, hence, G' contains the edges $(v_1,v_2),\ldots,(v_1,v_{d_1+1})$. From the definition of the process for obtaining G', it follows that for every $2\leq i\leq d_1+1$, there are at least $\frac{\epsilon}{2h}n$ vertices $u_1\in V_1$, for which there is an edge (u_1,v_i) and $1\in L(u_1)$, and in particular, $|V_1|\geq \frac{\epsilon}{2h}n$. It follows again from the definition of the process, that for every $u_1\in V_1$, and for every $2\leq i\leq d_1+1$, u_1 has at least $\frac{\epsilon}{2h}n$ neighbors in V_i , implying that $|V_i|\geq \frac{\epsilon}{2h}n$. As $|V_i|\leq n$, it follows that, each vertex in V_1 has at least $\frac{\epsilon}{2h}|V_i|$ neighbors in each V_i . We can continue this way to conclude that for $1\leq i\leq k$, $|V_i|\geq \frac{\epsilon}{2h}n$, and that every $u_i\in V_i$ has at least $\frac{\epsilon}{2h}|V_j|$ neighbors in V_j , for every $j\in N(i)$. Finally note that as G' is a subgraph of G, all of the above applies also for G.

The previous paragraph implies, that we can apply Lemma 5.2 on the sets V_1, \ldots, V_{d_1+1} , with $\delta = \frac{1}{4h}$, $\alpha = \frac{\epsilon}{2h}$, $h = h_1$ and ϵ being $\epsilon/(2h)$, to conclude that sampling some $c_1(h)/(\epsilon^{d_1+1})$ vertices of G, finds, with probability at least $1 - \frac{1}{4h}$, an h_1 -tuple s_1 , of distinct vertices from V_1 , such that for $2 \le j \le d_1 + 1$ they have at least $c'_1(h)\epsilon^{h_1d_1}|V_j| \ge c"_1(h)\epsilon^{h_1d_1+1}n$ common neighbors in V_j . For $2 \le j \le d_1 + 1$, denote by V'_j this set of common neighbors of the vertices of s_1 . Now each V'_j is of size at least $c''_1(h)\epsilon^{h_1d_1+1}n$. By construction of G', every vertex in V_j , has at least $\frac{\epsilon}{2h}|V_t|$ neighbours in V_t , for every $t \in N(j)$. As $V'_j \subseteq V_j$, the same also applies to the vertices of V'_j . For $1 \le j \le d_1 + 1$, we can now apply Lemma 5.2 to $1 \le j \le d_1 + 1$, we can now apply Lemma 5.2 to $1 \le j \le d_1 + 1$, we conclude that sampling $1 \le j \le d_1 + 1$, and $1 \le j \le d_1 + 1$, and $1 \le j \le d_1 + 1$, we conclude that sampling $1 \le j \le d_1 + 1$, where $1 \le j \le d_1 + 1$ is $1 \le j \le d_1 + 1$. The same also applies to the vertices of $1 \le j \le d_1 + 1$, and $1 \le j \le d_1 + 1$, we conclude that sampling $1 \le j \le d_1 + 1$, and $1 \le j \le d_1 + 1$, are the sample $1 \le j \le d_1 + 1$.

in V_t , for every $t \in N(j)$.

We now turn to generalizing the above for all $1 \le i \le k$, but before doing so we must take care of the following minor technicality; we must make sure that we do not sample the same vertex twice when we look for the copy of H, as it must consist of distinct vertices. We therefore remove from each V'_j the previously used vertices. As H is of fixed size, each V'_j is still of essentially its previous size.

Observe, that as each vertex in V_i has at least $\frac{\epsilon}{2h}|V_t|$ neighbours in V_t , for every required t, and we made sure that we do not sample the same vertex twice, we can safely generalize the above sampling technique as follows. For every $2 \leq i \leq k$, let p_i be the (single) neighbor of i in K that precedes it in the BFS order. Therefore, for every $2 \leq i \leq k$ we can sample some $c_3(h)/(\epsilon^{d_i+d_{p_i}h_{p_i}+1})$ vertices, to find, with probability at least $1-\frac{1}{4h}$, an h_i -tuple s_i , with the properties, that every member in s_{p_i} is adjacent to every member of s_i , and the vertices of s_i have at least $c_3'(h)\epsilon^{d_ih_i}|V_t|$ common neighbors in V_t for every $t \in N(i)$. Observe, that as $k \leq h$, the probability that at least one of these k samples failed is at most $k/4h \leq 1/4$. Therefore, with probability at least 3/4 we have found k sets s_1, \ldots, s_k of sizes h_1, \ldots, h_k , respectively, such that for every edge (i,j) in K, we have all the edges going from s_i to s_j . This digraph clearly contains a copy of H, as needed. As for the total number of vertices sampled, note that we do not sample more than k times the size of the largest sample we use. The first sample, the one used to find s_1 is of size $c_1(h)/(\epsilon^{d_1+1}) = O((1/\epsilon)^{d_1+1})$. For $2 \leq i \leq k$, we use a sample of size $O((1/\epsilon)^{d_i+d_{p_i}h_{p_i}+1)$. If we define $\overline{h} = \max_{2\leq i\leq k}\{d_i+d_{p_i}h_{p_i}+1\}$, then the total sample size is $O((1/\epsilon)^{\overline{h}})$. As it is clear that for every tree of size h, $\overline{h} \leq h^2$, we conclude that our ϵ -tester has indeed a query complexity of $O((1/\epsilon)^{h^2})$.

We now turn to prove Theorem 3, that states that in case H is an oriented tree, we can design an optimal ϵ -tester that simply samples a subset of $O(1/\epsilon)$ vertices, and checks if they span a copy of H.

Proof of Theorem 3 If G is H-free, the algorithm clearly reports it. Let G be ϵ -far from being H free. Consider a DFS ordering of the vertices of H, and number the vertices of H accordingly $1, \ldots, h$. It follows that vertex i has exactly one neighbor from $1, \ldots, i-1$. Apply the process described before the proof of lemma 5.1 with respect to H itself, that is, obtain G' = G'(G, H). It follows from lemma 5.1 that G' contains a copy of H. Let v_1, \ldots, v_h be such a copy. By lemma 5.1, for all $1 \le i \le h$, $i \in L(v_i)$. Without loss of generality, assume H contains the edge (1, 2). Therefore G' contains an edge (v_1, v_2) , and by lemma 5.1 $1 \in L(v_1)$ and $1 \in L(v_2)$. From the definition of the process for obtaining G', it follows that there are at least $\frac{\epsilon}{2h}n$ vertices u_1 , for which there is an edge (u_1, v_2) and $1 \in L(u_1)$. It follows again from the definition of the process, that for each such u_1 , there are at least $\frac{\epsilon}{2h}n$ vertices u_2 for which there is an edge (u_1, u_2) and $1 \in L(u_1)$. We can continue this way inductively to conclude that for every homomorphism mapping the subgraph of H spanned by the vertices $1, \ldots, i$ into G', there are at least $\frac{\epsilon}{2h}n$ possibilities for extending this homomorphism,

to a homomorphism from the subgraph of H spanned by $1, \ldots, i+1$ into G'. As H is of fixed size, and n is assumed to be large enough, it follows that for each *injective* homomorphism mapping the subgraph of H spanned by the vertices $1, \ldots, i$ into G', there are at least $\frac{\epsilon}{2h}n-i \geq \frac{\epsilon}{3h}n$ possibilities for extending this injective homomorphism, to an injective homomorphism from the subgraph spanned by $1, \ldots, i+1$ into G'. Finally, observe that as G' is a subgraph of G, all the above applies also for G.

We now turn to the actual proof. We show that a random subset of $9h^2/\epsilon$ vertices, contains a copy of H with probability at least 2/3. We choose this set one vertex at a time (with repetitions). From the above discussion, it follows that each randomly chosen vertex v, has probability at least $\epsilon/3h$ of having the property that there is a copy of H in G in which v plays the role of vertex 1. More generally, it follows from the above discussion, that for every $1 \le i \le h-1$, if we have found vertices v_1, \ldots, v_{i-1} having the property that there is a copy of H in G in which v_1, \ldots, v_{i-1} play the role of vertices $1, \ldots, i-1$, then there are at least $\frac{\epsilon}{3h}n$ vertices u in G, such that there is a copy of H in G, in which v_1, \ldots, v_{i-1} play the role of $1, \ldots, i-1$ respectively, and u plays the role of v_i . Therefore, each randomly chosen vertex has probability at least $\epsilon/3h$ of decreasing the number of vertices that are required in order to complete a copy of H, regardless of any history. By linearity of expectation, and the fact that the expected number of trials needed to find each new vertex is geometrically distributed, it follows that the expected number of trials needed to find a copy of H is $3h^2/\epsilon$. By Markov's inequality, it follows that the probability of not finding a copy of H after $9h^2/\epsilon$ trials, is at most 1/3, as needed. Note, that the failure probability is in fact exponentially small in h/ϵ , but we do not need this stronger estimate here.

To show that the result is optimal, we show how to construct, for every tree H, a digraph G_H , that is ϵ -far from being H-free, yet in order to find a copy of H, one must sample $\Omega(1/\epsilon)$ vertices of G_H . Given a tree H of size h, construct a digraph G_H as follows: Let K be the core of H (which is obviously a tree), and let k denote its size. We also denote by t the number of vertices that are mapped to vertex k of K in a homomorphism from H to K. G_H contains k-1 sets of vertices V_1, \ldots, V_{k-1} of size $\frac{n-\epsilon 2kn}{k-1}$ each, and one subset V_k of size $\epsilon 2kn$. For each edge (i,j) in K, G_H contains an edge v_i, v_j for every $v_i \in V_i$ and $v_j \in V_j$. To show that G_H is ϵ -far from being H-free, observe that there are

$$(\epsilon 2kn)^t \left(\frac{n-\epsilon 2kn}{k-1}\right)^{h-t}$$

natural homomorphisms from H into G_H , and at least half of them are injective (there are $o(n^h)$ homomorphisms that are not injective), that is, at least half of them define a copy of H. On the other hand, each edge e in G_H , participates in at most

$$(\epsilon 2kn)^{t-1} \left(\frac{n-\epsilon 2kn}{k-1}\right)^{h-t-1}$$

of these homomorphism from H to K. Therefore, for large enough n, one must remove at least

$$\frac{1}{2} \left(\epsilon 2kn\right)^t \left(\frac{n-\epsilon 2kn}{k-1}\right)^{h-t} \cdot \left(\epsilon 2kn\right)^{1-t} \left(\frac{n-\epsilon 2kn}{k-1}\right)^{1-h+t} \ge \epsilon kn \frac{n-\epsilon 2kn}{k-1} \ge \epsilon n^2$$

edges, in order to make G_H H-free, and hence G_H is ϵ -far from being H-free. Now, by the minimality of K, each copy of H in G_H must have a vertex from V_k . Therefore, in order to find a copy of H with probability 2/3, one must find a vertex in V_k with at least this probability. But, in order to find a vertex from V_k with this probability, one must sample at least $\Omega(1/\epsilon)$ vertices. Thus, we obtain a lower bound of $\Omega(1/\epsilon)$ as required.

6 Hard to Test Digraphs

In this section we apply the approach used in [1], together with some additional ideas, in order to prove Theorem 2 part (iii). This approach uses techniques from additive number theory, based on the construction of Behrend [11] of dense sets of integers with no three-term arithmetic progressions, together with some properties of homomorphisms of digraphs.

A linear equation with integer coefficients

$$\sum a_i x_i = 0 \tag{5}$$

in the unknowns x_i is homogeneous if $\sum a_i = 0$. If $X \subseteq M = \{1, 2, ..., m\}$, we say that X has no non-trivial solution to (5), if whenever $x_i \in X$ and $\sum a_i x_i = 0$, it follows that all x_i are equal. Thus, for example, X has no nontrivial solution to the equation $x_1 - 2x_2 + x_3 = 0$ if and only if it contains no three-term arithmetic progression. The following lemma is proved in [1] (Lemma 3.1):

Lemma 6.1 For every fixed integer $r \geq 2$ and every positive integer m, there exists a subset $X \subset M = \{1, 2, ..., m\}$ of size at least

$$|X| \ge \frac{m}{e^{10\sqrt{\log m \log r}}}$$

with no non-trivial solution to the equation

$$x_1 + x_2 + \ldots + x_r = rx_{r+1}. (6)$$

Let $C=(v_1,\ldots,v_{r+1},v_1)$ be an oriented cycle of length r+1. We next apply the construction in the last lemma to construct, for every integer $r+1\geq 3$, a relatively dense graph consisting of pairwise edge disjoint copies of the above cycle C, which does not contain too many copies of C, of a special structure (see lemma below). Let m be an integer, let $X\subset\{1,2,\ldots m\}$ be a set satisfying the assertion of Lemma 6.1, and define, for each $1\leq i\leq r+1$, $V_i=\{1,2,\ldots im\}$ where, with a slight abuse of notation, we think on the sets V_i as being pairwise disjoint. Let T=T(r,m,C) be the family of all r+1-partite digraphs on the classes of vertices V_1,V_2,\ldots,V_{r+1} , whose edges are defined as follows: For

each $j, 1 \leq j \leq m$, and for each $x \in X$ the vertices $j \in V_1, j + x \in V_2, j + 2x \in V_3, \ldots, j + rx \in V_{r+1}$ form an oriented cycle of length r+1 in this order, whose edges are directed as the edges of C. Therefore, if C contains the directed edge (v_i, v_{i+1}) , then (j + (i-1)x, j+ix) is an edge from V_i to V_{i+1} for all $1 \leq j \leq m, x \in X$, in any member of T. If C contains the reverse edge (v_{i+1}, v_i) , then (j+ix, j+(i-1)x) is an edge from V_{i+1} to V_i for all $1 \leq j \leq m, x \in X$ in any member of T. The same applies for the edges between V_1 and V_{r+1} . If (v_i, v_{i+1}) is an edges in C, then any digraph in C does not contain any additional edges going from C to C is an edges in C. The same applies for C is an edges of C in any digraph in C does not contain any additional edges going from C in C in C is an edges of C. The same applies for C is an edges of C in any digraph in C does not contain any additional edges going from C in C i

Lemma 6.2 For every integer $r \geq 2$, and every m, any member of T(r, m, C) defined above has precisely m|X| ($< m^2$) copies of the cycle C, such that the vertex that plays the role of v_i in the copy of C, belongs to V_i .

Proof: We only have to show that any member of T does not contain any additional copies of C, for which the vertex that plays the role of v_i in the copy of C, belongs to V_i . Let C' be such a copy of C. Therefore, there are $j \leq m$ and elements $x_1, x_2, \ldots, x_{r+1} \in X$, such that the vertices of the cycle are $j \in V_1, j + x_1 \in V_2, j + x_1 + x_2 \in V_3, \ldots, j + x_1 + x_2 + \ldots + x_r \in V_{r+1}$ and $x_1 + x_2 + \ldots + x_r = rx_{r+1}$ (remember that all edges between V_1 and V_{r+1} are of the form (j, j + rx) or (j + rx, j)). However, by the definition of X this implies that $x_1 = x_2 = \ldots = x_{r+1}$, implying the desired result. \blacksquare **Comment:** Note that the members of T(r, m, C) may contain many additional copies of C, which do not satisfy the restriction described in the statement of the lemma.

An s-blow-up of a digraph K = (V(K), E(K)) is the digraph obtained from K by replacing each vertex of K by an independent set of size s, and each edge e of K by a complete bipartite directed subgraph whose vertex classes are the independent sets corresponding to the ends of the edge, and whose edges are directed according to the direction of e.

Lemma 6.3 Let H = (V(H), E(H)) be a digraph with h vertices, let K = (V(K), E(K)) be another digraph on at most h vertices, and let T = (V(T), E(T)) be an s-blow-up of K. Suppose there is a homomorphism

$$\varphi: V(H) \mapsto V(K)$$

from H to K and suppose $s \geq h$. Let $R \subset E(T)$ be a subset of the set of edges of T, and suppose that each copy of H in T contains at least one edge of R. Then

$$|R| \ge \frac{|E(T)|}{|E(K)||E(H)|} > \frac{|E(T)|}{h^4}.$$

Proof: Let $g:V(H)\mapsto V(T)$ be a random injective mapping obtained by defining, for each vertex $v\in V(K)$, the images of the vertices in $\varphi^{-1}(v)\in V(H)$ randomly, in a one-to-one fashion, among all s vertices of T in the independent set that corresponds to the vertex v. Obviously, g maps adjacent vertices of H into adjacent vertices of T, and hence the image of g contains a copy of H in T. Each edge of H is mapped to one of the corresponding s^2 edges of T according to a uniform distribution, and hence the probability it is mapped onto a member of R does not exceed $|R|/s^2$. It follows that the expected number of edges of H mapped to members of R is at most $\frac{|R||E(H)|}{s^2}$, and as, by assumption, this random variable is always at least 1, we conclude that $\frac{|R||E(H)|}{s^2} \geq 1$. The desired result follows, since $s^2 = |E(T)|/|E(K)|$.

Lemma 6.4 For every fixed digraph H = (V(H), E(H)) on h vertices whose core is neither an oriented tree nor a 2-cycle, there is a constant c = c(H) > 0, such that for every positive $\epsilon < \epsilon_0(H)$ and every integer $n > n_0(\epsilon)$, there is a digraph G on n vertices which is ϵ -far from being H-free, and yet contains at most $\epsilon^{c \log(1/\epsilon)} n^h$ copies of H.

Proof: Let K be the core of H, and let k denote the number of vertices of K. Also, let us number its vertices $\{v_1, v_2, \ldots, v_k\}$ such that the first $r+1 \geq 3$ vertices $v_1, v_2, \ldots v_{r+1}$ form an oriented cycle C in this order (one such cycle exists by assumption on the core of H. Remember, that as was explained in the discussion before the proof of Theorem 2, part (i), the core can not have only 2-cycles, and not be a 2-cycle). By the minimality of K and the fact that it can not have isolated vertices, every homomorphism φ of K into itself must be an automorphism, that is $(u,v) \in E(K) \Leftrightarrow (\varphi(u),\varphi(v)) \in E(K)$ (otherwise H would have a homomorphism into a subgraph with a smaller number of edges). We claim that any homomorphism of H into K maps a copy of C from H to the vertices $v_1, v_2, \ldots v_{r+1}$ of K. Indeed, any homomorphism of H into K, is also a homomorphism of K into K. Therefore, some r+1 vertices of K are mapped to $v_1, v_2, \ldots, v_{r+1}$, and these vertices must span a cycle in K and therefore in H, as this homomorphism is an automorphism from K to K by the previous argument.

Given a small $\epsilon > 0$, let m be the largest integer satisfying

$$\epsilon \le \frac{1}{h^8 e^{10\sqrt{\log m \log h}}}. (7)$$

It is easy to check that this m satisfies

$$m \ge \left(\frac{1}{\epsilon}\right)^{c\log(1/\epsilon)} \tag{8}$$

for an appropriate c = c(h) > 0. Let $X \subset \{1, 2, ..., m\}$ be as in Lemma 6.1. We next define a digraph F from K in a way similar to the one described in the paragraph preceding Lemma 6.2. Let $V_1, V_2, ..., V_k$ be pairwise disjoint sets of vertices, where $|V_i| = im$ and we denote the vertices of V_i

by $\{1, 2, ..., im\}$. For each $j, 1 \leq j \leq m$, for each $x \in X$ and for each directed edge (v_p, v_q) of K, let $j + (p-1)x \in V_p$ have an outgoing edge pointed to $j + (q-1)x \in V_q$. One can easily see that the number of edges in F satisfies,

$$|E(F)| = m|X||E(K)|.$$

Note that the induced subgraph of F on the union of the first (r+1) vertex classes, belongs to the family of digraphs T(r, m, C) considered in Lemma 6.2, where $C = (v_1, \ldots, v_{r+1}, v_1)$ is the oriented cycle on the first r+1 vertices of K, which was defined above. Finally, define

$$s = \left\lfloor \frac{n}{|V(F)|} \right\rfloor = \left\lfloor \frac{2n}{k(k+1)m} \right\rfloor$$

and let G be the s-blow-up of F (together with some isolated vertices, if needed, to make sure that the number of vertices is precisely n). Note that the number of edges of G satisfies,

$$|E(G)| = \frac{4n^2|E(F)|}{k^2(k+1)^2m^2} = \frac{4n^2|X||E(K)|}{k^2(k+1)^2m} \ge \frac{n^2|X||E(K)|}{k^4m} \ge \frac{n^2|E(K)|}{k^4e^{10\sqrt{\log m \log r}}}$$
(9)

where the last inequality follows from the lower bound on |X| that is guaranteed by lemma 6.1.

Since G consists of pairwise edge disjoint s-blow-ups of K it follows, by Lemma 6.3, that one has to delete at least a fraction of $1/h^4$ of its edges to destroy all copies of H in it. Hence one must delete at least

$$\frac{1}{h^4} \cdot |E(G)| \ge \frac{n^2 |E(K)|}{h^4 k^4 e^{10\sqrt{\log m \log r}}} \ge \frac{n^2 |E(K)|}{h^8 e^{10\sqrt{\log m \log h}}} \ge \epsilon n^2. \tag{10}$$

edges in order to destroy all copies of H. The first inequality follows from (9), the second from the fact that $r \leq h$ and $k \leq h$ and the third from (7). We conclude that G is ϵ -far from being H-free.

We next claim that any copy of H in G must contain a copy of C such that the vertex that plays the role of v_i belongs to V_i . To see this, note that there is a natural homomorphism of G onto K, obtained by first mapping G homomorphically onto F (by mapping each class of s vertices into the vertex of F to which it corresponds), and then by mapping all vertices of V_i to v_i . This homomorphism maps each copy of H in G homomorphically into K, and hence, using the discussion in the first paragraph of the proof, maps a copy of C that belongs to the considered digraph H, to the first r+1 vertices of K. The definition of the homomorphism thus implies the assertion of the claim.

As the vertex that plays the role of v_i in the copy of C must belong to V_i for $1 \le i \le r+1$, it follows from Lemma 6.2 that the number of such cycles is at most $m^2 s^{r+1} = m^2 \left(\frac{2n}{k(k+1)m}\right)^{r+1} \le n^{r+1}/m$, and this implies that the total number of copies of H in G does not exceed $n^h/m = \epsilon^{c\log(1/\epsilon)} n^h$, implying the desired result.

Proof of Theorem 1, part (iii): Let H be a digraph on h vertices whose core is neither an oriented tree nor a 2-cycle, and suppose $\epsilon > 0$. Given a one-sided error ϵ -tester for testing H-freeness we may assume, without loss of generality, that it queries about all pairs of a randomly chosen set

of vertices (otherwise, as explained in [5], every time the algorithm queries about a vertex pair we make it query also about all pairs containing a vertex of the new pair and a vertex from previous queries. This may only square the number of queries. See also [22] for a more detailed proof of this statement.) As the algorithm is a one-sided-error algorithm, it can report that G is not H-free only if it finds a copy of H in it. By Lemma 6.4 there is a digraph G on n vertices which is ϵ -far from being H-free and yet contains at most $\epsilon^{c \log(1/\epsilon)} n^h$ copies of H. The expected number of copies of H inside a randomly chosen set of x vertices in such a digraph is at most $\binom{x}{h} \epsilon^{c \log(1/\epsilon)}$, which is far smaller than 1 unless x exceeds $(1/\epsilon)^{c' \log(1/\epsilon)}$ for some c' = c'(H) > 0, implying the desired result.

7 Two-Sided Error ϵ -Testers

In this section we present the proof of theorem 4. Applying the second part of the theorem for the case of undirected graphs, shows that if H is an undirected, non-bipartite graph, then there is no two-sided ϵ -tester for testing H-freeness whose query complexity is smaller than $(1/\epsilon)^{c \log 1/\epsilon}$ for an appropriate c = c(H) > 0. This settles an open problem raised in [1]. For the proof we need the following easy application of a theorem of Erdős from [17].

Lemma 7.1 Let H be a fixed digraph, let K be its core, and denote by k the size of K. For every constant $1 > \gamma > 0$ and for every sufficiently large n, every digraph G on n vertices that contains γn^k copies of K, contains also a copy of H.

Proof: Let φ be a homomorphism from V(H) to V(K), denote by t_1, \ldots, t_k the vertices of K, and let S_1, \ldots, S_k be the sets $\varphi^{-1}(t_1), \ldots, \varphi^{-1}(t_k)$, respectively. Let also Δ denote $\max_i |S_i|$. Define a k-uniform hypergraph H as follows: take a random partition of V(G) into k subsets, V_1, \ldots, V_k , where each vertex of G is chosen uniformly and independently to be in one of the groups. For each copy of K in G, in which the vertices u_{i_1}, \ldots, u_{i_k} play the role of t_1, \ldots, t_k , put an edge in H that contains u_{i_1}, \ldots, u_{i_k} if and only if $u_{i_1} \in V_1, \ldots, u_{i_k} \in V_k$. Observe, that by linearity of expectation, if G contains γn^k copies of K, the expected number of edges in H is $\gamma k^{-k} n^k$. Therefore, one partition which defines at least this many edges must exist. Fix one such partition, and the hypergraph H' which it defines. In [17] it is proved that any k-uniform hypergraph on n vertices with at least $n^{k-\Delta^{1-k}}$ edges, contains a copy of a complete k-partite k-uniform hypergraph, where each partition class is of size Δ . It follows that for large enough n, H' contains a copy of such hypergraph on some Δk vertices $\{v_1^1, \ldots, v_{\Delta}^1\} \subseteq V_1, \ldots, \{v_1^k, \ldots, v_{\Delta}^k\} \subseteq V_k$. It is now easy to see that G must contain a copy of H where for the role of the vertices of S_i we can choose any $|S_i|$ vertices from $\{v_1^i, \ldots, v_{\Delta}^i\}$.

Proof of Theorem 4, part (i): Let H be a fixed digraph with core K, and let k be the size of K. If K is a 2-cycle, then a two-sided error ϵ -tester for testing P_H with query complexity $O(1/\epsilon)$

was described in the comment following the proof of Theorem 2 part (i). Assume now that K is an oriented tree. Our two-sided error ϵ -tester for P_H works as follows: Given a digraph G, the algorithm samples c/ϵ vertices, for an appropriate c, and reports that the graph is not H-free if and only if they span a copy of K. We turn to show that the algorithm answers correctly with probability at least 2/3. Assume G is ϵ -far from being H-free. Then it is clearly also ϵ -far from being K-free, therefore applying Theorem 3 to P_K , we conclude that a randomly chosen set of c/ϵ vertices, with an appropriate c, finds a copy of K with probability at least 2/3. Assume G does not contain a copy of H. It follows from lemma 7.1 that it contains $o(n^k)$ copies of K, and therefore a randomly chosen set of any constant size (independent of n), and in particular of size $O(1/\epsilon)$, has probability o(1) of finding a copy of K.

To show that the result is optimal, we apply Yao's principle [31]. We first prove the case of Kbeing an oriented tree. Applying Yao's principle to our setting, we first have to define for every n, two distributions of digraphs D_1 , D_2 , where all the digraphs in D_1 are ϵ -far from being H-free, and all the digraphs in D_2 are H-free. In order to define the two distributions we use the digraph G_H whose description appears at the end of the proof of Theorem 3. Note that this graph is constructed using the core K, which is a tree. D_1 is a uniform distribution on all the n! digraphs that are obtained from G_H by a permutation of its vertices. By the computation at the end of the proof of Theorem 3 it follows that all the digraphs in D_1 are ϵ -far from being H-free. To define D_2 we first define G'_H to be the digraph that is obtained from G_H by removing all the edges that touch V_k (see the definition of G_H). D_2 is now a uniform distribution on all the n! digraphs that are obtained from G'_H by a permutation of its vertices. As G'_H is clearly H-free, all the digraphs in D_2 are H-free. To finish the proof we must show that no deterministic algorithm that samples less than $\Omega(1/\epsilon)$ vertices (adaptively) can tell the difference between these two distributions with probability that exceeds, say, 1/3. Recall that by the definition of G_H and G'_H , as long as the algorithm does not look at a vertex from V_k , it sees the same digraph. As V_k is of size $\epsilon 2kn$, the probability that a deterministic algorithm that samples less than, say, $1/(10\epsilon k)$ vertices finds a vertex from V_k is smaller than 1/3. Therefore, with probability at least 2/3 the two distributions D_1 , D_2 will look identical to any deterministic algorithm sampling less than $\Omega(1/\epsilon)$ vertices, as needed.

The proof for the case of K being a 2-cycle is analogous, and involves taking a permutation of a complete bi-directed bipartite graph on vertex sets of sizes $\epsilon 4n$ and $n - \epsilon 4n$, and a digraph with no edges. The rest of the details are left to the reader.

A close inspection at the proofs of Theorem 3 and Theorem 2 part (i), shows that if G is ϵ -far from being H-free, and the core of H, K, is either a 2-cycle or an oriented tree, then sampling $O(1/\epsilon)$ vertices finds a copy of K with probability 1 - o(1) where the o(1) term tends to 0 as ϵ tends to zero. On the other, the proof of Theorem 4, part (i), shows that if G is H-free, then the algorithm does not find a copy of K with probability 1 - o(1) where the o(1) term tends to 0 as n tends to infinity (even if $\epsilon > 0$ is relatively large). Therefore, in some sense the test has "almost" one-sided error, as

even for large values of ϵ the failure probability in case G is H-free is still o(1), as n tends to infinity.

Proof of Theorem 4, part (ii): Let H be a fixed digraph whose core K is neither a directed 2-cycle nor an oriented tree. We apply Yao's principle again in order to prove the lower bound.

Given n and ϵ , let X, m and the sets V_i be as in the proof of Lemma 6.4. Construct the digraph F just as in the proof of Lemma 6.4, and remember that it consists of m|X| pairwise edge disjoint copies of K (though it may well contain additional copies of K). Recall, also, that K contains a cycle C of length $r+1 \geq 3$, and that each copy of K in F contains a copy of this cycle in which the i-th vertex lies in V_i for all $1 \le i \le r+1$. Let C denote the set of these edge disjoint copies of C, and note that by Lemma 6.2 there are no other copies of C in F, in which the i-th vertex lies in V_i , besides the m|X| members of \mathcal{C} . To construct D_1 which consists of digraphs that are ϵ -far from being H-free, we first partition the set \mathcal{C} into disjoint pairs, S_1, \ldots, S_t , where we assume for simplicity that m|X| is even. The distribution D_1 is now defined by first constructing F'_1 by picking, randomly and independently, a copy of C, C' from each pair of copies $S_i = \{C_1, C_2\}$, and by removing two randomly chosen edges of C'. We then create G_1 by taking an s blow up of F'_1 adding isolated vertices, if needed. Finally, D_1 consists of all randomly permuted copies of such digraphs G_1 . Similar to the derivation of (9) and (10), it is easy to show that any member of D_1 is ϵ -far from being H free. The distribution D_2 of digraphs that are H-free, is defined by first constructing F_2' by removing from each member $C \in \mathcal{C}$ one randomly chosen edge. We then create G_2 by taking an s blow up of F_2' adding isolated vertices, if needed. Finally, D_2 consists of all randomly permuted copies of such digraphs G_2 , which are clearly H-free.

Now consider a set of vertices S in G_1 (or G_2) and its natural projection to a subset of V(F), which we also denote by S with a slight abuse of notation. Suppose S has the following property. (*) There is no pair $S_i = \{C_1, C_2\}$, among the pairs in our partition of C, so that S spans at least two edges of $C_1 \cup C_2$.

If this property holds, then each edge spanned by S is contained in a different copy of $C \in \mathcal{C}$ (if it is contained in such a cycle at all), and no two edges belong to two cycles that belong to the same pair S_i . Therefore, each edge that lies in such a cycle, has probability $1 - \frac{1}{r+1}$ of being in F'_1 , and these probabilities are mutually independent. Similarly, each such edge has probability $1 - \frac{1}{r+1}$ of being in F'_2 and these probabilities are also mutually independent. It follows that sampling a digraph G from D_1 , and looking at the induced digraph on a set S with the above property, has exactly the same distribution as sampling a digraph G from D_2 , and looking at the induced digraph on S.

To complete the proof we have to show that no deterministic algorithm can distinguish between the distributions D_1 and D_2 with constant probability. To this end, it is clearly enough to show that with probability 1 - o(1), any deterministic algorithm that looks at a digraph spanned by less than $(1/\epsilon)^{c'\log 1/\epsilon}$ vertices, has exactly the same probability of seeing any digraph regardless of the distribution from which the digraph was chosen. By the discussion in the previous paragraph, this can be proved by establishing that, with high probability, a small set of vertices has the property

(*). To prove this fact, it suffices to show that with high probability a small set does not span two edges in some pair $C_1 \cup C_2$, where $S_i = \{C_1, C_2\}$ is one of the pairs in our partition of \mathcal{C} . For a fixed ordered set of three vertices in S, consider the event that the first two vertices span an edge of C_1 and the third vertex is incident with an edge of $C_1 \cup C_2$ for some pair $\{C_1, C_2\}$ as above. The first two vertices determine C_1 uniquely, and hence determine C_2 as well. Now, the conditional probability that the third vertex is also a vertex of C_1 or C_2 is at most $2(r+1)/|V(F)| \leq 2/m$. Therefore, the probability that the property (*) is violated, assuming |S| = D, is at most

$$D^3 \frac{2}{m} \le D^3 \epsilon^{c \log 1/\epsilon}.$$

This quantity is o(1) as long as $D = o((1/\epsilon)^{\frac{c}{3}\log 1/\epsilon})$, where here we applied the lower bound on the size of m given in (8).

Therefore, if the algorithm has query complexity $o((1/\epsilon)^{c'\log 1/\epsilon})$ for some absolute positive constant c', it has probability 1 - o(1) of looking at a subset on which the distributions D_1 and D_2 are identical, thus, the probability that it distinguishes between D_1 and D_2 is o(1).

Observe that for digraphs H whose core K is neither an oriented tree nor a 2-cycle, we can give the above lower bound for testing P_H , but no better upper bound than the one given by Theorem 1. However, following the arguments in the proof of Theorem 4 (i), it follows that the query complexity of testing P_H with two-sided error is at most the query complexity of testing P_K with two-sided error. For example, the query complexity of testing the digraph in Figure 1 (c) with two-sided error, is at most the query complexity of testing its induced oriented triangle with two-sided error.

8 Concluding Remarks and Open Problems

- We have shown that for any digraph H, the property P_H of being H-free is strongly testable. In order to prove this result we have first proved a regularity lemma for digraphs, which generalizes Szemerédi's regularity lemma for undirected graphs. This lemma might prove useful for tackling other problems as well. We also gave a precise characterization of all digraphs H for which the property P_H of being H-free has a one-sided error ϵ -tester whose query complexity is polynomial in $(1/\epsilon)$, and showed that the same characterization applies for two-sided error ϵ -testers as well, where here the complexity is polynomial in $1/\epsilon$ if and only if it is $\Theta(1/\epsilon)$. We have addressed the case when H is an oriented tree, and gave an optimal one-sided error ϵ -tester with query complexity $O(1/\epsilon)$ for this case.
- An intriguing problem is that of estimating the best possible (one-sided and two-sided) query complexity of the property P_H^* of not containing any **induced** copy of a fixed digraph H.
- Hell, Nesetril and Zhu proved in [25] that the problem of deciding if the core of a given input digraph is a tree is *NP*-complete. This, together with Theorem 2 imply the following.

Proposition 8.1 The problem of deciding whether for a given digraph H, the property P_H has an ϵ -tester whose query complexity is polynomial in $1/\epsilon$, is NP-complete.

Therefore, there is no polynomially testable characterization of the digraphs H for which P_H is easily testable (though for every small, fixed H, Theorem 2 can be easily used to decide if H is such a digraph). One interesting class of digraphs for which the problem is solvable in polynomial time, is the class of oriented cycles. An oriented cycle is balanced if the number of forward edges is equal to the number of backward edges. It is not difficult to see that if an oriented cycle C is not balanced, then the core of C is C itself, (see, e.g., Figure 1 (b)). However the converse is not true, and while there are balanced cycles whose core is a path, (see, e.g., Figure 1 (a)), there are also balanced cycles C whose core is C itself, (see, e.g., Figure 1 (d)). It is therefore interesting to observe that the problem of deciding whether the core of a given cycle C is C itself or an induced path in it, can be solved in polynomial time using dynamic programming. The details are left to the reader.

A digraph H is balanced iff every oriented cycle in it is balanced. It is not difficult to see that a digraph H is balanced iff there is a homomorphism mapping H into an oriented tree, and this happens iff there is a homomorphism mapping H into a directed path. It thus follows, by Theorem 2, that if H is not balanced then P_H cannot be tested by a polynomial number of queries (but the converse is not true in general.)

- Lemma 5.1 implies that if G is ϵ -far from satisfying P_H , and the core of H is a tree K of size k, then G contains $\Omega(\epsilon^k n^k)$ copies of K. Having this, we could have used results from the theory of supersaturated graphs and hypergraphs (see [18]) to conclude that there exists a one-sided error ϵ -tester for P_H which uses a sample of size $O((1/\epsilon)^{O(h^k)})$. (An alternative way to deduce this, is to change the statement of Lemma 7.1 and prove that G contains $c(\gamma)n^h$ copies of H for some constant $c(\gamma)$, and not just one). However, our proof of Theorem 2 part (ii) given here provides a far more efficient ϵ -tester that uses a sample of size only $O((1/\epsilon)^{h^2})$. By applying the techniques of [18] we can show that for every fixed digraph H with h vertices whose core K (which is not necessarily a tree) has k vertices, any digraph on n vertices containing at least δn^k copies of the core K, contains at least $\Omega(\delta^{O(h^k)}n^h)$ copies of H.
- Lemma 5.1 implies that if G is ϵ -far from satisfying P_H , and H is a tree of size h, then G contains $\Omega(\epsilon^h n^h)$ copies of H. This can be seen to be essentially optimal by considering an appropriate random digraph. We omit the details.

As there are many copies of H, we conclude that sampling h vertices finds a copy of H with probability $\Omega(\epsilon^h)$. It follows that one can test P_H simply by sampling $\Theta((1/\epsilon)^h)$ samples of h vertices each. However, in Theorem 3 we show that a sample of size $O(1/\epsilon)$ suffices. The reason is that sampling h vertices in $O((1/\epsilon)^h)$ rounds fails to take into account all the h-tuples that

lie in the sample. In a sample of size $\Theta(1/\epsilon)$ there are $\Theta((1/\epsilon)^h)$ subsets of size h, and it turns out that if we consider all of them, we get essentially the same result as sampling $\Theta((1/\epsilon)^h)$ subsets of size h. In general, showing that if G is ϵ -far from being H-free then it contains $f(\epsilon)n^h$ copies of H, and then designing a ϵ -tester that samples $1/f(\epsilon)$ subsets of size h, usually fails to meet the query complexity of more efficient ϵ -testers. In many cases, the difference can be substantial, as in our case. In addition, our proof of a test that uses a sample of size $O(1/\epsilon)$ gives a somewhat different proof that for any oriented tree H with h vertices, a digraph that is ϵ -far from being H-free, contains $\Omega(\epsilon^h n^h)$ copies of H.

- Testing H-freeness for H being the complete bipartite undirected graph $K_{s,t}$, is another example of the above mentioned phenomenon. In [1], an ϵ -tester for $K_{s,t}$ -freeness which uses a sample of size $O((1/\epsilon)^{st})$ has been established, simply by showing that the graph must contain $\Omega(\epsilon^{st}n^{s+t})$ copies of $K_{s,t}$. Our method here improves this result and shows that a sample of size $O((1/\epsilon)^{\min(s,t)})$ suffices. This nearly matches a lower bound of $\Omega((1/\epsilon)^{\min(s,t)/2})$ which follows by considering an appropriate random graph (see the full version of [9].)
- For digraphs H whose underlying undirected graphs are not connected, it is not difficult to show that the property P_H has polynomial ϵ -testers if and only if this holds for each of the components of H. Therefore, Theorem 2 provides a characterization for the disconnected case as well.

References

- [1] N. Alon, Testing subgraphs in large graphs, Proc. 42nd IEEE FOCS, IEEE (2001), 434-441.
- [2] N. Alon, R. A. Duke, H. Lefmann, V. Rödl and R. Yuster, The algorithmic aspects of the Regularity Lemma, Proc. 33rd IEEE FOCS, Pittsburgh, IEEE (1992), 473-481. Also: J. of Algorithms 16 (1994), 80-109.
- [3] N. Alon, W. F. de la Vega, R. Kannan and M. Karpinski, Random Sampling and Approximation of MAX-CSP Problems, Proc. of the 34th ACM STOC, ACM Press (2002), 232-239.
- [4] N. Alon, S. Dar, M. Parnas and D. Ron, Testing of clustering, Proc. 41 IEEE FOCS, IEEE (2000), 240-250.
- [5] N. Alon, E. Fischer, M. Krivelevich and M. Szegedy, Efficient testing of large graphs, Proc. 40th Annual Symp. on Foundations of Computer Science (FOCS), New York, NY, IEEE (1999), 656–666. Also: Combinatorica 20 (2000), 451-476.

- [6] N. Alon, M. Krivelevich, I. Newman and M. Szegedy, Regular languages are testable with a constant number of queries, Proc. 40th Annual Symp. on Foundations of Computer Science (FOCS), New York, NY, IEEE (1999), 645–655. Also: SIAM J. on Computing 30 (2001), 1842-1862.
- [7] N. Alon and M. Krivelevich, Testing k-colorability, SIAM J. Discrete Math., 15 (2002), 211-227.
- [8] N. Alon, M. Krivelevich and B. Sudakov, Turán numbers of bipartite graphs and related Ramseytype questions, submitted.
- [9] N. Alon and A. Shapira, Testing satisfiability, Proc. of the 13th Annual ACM-SIAM SODA, ACM Press (2002), 645-654.
- [10] J. Bang-Jensen and P. Hell, The effect of two cycles on the complexity of colorings by directed graphs, Discrete Applied Math. 26 (1990), 1-23.
- [11] F. A. Behrend, On sets of integers which contain no three terms in arithmetic progression, *Proc. National Academy of Sciences USA* 32 (1946), 331–332.
- [12] A. Bogdanov, K. Obata and L. Trevisan, A Lower Bound for Testing 3-Colorability in Bounded-degree Graphs, Proc. 43rd IEEE FOCS, IEEE (2002), to appear.
- [13] B. Bollobás, P. Erdős, M. Simonovits and E. Szemerédi, Extremal graphs without large forbidden subgraphs, *Annals of Discrete Mathematics* 3 (1978), 29–41.
- [14] A. Czumaj and C. Sohler, Testing hypergraph coloring, Proc. of ICALP 2001, 493-505.
- [15] A. Czumaj and C. Sohler, Property testing in computational geometry, Proceedings of the 8th Annual European Symposium on Algorithms (2000), 155–166.
- [16] Reinhard Diestel, Graph Theory, Second Edition, Springer-Verlag, New York, 2000.
- [17] P. Erdős, P. On extremal problems of graphs and generalized graphs. Israel J. Math. 2 1964 183-190.
- [18] P. Erdős and M. Simonovits, Supersaturated graphs and hypergraphs, Combinatorica 3 (1983), 181-192.
- [19] E. Fischer, The art of uninformed decisions: A primer to property testing, The Computational Complexity Column of The Bulletin of the European Association for Theoretical Computer Science 75 (2001), 97-126.
- [20] A. Frieze and R. Kannan, Quick approximation to matrices and applications, *Combinatorica* 19 (1999), 175-220.

- [21] O. Goldreich, S. Goldwasser and D. Ron, Property testing and its connection to learning and approximation, *Proceedings of the* 37th Annual IEEE FOCS (1996), 339–348. Also: Journal of the ACM 45 (1998), 653–750.
- [22] O. Goldreich and L. Trevisan, Three theorems regarding testing graph properties, Proc. 42nd IEEE FOCS, IEEE (2001), 460-469.
- [23] W. T. Gowers, Lower bounds of tower type for Szemerédi's Uniformity Lemma, Geometric and Functional Analysis 7 (1997), 322-337.
- [24] P. Hell and J. Nesetril, The core of a graph, Discrete Math 109 (1992), 117-126.
- [25] P. Hell, J. Nesetril, and X. Zhu, Duality of graph homomorphisms, in: Combinatorics, Paul Erdős is Eighty, (D. Miklós et. al, eds.), Bolyai Society Mathematical Studies, Vol.2, 1996, pp. 271-282.
- [26] J. Komlós and M. Simonovits, Szemerédi's regularity lemma and its applications in graph theory, in: Combinatorics, Paul Erdős is Eighty, (D. Miklós et. al, eds.), Bolyai Society Mathematical Studies, Vol.2, 1996, pp. 295-352.
- [27] V. Rödl and R. Duke, On graphs with small subgraphs of large chromatic number, *Graphs and Combinatorics* 1 (1985), 91–96.
- [28] D. Ron, Property testing, in: P. M. Pardalos, S. Rajasekaran, J. Reif and J. D. P. Rolim, editors, *Handbook of Randomized Computing*, Vol. II, Kluwer Academic Publishers, 2001, 597–649.
- [29] R. Rubinfeld and M. Sudan, Robust characterization of polynomials with applications to program testing, SIAM J. on Computing 25 (1996), 252–271.
- [30] E. Szemerédi, Regular partitions of graphs, In: Proc. Colloque Inter. CNRS (J. C. Bermond, J. C. Fournier, M. Las Vergnas and D. Sotteau, eds.), 1978, 399–401.
- [31] A. C. Yao, Probabilistic computation, towards a unified measure of complexity. Proc. of the 18th IEEE FOCS (1977), 222-227.