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ABSTRACT. This note is a continuation of an earlier paper by the authors [1]. We
describe improved constructions addressing a question of Erdds and Szemerédi on sums
and products of real numbers along the edges of a graph. We also add a few observations
about related versions of the problem.

1. Introduction

In this note, we describe an improved construction addressing a question
of Erdds and Szemerédi about sums and products along the edges of a graph.
We also mention some related problems. The main improvement is obtained by
modifying the construction in [1], which works for real numbers, instead of the
integers considered there.

In their original paper Erd&s and Szemerédi [5] considered sum and product
along the edges of graphs. Let G,, be a graph on n vertices, v, vy, ..., Vv,, with
n'*¢ edges for some real ¢ > 0. Let A be an n-element set of real numbers,
A ={ay,as,...,a,}. The sumset of A along G,, denoted by A + g, A, is the
set {a; +a; | (i,j) € E(Gy)}. The product set along G, is defined similarly,

A-g,A={a;-a;|(ij)eE(G,)}.

The Strong Erdds—Szemerédi Conjecture, which was refuted in [1], is the
following.
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CONJECTURE 1. [5] For every ¢ > and € > 0, there is a threshold, ng, such that
if n > ng then for any n-element subset of reals A C R and any graph G,, with
n vertices and at least n'*¢ edges

A+ G, Al + A G, Al > A=,

Now, the question is to find dense graphs with small sumset and product
set along the edges. Here we extend the construction in [1]. The improvement
follows by considering real numbers instead of integers only.

2. Constructions

2.1. Sum-product along edges with real numbers

Here, we extend our earlier construction so that we get better bounds in
a range of edge densities. In our previous paper, for arbitrary large mg, we
constructed a set of integers, A, and a graph on |A| = m > mg vertices, G,,,
with Q(m>/3/log' m) edges such that

A+ G Al + A - G, A = O (1Al log AN )

Thus we had a graph on m vertices and roughly m>~¢ edges with roughly
m?~2¢ sums and products along the edges for ¢ = 1/3. In the following con-
struction, we show a similar bound in a range covering all 0 < ¢ < 2/5. In
what follows, it is convenient to ignore the logarithmic terms. We thus use now
the common notation f = O(g) for two functions f(n) and g(n) to denote that
there are absolute positive constants c1, ¢y so that f(n) < c;g(n)(logg(n))<2
for all admissible values of n. The notation f = Q(g) means that g = O(f) and
f = O(g) denotes that f = Q(g) and g = O(f).

THEOREM 2. For arbitrary large m, and parameter a, where 0 < a < 1/5, there
is a set of reals, A, and a graph on | A| = m > my vertices, G,,, with

o (mZ—Za')
edges such that

A+ G, Al + 1A - 6, A = 0 (|AP).



ON SUMS AND PRODUCTS ALONG THE EDGES, II 93

PrOOF. It is easier to describe the construction using prime numbers only. We
get a slightly larger exponent in the hidden logarithmic factor, but we ignore
these factors here. The set of primes is denoted by P here. We define the set A
and then the graph using the parameter «.

Clearly, distinct choices of 3-tuples u, v, w lead to distinct reals. Thus, with
this choice of parameters, the size of A is ©(n). We are going to define a graph

G, with vertex set A, where |A| = m = O(n). Two elements, a,b € A are
UV and b = 2
_ W Vw
Since the degree of every vertex here is ®(n!~2?) the number of edges is

Q (m?2e).

The products of pairs of elements of A along an edge of G, are integers of size
at most

| u,v,w e Pdistinctand v,w < n%, u < nl—Za}.

connected by an edge if in the definition of A above a =

24— 5 (m2—4a) _
The sums along the edges are of the form

u\w . W wu+vz
NN
The number of possibilities for the denominator is at most #n2® and the

numerator is a positive integer of size at most 21!~ hence the number of sums
is, at most

0(n'*?) = 0 (mZ—(l—a)) '

The sum is asymptotically smaller than the product set, as long as 1 —a > 4a,
ie.a<1/5. |

Based on this construction, one can easily get examples of sparser graphs,
simply taking smaller copies of G, and leaving other vertices isolated.

THEOREM 3. For every parameters 0 < v < 3/5 and ng there are n > nyg, an

n-element set of reals, A C R, and a graph H,, with Q(n'*") edges such that

A+ g, Al +|A - g, Al =0 (|ﬂ|3<1+v>/4) .
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ProOOF. The construction of Theorem 2 with @ = 1/5 supplies a set of m reals
and a graph with Q(m3/%) edges so that the number of sums and products along
the edges is at most O(m%/3). Take this construction with m = n>(1+)/8(< p)
and add to it n —m isolated vertices assigning to them arbitrary distinct reals that
differ from the ones used already. ]

A similar statement holds for integers too.

THEOREM 4. For every parameters 0 < v < 2/3 and ng there are n > ng, an

n-element set of integers A, and a graph H,, with Q(n'*") edges such that

A+ 11, A+ A 11, AL = O (|AP ).

This follows as in the real case by starting with the construction of [1] that
gives a set of m integers and a graph with Q(m>/3) edges so that the number of
sums and products along the edges is at most O (m*/?). This construction with
m = n31*)/5 < p together with n —m isolated vertices with arbitrary n — m new
integers implies the statement above.

2.2. Matchings

For sparser graphs, a particular variant of the sum-product problem for
integers is the following:

PROBLEM 5. Given two n-element sets of integers, A = {ai,...,a,} and
B={by,...,b,} let us define a sumset and a product set as

S={a;+b;|1<i<n} and P={a;-b;|1<i<n}.
Erdés and Szemerédi asked if
(1) P+ S| = Q(n'~%)

for some constant ¢ > 0.

The best-known lower bound is due to Chang [3], who proved that

IP| +|S| = n'/?log!/*® n.

It was shown recently in [9] that under the assumption of a special case of
the Bombieri-Lang conjecture [2], |P| + |S| = Q(1n*/%), even for multisets.
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THEOREM 6 ([9]). Let M = {(a;,b;) | 1 < i < n} be a set of distinct pairs
of integers. If P and S are defined as above, then under the hypothesis of the
Bombieri-Lang conjecture |P| + |S| = Q(n3/3).

Our previous constructions give an upper bound. The statement of Theo-
rem 6 cannot be improved beyond an extra 1/5 in the exponent, i.e. one can not
expect a |P| + |S| = Q(n'~?) type bound for multisets.

THEOREM 7. For arbitrarily large n, there is a matching M of size n, with n
distinct pairs of integers (a;, b;), so that |P| +|S| = O (n*/?).

ProOEF. If multisets are allowed, and the only requirement is that the pairs
assigned to distinct edges of the matching are distinct, then any construction of a
graph with n edges yields a construction of a matching of size n. It thus follows
from [1, Theorem 3 ] (or from Theorem 4 here) that for the multiset version there
is, for arbitrarily large n, an example of a matching M of size n as above, with n
distinct pairs of integers (a;, b;), so that |P| +|S| = O (n*/?). ]

3. Lower bounds

In [1], we followed Elekes’ method using point-line incidence bounds to
give a lower bound on the sum-product problem along the edges of a graph. For
sparser graphs, Oliver Roche-Newton improved our bound, extending the range
where a non-trivial bound can be established. He proved the following

THEOREM 8 (Theorem 6.1 in [6]). For arbitrary set of reals, ‘A, and a graph on
| A| = m vertices, G,,, with

9 (mz-za)
edges the following bound holds:

A+ G A +IA - G, A = Q1A F)

The result follows from applying an Elekes-Szabd type bound on the
intersection size of polynomials and Cartesian products. Roche-Newton used the
bound from [7]. However, a better result follows from the recent improvement
in [10].
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THEOREM 9 (Theorem 1.4 in [10]). Let f € C|x,y, z] be an irreducible poly-
nomial. Then, at least one of the following is true.

(A) For all finite sets A, B,C C R with |A| < |B| < |C|, we have
(A BxC)nZ(f) = O(AIBICH +|BIICI'?,

where the implicit constant depends on the degree of f.

(B) After possibly permuting the coordinates x,y,z, we have f(x,y,z) =
= g(x, y), for some bivariate polynomial g.

(C) f encodes additive group structure.!

Now, we state a new lower bound on the size of the sumset and product set
along the edges of a graph.

THEOREM 10. For arbitrary set of reals, A, and a graph on |A| = m vertices,
G, with
8 (mZ—Za)
edges the following bound holds:
A+, Al +|A-G, Al =0 (|ﬂ|¥) .

PrOOF. For the proof, we can follow the arguments in [6] and use the new
Elekes-Szabo type bound from Theorem 9. We consider the zero set of the
polynomial
f(x,y,z) :X(y —X) -4

and its intersection with the Cartesian product A X {A + g,, A} X {A - G,, A}.
Every edge in G, which connects vertices a and b determines an intersection
point, by x = a, y = a + b and z = ab. This is the polynomial variant of Elekes’
original sum-product bound in [4] where he considered lines a(X —8) —Y =0
with @, € Aand X € A+ A, Y € AA. As it was shown in [6], for this
polynomial, Part A applies from Theorem 9. From that, we have the bound

~ . 4/7
m? 2a:0((|ﬂ||ﬂ+GmﬂHﬂ.Gmﬂ|) / +|ﬂ+c;mﬂ||§‘{-c;mﬂ|1/2)

which implies

A+ G, AL+ 1A - 6, A = & |77 '

"When f(x,y,z) is of the special form h(x,y) — z, then f encodes additive structure if
and only if & has the form Aa(x,y) = p(g(x) + r(y)) or h(x,y) = p(g(x)r(y)) for univariate
polynomials p, ¢, r.
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4. Remarks

There is still a gap between the lower bound and our construction. It is
inevitable as long as the original sum-product conjecture is open. Our construc-
tion goes to the conjectured optimum as the graph gets denser. As the density
increases, the lower bound approaches Elekes’ bound, Q(n>/*).
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FIGure 1. The exponents in the upper and lower bounds when the
number of edges is m?~2% (top line) and 0 < @ < 1/5
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