ON SUMS AND PRODUCTS ALONG THE EDGES, II

NOGA ALON, IMRE RUZSA, AND JÓZSEF SOLYMOSI

Abstract. This note is a continuation of an earlier paper of the authors [1]. We describe improved constructions addressing a question of Erdős and Szemerédi on sums and products of real numbers along the edges of a graph. We also add a few observations about related versions of the problem.

1. Introduction

In this note, we describe an improved construction addressing a question of Erdős and Szemerédi about sums and products along the edges of a graph. We also mention some related problems. The main improvement is obtained by a simple modification of the construction in [1] which works for real numbers, instead of the integers considered there.

In their original paper Erdős and Szemerédi [5] considered sum and product along the edges of graphs. Let G_n be a graph on n vertices, v_1, v_2, \ldots, v_n, with n^{1+c} edges for some real $c > 0$. Let A be an n-element set of real numbers, $A = \{a_1, a_2, \ldots, a_n\}$. The sumset of A along G_n, denoted by $A + G_n A$, is the set $\{a_i + a_j | (i, j) \in E(G_n)\}$. The product set along G_n is defined similarly, $A \cdot G_n A = \{a_i \cdot a_j | (i, j) \in E(G_n)\}$.

The Strong Erdős-Szemerédi Conjecture, which was refuted in [1], is the following.

Conjecture 1. [5] For every $c > $ and $\varepsilon > 0$, there is a threshold, n_0, such that if $n \geq n_0$ then for any n-element subset of reals $A \subset \mathbb{R}$ and any graph G_n with n vertices and at least n^{1+c} edges

$$|A + G_n A| + |A \cdot G_n A| \geq |A|^{1+c-\varepsilon}.$$

Now the question is to find dense graphs with small sumset and product set along the edges. Here we extend the construction in [1]. The improvement follows by considering real numbers, instead of integers only.

2. Constructions

2.1. Sum-product along edges with real numbers. Here we extend our earlier construction so that we get better bounds in a range of edge densities. In our previous paper for arbitrary large m_0, we constructed a set of integers, A, and a graph on $|A| = m \geq m_0$ vertices, G_m, with $\Omega(m^{5/3}/\log^{1/3} m)$ edges such that

$$|A + G_m A| + |A \cdot G_m A| = O\left((|A| \log |A|)^{4/3}\right).$$

Thus we had a graph on m vertices and roughly m^{2-c} edges with roughly m^{2-2c} sums and products along the edges for $c = 1/3$. In the following construction, we show a similar bound in a range covering all $0 \leq c \leq 2/5$. In what follows, it is convenient to ignore the logarithmic terms. We thus use now the common notation $f = \tilde{O}(g)$ for two functions $f(n)$ and $g(n)$ to denote that there are absolute positive constants c_1, c_2 so that $f(n) \leq c_1 g(n)(\log g(n))^{c_2}$ for all admissible values of n. The notation $f = \tilde{\Omega}(g)$ means that $g = \tilde{O}(f)$ and $f = \tilde{\Theta}(g)$ denotes that $f = \tilde{\Omega}(g)$ and $g = \tilde{O}(f)$.

Research supported in part by NSF grant DMS-2154082.
Research supported in part by an OTKA NK 133819 grant.
Research supported in part by an NSERC and an OTKA NK 133819 grant.
The sums along the edges are of the form $$\sum_{\text{pair}}$$

The products of pairs of elements of $$\mathbb{P}$$ exponent in the hidden logarithmic factor, but we are anyway ignoring these factors here. The set of integer of size at most 2 copies of $$\mathbb{G}$$

Theorem 2. For arbitrary large $$m_0$$, and parameter $$\alpha$$, where $$0 \leq \alpha \leq 1/5$$, there is a set of reals, $$\mathcal{A}$$, and a graph on $$|\mathcal{A}| = m \geq m_0$$ vertices, $$G_m$$, with $$\tilde{\Omega} \left(m^{2-2\alpha} \right)$$ edges such that $$\mathcal{A} + G_m \mathcal{A} + |\mathcal{A} \cdot G_m \mathcal{A} = \tilde{O} \left(|\mathcal{A}|^{2-4\alpha} \right).$$

Proof: It is easier to describe the construction using prime numbers only. We get a slightly larger exponent in the hidden logarithmic factor, but we are anyway ignoring these factors here. The set of primes is denoted by $$\mathbb{P}$$ here. We define the set $$\mathcal{A}$$ first and then the graph using the parameter $$\alpha$$.

$$\mathcal{A} := \left\{ \frac{uv\sqrt{w}}{\sqrt{v}} \mid u, v, w \in \mathbb{P} \text{ distinct and } v, w \leq n^{\alpha}, u \leq n^{1-2\alpha} \right\}.$$

It is clear that distinct choices of 3-tuples $$u, v, w$$ lead to distinct reals. Thus with this choice of parameters, the size of $$\mathcal{A}$$ is $$\Theta(n)$$. We are going to define a graph $$G_m$$ with vertex set $$\mathcal{A}$$, where $$|\mathcal{A}| = m = \Theta(n)$$. Two elements, $$a, b \in \mathcal{A}$$ are connected by an edge if in the definition of $$\mathcal{A}$$ above $$a = \frac{uv\sqrt{w}}{\sqrt{v}}$$ and $$b = \frac{wz\sqrt{v}}{\sqrt{w}}$$. Since the degree of every vertex here is $$\Theta(n^{1-2\alpha})$$ the number of edges is $$\tilde{\Omega} \left(m^{2-2\alpha} \right).$$

The products of pairs of elements of $$\mathcal{A}$$ along an edge of $$G_m$$ are integers of size at most $$n^{2-4\alpha} = \tilde{O} \left(m^{2-4\alpha} \right).$$

The sums along the edges are of the form

$$\frac{u\sqrt{w}}{\sqrt{v}} + \frac{z\sqrt{v}}{\sqrt{w}} = \frac{wu + vz}{\sqrt{vw}}.$$

The number of possibilities for the denominator is at most $$n^{2\alpha}$$ and the numerator is a positive integer of size at most $$2n^{1-\alpha}$$, hence the number of sums is, at most

$$O(n^{1+\alpha}) = \tilde{O} \left(m^{2-(1-\alpha)} \right).$$

The sum is asymptotically smaller than the product set, as long as $$1 - \alpha > 4\alpha$$, i.e. $$\alpha < 1/5$$.

Based on this construction, one can easily get examples of sparser graphs, simply taking smaller copies of $$G_m$$ and leaving other vertices isolated.

Theorem 3. For every parameters $$0 \leq \nu \leq 3/5$$ and $$n_0$$ there are $$n > n_0$$, an $$n$$-element set of reals, $$\mathcal{A} \subset \mathbb{R}$$, and a graph $$H_n$$ with $$\tilde{\Omega}(n^{1+\nu})$$ edges such that

$$|\mathcal{A} + H_n \mathcal{A} | + |\mathcal{A} \cdot H_n \mathcal{A} | = \tilde{O} \left(|\mathcal{A}|^{3(1+\nu)/4} \right).$$

Proof: The construction of Theorem 2 with $$\alpha = 1/5$$ supplies a set of $$m$$ reals and a graph with $$\tilde{\Omega}(m^{8/5})$$ edges so that the number of sums and products along the edges is at most $$\tilde{O}(m^{6/5})$$. Take this construction with $$m = n^{5(1+\nu)/8} (\leq n)$$ and add to it $$n - m$$ isolated vertices assigning to them arbitrary distinct reals that differ from the ones used already.

A similar statement holds for integers too.

Theorem 4. For every parameters $$0 \leq \nu \leq 2/3$$ and $$n_0$$ there are $$n > n_0$$, an $$n$$-element set of integers $$\mathcal{A}$$, and a graph $$H_n$$ with $$\tilde{\Omega}(n^{1+\nu})$$ edges such that

$$|\mathcal{A} + H_n \mathcal{A} | + |\mathcal{A} \cdot H_n \mathcal{A} | = \tilde{O} \left(|\mathcal{A}|^{4(1+\nu)/5} \right).$$

This follows as in the real case by starting with the construction of [1] that gives a set of $$m$$ integers and a graph with $$\tilde{\Omega}(m^{5/3})$$ edges so that the number of sums and products along the edges is at most $$\tilde{O}(m^{1/3})$$. This construction with $$m = n^{3(1+\nu)/8} \leq n$$ together with $$n - m$$ isolated vertices with arbitrary $$n - m$$ new integers implies the statement above.
2.2. Matchings. A particular variant of the sum-product problem for integers is the following:

Problem 5. Given two \(n \)-element sets of integers, \(A = \{a_1, \ldots, a_n\} \) and \(B = \{b_1, \ldots, b_n\} \) let us define a sumset and a product set as

\[
S = \{a_i + b_i | 1 \leq i \leq n\} \quad \text{and} \quad P = \{a_i \cdot b_i | 1 \leq i \leq n\}.
\]

Erdős and Szemerédi conjectured that

\[
|P| + |S| = \Omega(n^{1/2 + c})
\]

for some constant \(c > 0 \).

The best-known lower bound is due to Chang [3], who proved that

\[
|P| + |S| \geq n^{1/2} \log^{1/48} n.
\]

It was shown recently in [9] that under the assumption of a special case of the Bombieri-Lang conjecture [2], one can take \(c = 1/10 \) in equation (1), i.e. \(|P| + |S| = \Omega(n^{3/5}) \), even for multisets.

Theorem 6. [9] Let \(M = \{(a_i, b_i) | 1 \leq i \leq n\} \) be a set of distinct pairs of integers. If \(P \) and \(S \) are defined as above, then under the hypothesis of the Bombieri-Lang conjecture \(|P| + |S| = \Omega(n^{1/2 + c}) \) with \(c = 1/10 \).

If multisets are allowed, and the only requirement is that the pairs assigned to distinct edges of the matching are distinct, then any construction of a graph with \(n \) edges yields a construction of a matching of size \(n \). It thus follows from [1, Theorem 3] (or from Theorem 4 here) that for the multiset version there is, for arbitrarily large \(n \), an example of a matching \(M \) of size \(n \) as above, with \(n \) distinct pairs of integers \((a_i, b_i)\), so that \(|P| + |S| = \tilde{O}(n^{1/5}) \). This shows that the statement of Theorem 6 cannot be improved beyond an extra \(1/5 \) in the exponent.

3. Lower bounds

In [1], we followed Elekes’ method using point-line incidence bounds to give a lower bound on the sum-product problem along the edges of a graph. For sparser graphs, Oliver Roche-Newton improved our bound, extending the range where a non-trivial bound can be established. He proved the following

Theorem 7 (Theorem 6.1 in [6]). For arbitrary set of reals, \(A \), and a graph on \(|A| = m \) vertices, \(G_m \), with

\[
\tilde{\Omega}(m^{2-2\alpha})
\]

edges the following bound holds:

\[
|A + G_m \cdot A| + |A \cdot G_m \cdot A| = \tilde{\Omega}
\]

\[
(|A|^{9-12\alpha}).
\]

The result follows from applying an Elekes-Szabó type bound on the intersection size of polynomials and Cartesian products. Roche-Newton used the bound from [7], however, a better result follows from the recent improvement in [10].

Theorem 8. [Theorem 1.4 in [10]] Let \(f \in \mathbb{C}[x, y, z] \) be an irreducible polynomial. Then at least one of the following is true.

(A) For all finite sets \(A, B, C \subseteq \mathbb{R} \) with \(|A| \leq |B| \leq |C|\), we have

\[
|(A \times B \times C) \cap Z(f)| = \tilde{O}(|A||B||C|^{4/7} + |B||C|^{1/2}),
\]

where the implicit constant depends on the degree of \(f \).

(B) After possibly permuting the coordinates \(x, y, z \), we have \(f(x, y, z) = g(x, y) \), for some bivariate polynomial \(g \).

(C) \(f \) encodes additive group structure.\(^1\)

\(^1\)When \(f(x, y, z) \) is of the special form \(h(x, y) = z \), then \(f \) encodes additive structure if and only if \(h \) has the form \(h(x, y) = p(q(x) + r(y)) \) or \(h(x, y) = p(q(x)r(y)) \) for univariate polynomials \(p, q, r \).
Now we state a new lower bound on the size of the sumset and product set along the edges of a graph.

Theorem 9. For arbitrary set of reals, \(A \), and a graph on \(|A| = m \) vertices, \(G_m \), with
\[
\tilde{\Omega} \left(m^{2-2\alpha} \right)
\]
edges the following bound holds:
\[
|A + G_m A| + |A \cdot G_m A| = \tilde{\Omega} \left(|A|^{\frac{5-7\alpha}{4}} \right).
\]

Proof: For the proof we can follow the arguments in [6] and use the new Elekes-Szabó type bound from Theorem 8. We consider the zero set of the polynomial
\[
f(x, y, z) = x(y - x) - z,
\]
and its intersection with the Cartesian product \(A \times \{A + G_m A\} \times \{A \cdot G_m A\} \). Every edge in \(G_m \) which connects vertices \(a \) and \(b \) determines an intersection point, by \(x = a, y = a + b \) and \(z = ab \).

This is the polynomial variant of Elekes’ original sum-product bound in [4] where he considered lines \(\alpha(X - \beta) - Y = 0 \) with \(\alpha, \beta \in A \) and \(X \in A + A, Y \in AA \). As it was shown in [6], for this polynomial Part A applies from Theorem 8. From that, we have the bound
\[
m^{2-2\alpha} = \tilde{O} \left((|A||A + G_m A||A \cdot G_m A|)^{4/7} + |A + G_m A||A \cdot G_m A|^{1/2} \right)
\]
which implies
\[
|A + G_m A| + |A \cdot G_m A| = \tilde{\Omega} \left(|A|^{\frac{5-7\alpha}{4}} \right).
\]

\]

4. Remarks

There is still a gap between the lower bound and our construction. It is inevitable as long as the original sum-product conjecture is open. Our construction goes to the conjectured optimum as the graph is getting denser. The lower bound approaches Elekes’ bound [4].

![Figure 1](image.png)

Figure 1. The exponents in the upper and lower bounds when the number of edges is \(m^{2-2\alpha} \) (top line) and \(0 < \alpha < 1/5 \)

References

Princeton University, Princeton, NJ 08544 and Tel Aviv University, Tel Aviv 69978, Israel
Email address: nanon@math.princeton.edu

Alfréd Rényi Institute of Mathematics, H-1364 Budapest, Hungary
Email address: ruza@renyi.hu

Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC, V6T 1Z2, Canada and Obuda University, H-1034 Budapest, Hungary
Email address: solymosi@math.ubc.ca