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Abstract

Let G be a graph on n vertices and (H,+) be an abelian group. What is the minimum
size SH(G) of the set of all sums A(u)+A(v) over all injections A : V (G) → H? In 2012, the
first author, Angel, the second author, and Lubetzky proved that, for expander graphs and
H = Z, this minimum is at least Ω(log n), and this bound is tight — there exists a regular
expander G with SZ(G) = O(log n). We prove that, for every constant d ≥ 3, the random
d-regular graph Gn,d has significantly larger sum-sets: with high probability, for every abelian
group H, SH(Gn,d) = Ω(n1−2/d). In particular, this proves that, for every ε > 0, there exists a
regular graph with O(n) edges and with sum-sets of size at least n1−ε, for all abelian groups.

The bound SH(Gn,d) = Ω(n1−2/d) is tight up to a polylogarithmic factor: We show that,
for every 3 ≤ d ≤ lnn/ ln lnn, there exists an abelian group H such that, for every graph G
on n vertices with maximum degree at most d, SH(G) ≤ n1−2/d(log n)O(1).

We also prove that, for d ≫ ln2 n, with high probability, for every abelian group H,
SH(Gn,d) = n(1− o(1)) and determine the second-order term, up to a polylogarithmic factor.

1 Introduction

For d ≥ 3 and a positive integer n such that dn is even, we denote by Gn,d a uniformly random
d-regular graph on the set of vertices [n] := {1, . . . , n}. Everywhere in the paper we assume that
d = d(n) is not necessarily a constant and we study asymptotic properties of Gn,d as n → ∞.

For a graph G := (V (G), E(G)) and an arbitrary abelian group (H,+) let A : V (G) → H be
an injection. For an edge e = {u, v} ∈ E(G), we let A(e) := A(u) + A(v). The sum-set of G over
H is the minimum value of |{A(e) : e ∈ E(G)}| over all injections A.

The first author, Angel, the second author, and Lubetzky [1] studied sum-sets of expander
graphs. They proved that for any δ-(edge)-expander G, the sum-set of G over Z equals Ω(log n)
and this bound is best possible — there exists a d-regular δ-expander such that its sum-set over Z
equals O(log n); the respective witness has degree d = Θ(log n).

In this paper, we prove that, for typical regular graphs, the logarithmic lower bound is very
far from the answer. From our results it follows that, for every ε > 0, there exists a constant d
such that whp1 the sum-set of Gn,d has cardinality bigger than n1−ε over any abelian group H. It
is worth noting that constructing sparse graphs with large sum-sets is not a trivial task. Actually,
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1With high probability, that is, with probability approaching 1 as n → ∞.
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we are not aware of any deterministic construction of a d-regular graph G with constant d and
sum-set of size at least n1−ε. An example of a graph with a polynomial in n sum-set was given
by the first author, Angel, the second author, and Lubetzky in the same paper [1]. They observed
that for a graph G with µk cycles of an odd constant length k ≥ 3, the sum-set over Z has size
Ω(µ

1/k
k ), and this bound is asymptotically tight. In particular, a disjoint union of triangles has

sum-set over Z of size Θ(n1/3).
Below, for the sake of simplicity of presentation, we state an abbreviated, qualitative version

of our result establishing the asymptotic behaviour of the minimum sum-sets of Gn,d for all d =
d(n) ≥ 3. We postpone the full statement of the lower bounds to Section 3. For convenience, we
denote by SH(G) the sum-set of G over H and let

S(G) := min
H

SH(G).

Theorem 1.1. Let dn be even, d = d(n) ≥ 3, Gn ∼ Gn,d. Then whp

• cn1−2/d ≤ S(Gn) ≤ n1−2/d ln4 n for any 3 ≤ d ≤ lnn/ ln lnn and some universal constant
c > 0;

• S(Gn) = n/(lnn)O(1) for lnn/ ln lnn < d = O(ln2 n);

• S(Gn) = Θ(n) for d = Ω(ln2 n);

• S(Gn) = n(1 − o(1)) for d = ω(ln2 n) and, more precisely, n(1 − C ln2 n/d) ≤ S(Gn) ≤
n(1 − c/d) for some universal constants c, C > 0.

In particular, when d = ω(1), we get that whp S(Gn) = n1−o(1), in contrast to the worst-case
scenario for expander graphs with d = Θ(log n). Also, for d = 3, our lower bound matches the
largest known cardinality of a sum-set of a sparse regular graph, achieved by a disjoint union of
triangles.

The upper bounds in Theorem 1.1 follow from our second main result that asserts an upper
bound on S(G) for an arbitrary (not necessarily regular) graph G on n vertices with maximum
degree d. Actually, this result shows that typical d-regular graphs G maximise S(G), up to a
polylogarithmic factor, in the class of graphs with maximum degree d.

Theorem 1.2. Let d = d(n) ≥ 3 and let G = G(n) be a graph on [n] with maximum degree d.

• There exists a constant C > 0 such that, for all d ≤ lnn/ ln lnn and all large enough n,
S(G) ≤ Cn1−2/dd2(lnn)2+4/d.

• For all d and all n, S(G) ≤ n− ⌈n/(2d)⌉ + 1.

Let us observe that Theorem 1.2 indeed implies the upper bounds in Theorem 1.1. To see this,
note that we only need to prove the following for Gn ∼ Gn,d:

• Whp S(Gn) ≤ n1−2/d ln4 n when d ≤ lnn/ ln lnn.

• Whp S(Gn) ≤ n(1 − 1/(3d)) when d ≫ ln2 n.

The first bound follows immediately from the first part of Theorem 1.2, and the second bound
follows from the second part of Theorem 1.2.
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Proof strategy. The main complication in deriving lower bounds in Theorem 1.1 is that they
require to overcome the union bound over the infinite set of groups and injections. We resolve this
challenge by showing that, for a graph with diameter D, the problem reduces to quotient groups
Zk/F , where F ⊂ Zk is spanned by vectors with L1-norms that do not exceed 3D. Then, using
the theory of lattices, we get that our reduction leads to a union bound over a fairly small set of
abelian groups. Indeed, a set of generators for the lattice F can be constructed recursively, one
generator at a time. Since, at every step, we get a lattice with an integer volume, and every step
reduces the volume by at least half, we immediately get an upper bound on the number of steps,
which, in turn, implies an upper bound on the number of lattices F , which is sufficient to our
goals.

In order to prove the first part of Theorem 1.2, we construct a Cayley sum-graph of degree
O
(
n1−2/dd2(lnn)2+4/d

)
which is universal for the family of all graphs on n vertices with maximum

degree at most d. Clearly, the existence of such a graph immediately implies the desired assertion.
In [2], the first author and Capalbo constructed a universal graph for this family with n vertices
and at most Od

(
n2−2/d(lnn)4/d

)
edges. The main challenge here is to show that the construction

from [2] can be modified to get a Cayley sum-graph with the same universality property — see a
detailed overview in the beginning of Section 4. The second part of Theorem 1.2 follows from the
fact that, for any abelian group of order n and its Cayley sum-graph G′ on [n] with a generating
set of size less than n/(2d), G can be drawn on [n] edge-disjointly form G′. The latter assertion is
an almost immediate corollary of [13, Theorem 4.2] and [27, Theorem 3].

Related work. The study of sums and products along the edges of graphs dates back to the
celebrated paper of Erdős and Szemerédi [10], where they proposed a conjecture concerning the
minimum possible value of max{SZ(G),PZ(G)}, where PR(G) denotes the product-set of G over
a given ring R, defined analogously to the sum-set. This conjecture — particularly its special
case G = Kn — has attracted significant attention, see, e.g., the comprehensive survey [17]. The
general version of the conjecture for n-vertex graphs with at least n1+ε edges was refuted by the
first author, Ruzsa, and Solymosi [4]. Since the foundational paper of Erdős and Szemerédi, dif-
ferent modifications of the sum-product problem have been extensively studied, leading to various
applications across diverse areas of mathematics.

Organisation. In Section 2, we recall some basic results from the theory of random regular
graphs and the theory of lattices, that we use in our proofs. In the beginning of Section 3, we
state an unabbreviated version of the lower bounds from Theorem 1.1, which gives a general lower
bound for all d = d(n) ≥ 3. We prove this stronger result in the same section. Section 4 contains a
proof of Theorem 1.2. In Section 5 we discuss possible improvements of our results and remaining
challenges.

Notation. Everywhere in the paper we denote by log n and lnn the binary logarithm and the
natural logarithm of n, respectively. For a positive integer n, we denote [n] := {1, . . . , n}. For
f = (x1, . . . , xk) ∈ Zk, let |f |1 denote the L1-norm of f , i.e., |f |1 =

∑k
i=1 |xi|.

Remark. The first version of this paper [6] uploaded to the arXiv on 1.07.2025 did not include
Theorem 1.2 and contained a much weaker linear in n upper bound on S(Gn,d) that was proved
using the second moment approach.
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2 Preliminaries

2.1 Random regular graphs

We will need asymptotic bounds on the total number of d-regular graphs and the number of
d-regular graphs that avoid edges of a given graph.

Claim 2.1 ([23, 24]). For any integer 3 ≤ d = O(
√
n), the number of d-regular graphs on [n]

equals

gd(n) =
(nd)!

(nd/2)!2nd/2(d!)n
· eO(d2).

Moreover, let Gn ∼ Gn,d. Let G be a graph on [n] with maximum degree ∆ = o(n). Then

P(G ∩Gn = ∅) = exp

(
−d|E(G)|

n
+ O

(
d∆2

n

))
.

Let us recall that whp random regular graphs with constant d ≥ 3 are connected, hamiltonian,
and their diameters are bounded by 2 log n/ log d [8, 26] (see also Sections 7.6 and 10.3 in [7]).
This result extends to growing d, due to the expansion properties of Gn,d [9] and due to the recent
coupling results — see [19, Theorem 1.2] for even n and [12, Theorem 8], [15, Theorem 1.2] to
extend this result to odd n as well.

Theorem 2.2 ([9, 19, 26]). Let 3 ≤ d = O(
√
n), Gn ∼ Gn,d. Then whp Gn is hamiltonian and its

diameter equals O(log n/ log d).

2.2 Lattices

For V ⊂ Zk let Span(V ) denote the linear span of vectors from S over the field Z. When vectors in
V are independent, we refer to Span(V ) as V -lattice and to V as a basis of the lattice. Dimension of
a V -lattice is the number |V | of elements in its basis. We recall that for any finite subset V ′ ⊂ Zk,
there exist a set of independent vectors V ⊂ Zk such that Span(V ′) is V -lattice. A fundamental
domain D(V ) of a V -lattice is a minimum set such that its V -translations cover the entire Rk, i.e.

D(V ) =

{∑
v∈V

tvv, tv ∈ [0, 1)

}
.

The volume Vol(L) of a lattice L is the volume of its fundamental domain. Let us note that V -
lattice can also be U -lattice for some other basis U . Nethertheless, it is known that any two bases
of the same lattice are related by a unimodular matrix. In other words, let MV be the matrix
with rows being the basis vectors of V and let MU be defined analogously, then U is a basis of
the lattice if and only if V = SU for an integer |V | × |V |-matrix S with determinant ±1 (see [11,
Lemma 16.1.6]). Therefore, the volume is independent of the choice of the basis.

A lattice L̃ is a sublattice of a lattice L, if L̃ ⊂ L. If L̃ ⊂ L are lattices of the same dimension,
the ratio (L : L̃) := Vol(L)

Vol(L̃)
is always an integer, which is called the index of L̃. If inclusion L̃ ⊂ L

is proper, then (L̃ : L) > 1. Indeed, let V and Ṽ be arbitrary bases of L and L̃ correspondingly
and let MV and MṼ be defined as above. Since L̃ is a sublattice, every vector from V is a
linear combination over Z of vectors from Ṽ . In other words, there is an integer (not necessarily
unimodular) |V | × |V |-matrix S such that MV = SMṼ . So, the volume of D(V ) differs by the
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factor of | detS| from the volume of D(Ṽ ). Finally, | detS| ̸= 1 since, by [11, Lemma 16.1.6],
detS = ±1 implies that V is a basis of L̃ and, hence, L = L̃. For more details about lattices, see,
e.g., [22, 11].

3 Lower bound

In this section we prove the following unabbreviated version of the lower bounds from Theorem 1.1.

Theorem 3.1. Let dn be even, d = d(n) ≥ 3, Gn ∼ Gn,d.

• There exist a positive sequence δn = o(1) and a constant c > 0 such that the following bound
holds: if d ≤ (2 − δn) lnn/ ln lnn, then S(Gn) ≥ cn1−2/d whp.

• For every δ > 0, there exists C > 0, such that the following bound holds: if d > (2 +
δ) lnn/ ln lnn, then S(Gn) ≥ n/w whp, where w is the unique solution of the equation
w lnw = C ln2 n/d.

Proof of the lower bounds in Theorem 1.1. The lower bounds for d ≤ (2 − δn) lnn/ ln lnn follow
immediately. We then observe that the bound S(Gn) ≥ n/(lnn)1+o(1) actually holds whp for all
d = (2 ± o(1)) lnn/ ln lnn — this follows from Theorem 3.1 and the coupling (G1

n ∼ Gn,d1 ,G
2
n ∼

Gn,d2), where d1 = Θ(lnn/ ln lnn), d1 < d2 < d1(1 + o(1)), and G1
n ⊂ G2

n whp [12, Theorem 7].
This gives the required bounds:

• S(Gn) = Ω(n/ ln2 n) whp for all d ≥ lnn/ ln lnn,

• S(Gn) = Θ(n) whp for all d = Ω(ln2 n), and

• S(Gn) = n(1 −O(ln2 n/d)) whp for all d ≫ ln2 n.

The rest of the section is devoted to the proof of Theorem 3.1. One of the main challenges here
is to reduce the set of groups in order to apply the union bound over H. We actually do this by
imposing some requirements on H that do not affect the union of events. Namely, in Claim 3.2
below we show that any abelian group H and an injection A : [n] → H can be replaced by some
canonical H̃ and Ã : [n] → H̃ such that

|{Ã(e) : e ∈ E(Gn)}| ≤ |{A(e) : e ∈ E(Gn)}|.

Then, in Claim 3.3 we show an upper bound on the number of canonical groups H̃. We will use
these claims to conclude the proof of Theorem 3.1 in Section 3.2.

3.1 Reduction

Let us recall that any abelian group (H,+) can be trivially considered as a Z-module:

• for h ∈ H, let 0Z · h := 0H ,

• for an integer z > 0, let z · h := h + . . . + h, and

• (−z) · h := −(z · h).
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Thus, for any k > 0, any f = (z1, . . . , zk) ∈ Zk can be viewed as a Z-module homomorphism
f : Hk → H, i.e. for (a1, . . . , ak) ∈ Hk, we define f · (a1, . . . , ak) :=

∑k
i=1 zi · ai.

Let us note, that for any injection A : [n] → H, we can consider instead an injection Ã(x) :=
A(x) − A(1). Indeed, the sum-sets for both injections would have exactly the same cardinality,
for any graph G on [n], since, for any e1, e2 ∈ E(G), A(e1) ̸= A(e2) if and only if Ã(e1) ̸= Ã(e2).
Therefore, in what follows, without loss of generality, we assume that A(1) = 0H .

Claim 3.2. Let D ≥ 1 and let G be a connected graph on [n] with diameter less than D. Then,
for any abelian group (H,+) and any injection A : [n] → H such that A(1) = 0H , the sum-set
A(E(G)) =: {a1, . . . , ak} satisfies the following. Let {e1, . . . , ek} be the standard basis in Zk. Then
there exist

C1 vectors f1, . . . , fm ∈ Zk with |ft|1 ≤ 3D, for every t ∈ [m], where m = |E(G)| − (n− 1), and

C2 an injection Ã : [n] → H̃, where H̃ = Zk/Span({f1, . . . , fm}),

such that the quotient map π : Zk → H̃ satisfies Ã(E(G)) ⊆ π({e1, . . . , ek}).

Proof. Let φ : {e1, . . . , ek} → {a1, . . . , ak} denote the ‘identity’ bijection, defined by φ(ei) = ai for
all i ∈ [n]. Let us fix an arbitrary spanning tree T of G such that the distance from the vertex
1 to all the other vertices is less than D. Hence, between any two vertices in T there is a unique
path of length less than 2D.

Let us define an auxiliary function A′ : [n] → Zk recursively: First, we let A′(1) = 0Zk and
then, at every step ℓ, we define A′(v) for all vertices v that are at distance exactly ℓ in T from 1.
Assume that ℓ ≥ 1 and that A′(v) is defined for all v such that dT (v, 1) ≤ ℓ− 1. Now, fix a vertex
v such that dT (v, 1) = ℓ and let u be the neighbour of v that belongs to the path that joins v and
1 in T . We then define A′(v) in the following way:

A′(v) := φ−1
(
A
(
{u, v}

))
− A′(u). (1)

Let us recall that our goal is to define H̃ and an injection Ã : [n] → H̃ so that |Ã(E(G))| ≤
|A(E(G))|. In fact, the function A′ that we have just defined is an injection and it satisfies
|A′(E(T ))| ≤ |A(E(T ))|. Nevertheless, a similar inequality may not hold for the entire set of edges
of the graph G. In order to overcome this issue, we will define H̃ as a quotient subspace of Zk

(satisfying C1 and C2), and then set Ã := π ◦ A′, where π is the respective quotient map.
As required in the claim, we will first define vectors f1, . . . , fm. Then we will set H̃ :=

Zk/Span({f1, . . . , fm}) and, for the quotient map π : Zk → H̃, we will define Ã = π ◦ A′. Let
g1, . . . , gm be all the edges from E(G) \E(T ). An ideal scenario for us is when, for every edge gt ∈
E(G) \ E(T ), we have that A′(gt) = φ−1(A(gt)). Indeed, in this case, A′(E(G)) = φ−1(A(E(G))).
However, this might not hold, and so we set

ft := A′(gt) − φ−1(A(gt)), (2)

and then

Ã(gt) = π(A′(gt)) = π(ft) + π(φ−1(A(gt)))

= π(φ−1(A(gt))) ∈ π(φ−1({a1, . . . , ak})) = π({e1, . . . , ek}),

as needed.
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Let us stress that the choice of vectors ft has a natural interpretation in terms of the funda-
mental group π1(G) of the 1-dimensional clique complex of G. Indeed, for every loop π1(G, 1)
based at 1, the alternating sum of A({u, v}) over the edges {u, v} of the loop, equals 0. As our
aim is to bound the cardinality of A(E(G)), the following question arises: for an arbitrary map-
ping Ae : E(G) → H, does there exist a (not necessarily injective) mapping Av : E(G) → H
such that Av(1) = 0 and Av({x, y}) = Ae({x, y}) for all edges {x, y} ∈ E(G)? It is well known
that the answer is positive if and only if, for any loop from π1(G, 1), its alternating sum is zero.
Since π1(G) is isomorphic to the free group generated by the edges g1, . . . , gm, the requirements
Ã(f1) = . . . = Ã(fm) = 0 that define the kernel are, in a sense, weakest possible.

We have already shown that Ã(g) ∈ π({e1, . . . , ek}), for every edge g ∈ E(G)\E(T ). The same
statement trivially holds for every edge g ∈ E(T ):

Ã(g) = π(A′(g))
(1)
= π(φ−1(A(g))) ∈ π(φ−1({a1, . . . , ak})) = π({e1, . . . , ek}).

So, it remains to prove the following assertions from C1 and C2:

• |ft|1 ≤ 3D, for every t ∈ [m];

• Ã is an injection.

We start with the first assertion. By the definition (1), for any edge {u, v} ∈ E(T ), there exists
i ∈ [k] such that A′(u) + A′(v) = ei. So, |A′(u)|1 and |A′(v)|1 differ by one. By induction on the
distance from the vertex 1 of the tree T , we get that every vertex u ∈ [n] has

|A′(u)| ≤ dT (1, u) + |A′(1)|1 < D,

as |A′(1)|1 = 0. So, by the definition (2), for any t ∈ [m], the respective edge gt = {u, v} of G, and
large enough n,

|ft|1 ≤ |A′(gt)|1 + |φ−1(A(gt))|1 = |A′({u, v})|1 + 1 ≤ |A′(u)|1 + |A′(v)|1 + 1 < 2D + 1 ≤ 3D,

as required.
In order to prove that Ã is an injection, let us show the following auxiliary statements:

S1 A′(i) · (a1, . . . , ak) = A(i) for every i ∈ [n],

S2 ft · (a1, . . . , ak) = 0H for every t ∈ [m],

S3 π−1
(
Ã(i)

)
· (a1, . . . , ak) is well-defined and equals A(i) for every i ∈ [n].

Due to the definition of the dot product, for any j ∈ [k],

φ−1(aj) · (a1, . . . , ak) = ej · (a1, . . . , ak) = aj. (3)

We prove S1 by induction on the distance ℓ between the considered vertex i and the vertex 1
in the tree T . For ℓ = 0,

A′(1) · (a1, . . . , ak) = 0Zk · (a1, . . . , ak) = 0H = A(1).
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Now, suppose ℓ > 0 and that S1 is proven for all vertices at distance at most ℓ− 1 from 1. Let i
be a vertex with dT (1, i) = ℓ, and let j be its neighbour in T with dT (1, j) = ℓ− 1. Then, S1 holds
for j and, hence,

A′(i) · (a1, . . . , ak)
(1)
=

(
φ−1

(
A
(
{i, j}

))
− A′(j)

)
· (a1, . . . , ak)

(3)
= A({i, j}) − A(j) = A(i),

completing the proof of S1.
S2 holds since, for any t ∈ [m], by the definition (2),

ft · (a1, . . . , ak) = A′(gt) · (a1, . . . , ak) − φ−1(A(gt)) · (a1, . . . , ak)
S1,(3)

= A(gt) − A(gt) = 0H .

Finally, let us prove S3. First, note that π−1
(
Ã(i)

)
· (a1, . . . , ak) is well-defined, since any two

vectors from π−1
(
Ã(i)

)
differ by a vector f ∈ Span({f1, . . . , fm}) and, by S2, f ·(a1, . . . , ak) = 0H .

Now, since A′(i) ∈ π−1
(
Ã(i)

)
, we get

π−1
(
Ã(i)

)
· (a1, . . . , ak) = A′(i) · (a1, . . . , ak)

S1
= A(i),

completing the proof of S3.
The fact that Ã is an injection follows immediately from S3. Indeed, for any u, v ∈ [n], u ̸= v,

the equality Ã(u) = Ã(v) implies A(u) = A(v) by S3, which is impossible since A is an injection.
This completes the proof of the claim.

Claim 3.3. There exists C > 0 such that the following holds. Let k,D,m ≥ 2 be integers. Let

F := {Span(f1, . . . , fm) | ft ∈ Zk, |ft|1 < 3D, for t ∈ [m]}. (4)

Then |F| ≤ kC·kD logD.

Proof. Consider an arbitrary set F := {f1, . . . , fm} such that ft ∈ Zk, |ft|1 < 3D, for t ∈ [m]. It
is sufficient to prove that there exists a set S ⊂ Zk such that

• Span(S) = Span(F );

• |s|1 ≤ 3D, for every s ∈ S;

• |S| ≤ k(2 + logD).

Indeed, for a large enough constant C0, there are in total at most

N :=
∑

s≤min{k,3D}

(
k

s

)(
3D + s

s

)
2s ≤

∑
s≤3D

ks

s!
· 23D+2s ≤ (C0k)3D

vectors in Zk with L1-norm not exceeding 3D. So, |F| does not exceed the number of different
sets S described above which, in turn, does not exceed

1 + N + . . . + N ⌊k(2+logD)⌋ < N ⌊k(2+logD)⌋+1 ≤ (C0k)C1Dk logD ≤ kCkD logD,

for some constants C > C1 > 0.
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For a given set F , we construct the set S as follows. Start by selecting r := rank(Span(F ))
linearly independent vectors from F and include them in S. Denote this initial set as Sr. We then
construct sets Sr, Sr+1, . . . one by one. Suppose we have already constructed a set St, t ≥ r. In
order to construct St+1, arbitrarily select an element from F \ St and add it to St such that the
span of the new set, Span(St+1), is strictly larger than Span(St). If no such element can be chosen,
terminate the process and set S = St. Since S ⊂ F and Span(S) = Span(F ), it remains to prove
that t ≤ k(2 + logD).

Consider the lattice Lr spanned by Sr. Observe that Vol(Lr) ≤ (3D)r. It remains to recall
that the volume of any lattice is an integer and that adding any element that changes the lattice
reduces the volume by at least half. Then the process has to terminate in at most

log((3D)r) ≤ k(log 3 + logD) < k(2 + logD)

steps, completing the proof.

3.2 Proof of Theorem 3.1

We prove Theorem 3.1 separately for d ≤
√
n and d >

√
n. The reason for such distinguishing is

that the asymptotic estimations from Claim 2.1 are valid only when d = O(
√
n). Nevertheless,

for large d, we may rely on sandwiching results from [15, 16] and reduce the problem to binomial
random graphs that are simpler to analyse. Therefore, the argument in the case d >

√
n is

conceptually the same, while technical details are significantly easier. For the sake of simplicity
of exposition, we start from assuming that Gn is a random graph on [n] and do not specify its
isomorphism-invariant probability distribution Pn. We only assume that Pn satisfies the following
requirements:

• whp Gn is Hamiltonian;

• whp Gn is connected and has diameter less than dn, where dn is some specified sequence of
positive integers.

Let Cn be the set of all n-cycles on [n]. For C ∈ Cn, let GC
n be distributed according to Pn

conditioned on C ⊆ GC
n . Below we show, that, in order to prove Theorem 3.1, it is sufficient to

establish strong enough upper bounds on the probability that Theorem 3.1 does not hold for the
random graph GC

n , for any cycle C ∈ Cn.
Let An be an arbitrary isomorphism-invariant set of graphs on [n]. Denote by Dn the set

of all connected graphs on [n] with diameter at most dn. Let the cycle C0 consist of all edges
{1 + i, 1 + (i⊕ 1)}, i ∈ {0, . . . , n− 1}, where ⊕ is the summation modulo n. Then

P(Gn ∈ An) ≤ P(Gn ∈ An, Gn ∈ Dn, Gn is Hamiltonian) + o(1)

≤
∑
C∈Cn

P(Gn ∈ An, Gn ∈ Dn, C ⊆ Gn) + o(1)

≤
∑
C∈Cn

P(GC
n ∈ An,G

C
n ∈ Dn) · P(C ⊆ Gn) + o(1)

= P(GC0
n ∈ An, G

C0
n ∈ Dn) ·

∑
C∈Cn

P(C ⊆ Gn) + o(1)

= P(GC0
n ∈ An, G

C0
n ∈ Dn) · P(C0 ⊆ Gn) · n!

2n
+ o(1).
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In what follows, we omit the subscript 0 and write C = C0. We now choose a positive integer
k∗ = k∗(n) that will be specified later and set An = {G : S(G) < k∗}. In order to complete the
proof of the theorem, we will show that, for specified k∗, dn, and Pn,

P(GC
n ∈ An, G

C
n ∈ Dn) = o

(
(nn · P(C ⊆ Gn))−1

)
. (5)

For k ≤ k∗, let Bk be the event that there exist an abelian group H and an injection A : [n] → H
such that |A(E(GC

n ))| = k. Due to Claim 3.2, the event ∪k≤k∗Bk ∩ {GC
n ∈ Dn} implies ∪k≤k∗B′

k,
where B′

k is the event that there exist an abelian group H̃ and an injection Ã : [n] → H̃ satisfying
the properties from the conclusion of Claim 3.2 with D := dn. In particular, for the set F defined
in (4), there exists F ∈ F := F(k) such that H̃ ∼= Zk/Span(F ). We also note that the event Bk is
monotone in k, that is ∪k≤k∗B′

k = B′
k∗ . Therefore, in what follows we set k = k∗.

Let F ∈ F(k). Set H̃ = Zk/Span(F ). Let π : Zk → H̃ be the natural projection and
{e1, . . . , ek} be the standard basis of Zk. Let

A = A(H̃) := {Ã : [n] ↪→ H̃ | Ã(E(C)) ⊆ {π(e1), . . . , π(ek)}, Ã(1) = 0H̃}.

Note that |A| ≤ kn−1, since we can determine the value of Ã on the vertices of the cycle one by one,
starting from Ã(1) = 0H̃ : at the i-th step, once we know Ã(i), then Ã(i+1) can only be equal to one
of the following k values: π(e1) − Ã(i), . . . , π(ek) − Ã(i). Therefore, due to Claim 3.3, there exists
a constant c > 0 such that it suffices to prove that for an arbitrary tuple (F ∈ F(k), Ã ∈ A(H̃)),

P
(
Ã
(
E(GC

n )
)
⊆ {π(e1), . . . , π(ek)}

)
= o

(
k−c·k·D·logD−n · (nn · P(C ⊆ Gn))−1

)
, (6)

since this bound implies (5).
We now consider the case d >

√
n and recall that, due to [15, Theorem 1.2], [16, Theorem

1.5(c)], there exists p = (1 − o(1)) d
n

and a coupling (G1
n,G

2
n) where G1

n ∼ G(n, p) and G2
n ∼ Gn,d

such that G1
n ⊆ G2

n whp. In order to complete the proof of Theorem 3.1 in this case, it is
sufficient to show that (6) holds for Gn ∼ G(n, p) for every p = (1 − o(1)) d

n
, since, for such p,

Gn is Hamiltonian whp [7]. We first observe that P(C ⊆ Gn) = pn ≤ (d/n)n. Moreover, since
whp Gn has diameter at most 3 [7], we can set D = 4. We also set k :=

⌊
n(1 − ln2 n/d)

⌋
, with

a room for improvement. Then, it remains to show that, for any c > 0 and an arbitrary tuple
(F ∈ F(k), Ã ∈ A(H̃)),

P
(
Ã
(
E(GC

n )
)
⊆ {π(e1), . . . , π(ek)}

)
= o

(
n−cn

)
. (7)

For every i ∈ [n], the number of vertices j ∈ [n] such that Ã({i, j}) /∈ {π(e1), . . . , π(ek)} is at
least n − k ≥ n ln2 n/d. So, there are at least (n lnn)2/(2d) edges {i, j} such that Ã({i, j}) /∈
{π(e1), . . . , π(ek)}. We get

P
(
Ã
(
E(GC

n )
)
⊆ {π(e1), . . . , π(ek)}

)
≤ (1 − p)(n lnn)2/(2d) ≤ exp

(
−(1 − o(1))

n ln2 n

2

)
= o(n−cn),

as required.
We now switch to the case d ≤

√
n and set Pn := Gn,d. We have to show that (6) holds for

Gn ∼ Gn,d. In this case, D = dn = β lnn
ln d

, where the constant β > 0 comes from Theorem 2.2. For
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G′
n ∼ Gn,d−2,

P(C ⊆ Gn) =
gd−2(n) · P(E(G′

n) ∩ E(C) = ∅)

gd(n)
Claim 2.1

≤ (nd)n(d(d− 1))n

(n(d− 2))2n
· eO(d2)

d≥3

≤ (6d)n exp(O(d2))/nn.

Let us define k. Let α be a large enough constant and δn = o(1) be a sequence to be chosen later.
Let a positive integer k be the biggest integer satisfying the inequalities:

• n > αkd/(d−2), if d ≤ (2 − δn) lnn/ ln lnn;

• n > wk, if (2 + δ) lnn/ ln lnn < d ≤
√
n, where w is the unique solution of the equation

w lnw = α ln2 n/(d− 2).

Due to (6), it suffices to prove that, for every c > 0, there exists α such that, for an arbitrary tuple
(F ∈ F(k), Ã ∈ A(H̃)),

P
(
Ã
(
E(GC

n )
)
⊆ {π(e1), . . . , π(ek)}

)
= o

(
k−c·k·D·logD−n · d−n · e−c(d2+n)

)
. (8)

Let us show that the following two claims conclude the proof.

Claim 3.4. Let G′
n ∼ Gn,d−2.

P(E(G′
n) ∩ E(C) = ∅) = exp(−(d− 2) + O(d/n)). (9)

Claim 3.4 follows immediately from Claim 2.1.

Claim 3.5. Let α be a large positive constant. Let G′
n ∼ Gn,d−2. Then,

1. for all large enough n and d ≤ (2 − δn) lnn/ ln lnn, it holds that

P
(
Ã(E(G′

n)) ⊆ {π(e1), . . . , π(ek)}
)

≤ e−2(c+1)dnk−n; (10)

and

2. for d ≥ (2 + δ) lnn/ ln lnn, we have

P
(
Ã(E(G′

n)) ⊆ {π(e1), . . . , π(ek)}
)

≤ e−c(d2+n)k−n−ck lognd−n.

Indeed,

P
(
Ã
(
E(GC

n )
)
⊆ {π(e1), . . . , π(ek)}

)
= P

(
Ã (E(G′

n)) ⊆ {π(e1), . . . , π(ek)} | E(G′
n) ∩ E(C) = ∅

)

≤
P
(
Ã (E(G′

n)) ⊆ {π(e1), . . . , π(ek)}
)

P(E(G′
n) ∩ E(C) = ∅)

Claim 3.4
< e(d−2)+o(1) · P

(
Ã (E(G′

n)) ⊆ {π(e1), . . . , π(ek)}
)
.
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As o(1) < 2 for large n, it remains to show that

P
(
Ã (E(G′

n)) ⊆ {π(e1), . . . , π(ek)}
)

= o
(
k−c·k·D·logD−n · d−n · e−c(d2+n)

)
.

We further apply Claim 3.5 and consider separately the two cases from the claim.

1. In the case d ≤ (2 − δn) lnn/ ln lnn, it suffices to show that

e−dn = o(k−c·k·D·logD),

since e−(2c+1)dnk−n < k−nd−ne−c(d2+n), for d ≥ 3. Then it suffices to show

c · k ·D · logD · ln k

dn
≤ 1/2.

The bound follows immediately for d ≤ lnn
2 ln lnn

and large n, since

k

n
≤ n−2/d ≤ exp

(
− 2 lnn

lnn/2 ln lnn

)
= exp(−4 ln lnn) = ln−4 n,

and D = β log n/ log d. For the remaining d ∈
(

lnn
2 ln lnn

, (2−δn) lnn
ln lnn

]
, we have D ≤ O

(
log k
log d

)
≤

O
(

logn
log d

)
, k/n ≤ α−1 exp(−2 lnn/(d− 2)), and ln k/d ≤ lnn/d ≤ 4 log log n. So,

c · k ·D · logD · ln k

dn
= O

(
α−1 exp(−2 lnn/d) · log log n · log n

log d
· log

(
log n

log d

))
= O

(
α−1 exp(−2 lnn/d) · log log n · log n

)
= O(α−1),

where the last equality holds for d ≤ 2 lnn
(1+ε) ln lnn

, for any ε > 0, and, in particular, it holds for

d ≤ (2−δn) lnn
ln lnn

for some specific δn = o(1) that approaches 0 sufficiently slow. So, taking α suffi-
ciently large, we conclude the proof in the first case.

2. For the case d > (2 + δ) lnn/ ln lnn, note that D logD = O(log n). The bound (6) immedi-
ately follows.

It remains to prove Claim 3.5.

Proof of Claim 3.5. Let GÃ be the graph on [n] with every edge e such that Ã(e) ∈ {π(e1), . . . , π(ek)}.

By definition, the degree of every vertex in GÃ does not exceed k. Also, C is a subgraph of GÃ

and the event {Ã(E(G′
n)) ⊆ {π(e1), . . . , π(ek)}} can be written as {G′

n ⊆ GÃ}.
Due to Claim 2.1, the number of (d− 2)-regular graphs on [n] equals

gd(n) ≥ exp

(
(d− 2)n

2
ln

n

d− 2
+

n(d− 2)

2
−O(n ln d)

)
,

for n large enough. Moreover, since a graph on [n] with maximum degree at most k has at most

kn/2 edges, the number of (d− 2)-regular subgraphs of GÃ is at most(
kn/2

(d− 2)n/2

)
≤ exp

(
(d− 2)n

2
ln

k

d− 2
+

(k − d + 2)n

2
ln

(
1 +

d− 2

k − d + 2

))
≤ exp

(
(d− 2)n

2
ln

k

d− 2
+

n(d− 2)

2

)
,
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for n large enough. Therefore,

P(G′
n ⊆ GÃ) ≤ exp

(
n(d− 2)

2
ln

k

d− 2
− n(d− 2)

2
ln

n

d− 2
+ O(n ln d)

)
= exp

(
n(d− 2)

2
ln

k

n
+ O(n ln d)

)
.

1. If d ≤ (2 − δn) lnn/ ln lnn, then k/n ≤ (αk2/(d−2))−1. In this case, for sufficiently large
α ≥ α(c),

P(G′
n ⊆ GÃ) ≤ exp

(
−n ln k − n(d− 2) lnα

2
+ O(n ln d)

)
≤ e−2(c+1)dnk−n,

as required.

2. Let d > (2 + δ) lnn/ ln lnn. Recall n
k
> w > n

k+1
, where w lnw = α ln2 n/(d− 2). Thus,

(d− 2) lnw =
α ln2 n

w
= Ω(lnn),

implying

P(G′
n ⊆ GÃ) ≤ exp

(
−n(d− 2)

2
lnw + O(n ln d)

)
,

where the first-order term satisfies the following:

n(d− 2) lnw = Ω(n lnn) ≫ n ln d and

n(d− 2) lnw ∼ k(d− 2)w lnw = αk ln2 n.

So, by choosing α sufficiently large, we achieve

exp

(
−δ

6
· n(d− 2)

2
· lnw

)
< e−c(d2+n)k−ck lognd−n.

It only remains to prove (1 − δ/3)n(d−2)
2

lnw > n lnn ≥ n ln k. Since w decreases with d and
achieves its maximum (1/(2 + δ) + o(1))α lnn when d = (2 + δ) lnn/ ln lnn. We get

n(d− 2) lnw

2n lnn
=

α lnn

2w
≥ 1 + o(1)

2/(2 + δ)
>

(
1 − δ

3

)−1

,

for sufficiently small δ and large n.
We finally get

P(G′
n ⊆ GÃ) ≤ e−c(d2+n)k−ck lognd−n exp

(
−(1 − δ/6) · n(d− 2) lnw

2
+ O(n ln d)

)
< e−c(d2+n)k−ck lognd−n exp

(
−1 − δ/6

1 − δ/3
· n ln k + O(n ln d)

)
< e−c(d2+n)k−n−ck lognd−n,

for sufficiently large α ≥ α(c, δ), as required.

This completes the proof of Theorem 3.1.
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4 Proof of Theorem 1.2

We prove the first part of Theorem 1.2 in Section 4.1. The proof is based on a modification of
a construction of a sparse universal graph for the family of all n-vertex graphs with maximum
degree d given in [2]. The new modification transforms this construction to a Cayley sum-graph.
Indeed, Theorem 1.2 part 1 would immediately follow from the fact that there exists a Cayley
sum-graph of degree O(n1−2/dd2(lnn)2+4/d) which is universal for all graphs on [n] with maximum
degree at most d. This fact is stated as Theorem 4.1 in Section 4.1. Its proof largely follows
the strategy from [2]: start from a sparse expander Z and then construct a graph F = (Zd, E),
where two vertices are adjacent whenever at least two pairs of their corresponding coordinates
are adjacent in Z. The latter condition ensures that, for every graph G with maximum degree
d, its (appropriately defined) random embedding into F is nearly injective — all pre-images have
size O(d ln2 n). Consequently, the blow-up graph Γ, obtained by replacing every edge of F with
a large enough balanced complete bipartite graph, must contain G as a subgraph. The key novel
ingredient in our proof is ensuring that Γ is a Cayley sum-graph of the required degree. Notably,
each stage of the construction preserves the Cayley sum-graph property, so the only remaining task
is to verify this for the initial expander Z. For this, we employ the Cayley expander construction
from [3]. An intriguing feature of the proof is that the construction of the universal graph is
explicit, whereas the embedding of any n-vertex graph G with maximum degree at most d in it is
probabilistic.

As for the second part of Theorem 1.2, we show that, for every graph G with maximum degree
d, any abelian group H of order n gives the required bound, i.e. SH(G) ≤ n − ⌈n/(2d)⌉ + 1.
Otherwise, any set U ⊂ H of size ⌈n/(2d)⌉− 1 has a representative in {A(e) : e ∈ E(G)} for every
injection A : [n] → H. This contradicts the fact that any two graphs on [n] with small enough
maximum degrees can be placed edge disjointly, since any embedding of the Cayley sum-graph of
H over U into V (G) has edges in common with G — see the full proof in Section 4.2.

4.1 Proof of Theorem 1.2, part 1

The first part of Theorem 1.2 follows from the following assertion, that we prove in this section.

Theorem 4.1. Let 3 ≤ d = d(n) ≤ lnn/ ln lnn. There is an absolute constant C > 0, sequences
t1 = t1(n), t2 = t2(n), q = q(n), and a Cayley sum-graph Γ = Γ(n) of Zt1

2 × Zt2
q such that the

following is true for every positive integer n.

• The size of the generating set of Γ is at most Cn1−2/dd2(lnn)2+4/d.

• Γ contains every graph with n vertices and maximum degree at most d as a subgraph.

Therefore, the Cayley sum-graph Γ(n) is universal for the family of all graphs with n vertices
and maximum degree d.

Remark. When d is a constant, the statement and the proof of Theorem 4.1 can be slightly
simplified. In particular, we may set t2 = 0 and omit the sequence q(n) in the statement.

Proof of Theorem 4.1. We first describe the graph Γ and then show that it can be realised as a
Cayley sum-graph and that it is universal.
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Construction of Γ. Recall that an (m, r, λ)-graph is an r-regular graph on m vertices in which
the absolute value of any nontrivial eigenvalue is at most λ. We need the following result, which
is a special case of [3, Proposition 4].

Lemma 4.2 ([3]). There exists an absolute constant b so that for every positive integer p, there is
a Cayley graph Z(p) of Zp

2 with a loop at every vertex, which is an (m = 2p, r, r/2)-graph, where
r ≤ bp = b log2 |Z

p
2|. Such a graph can be constructed explicitly.

Note that for the groups Zp
2 the notions of a Cayley graph and a Cayley sum-graph are identical.

Therefore Z(p) is also a Cayley sum-graph.
In the construction below, we will several times apply the direct product operation. Let us

recall that the direct product G1 ⊗ G2 of graphs G1, G2 is the graph on V (G1) × V (G2), where
vertices (v1, v2), (u1, u2) are adjacent if and only if v1 ∼ v2 and u1 ∼ u2. Everywhere below, Kq is
a q-clique with a loop at every vertex. In particular, G⊗Kq is obtained from a graph G that has a
loop at every vertex by replacing every vertex with a copy of Kq and by drawing all edges between
two cliques whenever the respective vertices are adjacent in G. We will rely on the following fact
— see, e.g., [5] for a comprehensive survey on spectra of graph products.

Claim 4.3. If G1 is an (m, r, λ)-graph, then G1 ⊗Kq is an (mq, rq, λq)-graph.

Let c be a large enough constant. Given a (large) integer n, let m be the smallest integer such
that there exist a positive integer p and a positive odd integer q ≤ d satisfying

µ :=

(
n

cd ln2 n

)1/d

≤ 2p · q = m.

Let Z(p) be a Cayley (2p, r, r/2)-graph as in Lemma 4.2. Thus r ≤ bp. Let Z = Kq ⊗ Z(p). In
particular, Z has a loop at every vertex. Due to Claim 4.3, Z is an (m, rq, rq/2)-graph

1. with m ≤ µ(1 + 12/d) vertices;

2. with degree rq ≤ bpq ≤ bpd = O(pd) = O(lnn);

3. that can be realised as a Cayley sum-graph of the group Zp
2 × Zq.

To prove Property 1, let us fix the smallest integer p′ such that 2p′d ≥ µ. Then, let us fix the
smallest integer q′ such that 2p′q′ ≥ µ. Since d ≤ lnn/ ln lnn and µ ≥ (1 − o(1)) lnn, we get that
p ≥ p′ > 0. Therefore, µ ≤ m ≤ 2p′q′. Moreover, since 2p′−1d < µ, we get that q′ > d/2 and
so, 2p′q′ = 2p′(q′ − 1) q′

q′−1
< µ q′

q′−1
< µ d

d−2
. Therefore, m < µ(1 + 2/(d − 2)) < µ(1 + 12/d), as

needed. Property 3 follows from the fact that every vertex of Z is a vector {u, v} with v ∈ Zp
2,

where {u1, v1}, {u2, v2} are adjacent iff v1 + v2 belongs to the generating set of Z(p).
Let F = F (n) be the graph with V (F ) = Zd, where two vertices (x1, . . . , xd) and (y1, . . . , yd)

are adjacent iff there are two indices 1 ≤ i < j ≤ d so that {xi, yi} and {xj, yj} are edges of Z. Due
to the first property of Z, the graph F has md = Θ(n/(d ln2 n)) vertices and, due to the second
property of Z, the graph F is regular of degree at most md−2(rq)2

(
d
2

)
. Note also that it has a loop

in each vertex, as so is the case with Z. Finally, the desired graph Γ is defined as K2s ⊗ F , where
2s is the smallest power of 2 larger than 1.1cd ln2 n.
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Representing Γ as a Cayley sum-graph. Let us first prove that Γ is a Cayley sum-graph
of Zt1

2 × Zt2
q , whose generating set has size at most Cn1−2/dd2(lnn)2+4/d. It is not difficult to see

that we may take t1 = pd + s and t2 = d. Indeed, each vertex of Γ is a vector consisting of d + 1
blocks: (x1, x2, . . . , xd, w). Here each xi ∈ Zp

2 × Zq is of length p + 1 and w is a binary vector
of length s. Two vertices (x1, x2, . . . , xd, w) and (x′

1, x
′
2, . . . , x

′
d, w

′) are adjacent iff there are two
indices 1 ≤ i < j ≤ d so that xi + x′

i and xj + x′
j are in the generating set of the graph Z (and the

sums in all the other blocks are arbitrary). Moreover, every vertex in Γ has degree at most

2smd−2r2q2
(
d

2

)
= O

(
n1−2/dd2+2/d(lnn)2+4/d

)
= O

(
n1−2/dd2(lnn)2+4/d

)
,

as needed.

Universality of Γ. The following lemma completes the proof of Theorem 4.1.

Lemma 4.4. Let G be an arbitrary graph with n vertices and maximum degree at most d. Then
there is a homomorphism f : V (G) 7→ V (F ) from G to F = F (n) so that for, every vertex
v ∈ V (F ),

|f−1(v)| ≤ 1.1cd ln2 n. (11)

Indeed, take any graph G on n vertices and with maximum degree at most d and consider a
homomorphism f : V (G) 7→ V (F ) as in Lemma 4.4. Then, we may define an injective homomor-
phism f ′ : V (G) 7→ Γ from G to Γ = Γ(n) in the following way. For every v ∈ V (F ) such that
f−1(v) ̸= ∅, take a set Xv of size f−1(v) from the 2s-clique of Γ = K2s ⊗ F containing all the
vertices {·, v} and set f ′(f−1(v)) = Xv.

The proof of Theorem 4.1 is completed using Lemma 4.4. In what follows we prove this
lemma.

Proof of Lemma 4.4. While the proof of Lemma 4.4 closely follows the argument in [2, Theo-
rem 4.1], we include the full details here for completeness.

The proof of this lemma starts with the decomposition result [2, Theorem 3.1] that shows that
G can be covered by d spanning subgraphs G1, . . . , Gd, so that every edge is covered precisely
twice, and each of Gi can be mapped homomorphically to a path Pn with a loop at each vertex,
such that the inverse image of any vertex of Pn consists of at most 4 vertices. For i ∈ [d], let gi be
such a homomorphism from Gi to Pn.

Let f1, . . . , fd be independent random walks on Z. They can be viewed as random embeddings
of Pn = (v1, . . . , vn) into Z: first, fi(v1) is a uniformly random vertex of Z. Then, for every j ∈
{2, . . . , n}, fi(vj) is a uniformly random neighbour of fi(vj−1). The desired homomorphism from
G to F is defined as follows: f(v) = (f1(g1(v)), . . . , fd(gd(v))). Let us observe that f is indeed a
homomorphism: if {u, v} ∈ E(G), then there exist 1 ≤ i < j ≤ d such that {u, v} ∈ E(Gi)∩E(Gj).
Therefore, {fi(gi(u)), fi(gi(v))} ∈ E(Z) and {fj(gj(u)), fj(gj(v))} ∈ E(Z). Due to the definition
of F , we get that {f(u), f(v)} ∈ E(F ). It only remains to show that f satisfies (11) for every
v ∈ V (F ), with positive probability.

Fix a vertex v = (x1, . . . , xd) ∈ V (F ) and let a > 0 be a large enough constant. Let us say
that U ⊂ V (G) satisfies the distance requirement, if, for every two vertices u, u′ ∈ U and every
i ∈ [d], the distance between gi(u) and gi(u

′) in Pn is at least a lnn. Due to the Hajnal-Szemerédi
Theorem [18], that asserts that the set of vertices of any graph with maximum degree smaller than
∆ can be partitioned into ∆ independent sets of equal size, we get that V (G) can be partitioned
into 8ad lnn sets of equal size satisfying the distance requirement. Indeed, it follows by applying
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this theorem to the graph on V (H), in which two vertices u, u′ are adjacent iff there exists an
i ∈ [d] such that the distance between gi(u) and gi(u

′) in Pn is smaller than a lnn. It is easy to
see that the maximum degree of this auxiliary graph is less than 8ad lnn.

It then remains to prove that, for every set U from the partition and every v ∈ V (F ), the
number of vertices from U that f maps to v is at most

1.1|U |
md

= 1.1
n

8ad lnn ·md
≤ 1.1 · c lnn

8a

with probability at least 1− 1/n2, and then apply the union bound over all 8ad lnn = o(n) sets U
in the partition and all md = o(n) vertices v ∈ V (F ).

For j ∈ [d], let Uj be the set of vertices u ∈ U such that fi(gi(u)) = xi for all i ∈ [j] and
let U0 = U . We are going to prove by induction that, for every j ∈ [d], |Uj| is stochastically
dominated by Bin(|U |, (1/m + 1/n4)j). The base of induction j = 0 is trivial. For the induction
step (0, . . . , j − 1) → j, we order all the vertices u1, . . . , ur of Uj−1, according to the position of
their images under gj on Pn. We recall that fj is a random walk on Z. For every s ∈ [r], assuming
that the values of fj(gj(u1)), . . . , fj(gj(us−1)) have been already explored, we note that, due to
the distance restriction, the walk performs at least 4 lnn steps in order to reach the “time step”
gj(us) ∈ Pn after the “time step” gj(us−1). Since Z is an (m, rq, rq/2)-graph, it is rapidly mixing
(see, e.g., [14, Proposition 3]): in particular, for large enough a, a lnn steps is enough to guarantee
that

P(fj(gj(us)) = xj | fj(gj(u1)) = . . . = fj(gj(us−1)) = xj)

= P(fj(gj(us)) = xj | fj(gj(us−1)) = xj) ≤ 1/m + 1/n4.

Therefore, |Uj| = |{s ∈ [r] : fj(gj(us)) = xj}| is stochastically dominated by Bin(|Uj−1|, 1/m +
1/n4), which is, by the induction assumption, stochastically dominated by Bin(|U |, (1/m+1/n4)j).

This concludes the proof. Indeed, since (1/m + 1/n4)d ≤ (1/m)d exp(md/n4) = (1/m)d +
o(1/n4), by the Chernoff bound [21, Theorem 2.1] and due to the bound m ≤ µ(1 + 12/d),

P(|Ud| > 1.1|U |/md) ≤ exp(−|U |/(300md)) ≤ exp(−c lnn/(e12 · 2400a)) = o(1/n2),

if c > e21 · a, say.

4.2 Proof of Theorem 1.2, part 2

Let us prove the following stronger statement: For every abelian group (H,+) of order n, every
graph G on [n] with maximum degree d, and every subset U of H of size ⌈n/(2d)⌉−1, there exists
a bijection f from [n] to H so that for every edge {u, v} ∈ E(G), the sum f(u) + f(v) is not in U .

Fix an abelian group H of order n, a graph G on [n] with maximum degree d, and a subset U
of H of size ⌈n/(2d)⌉−1. Let G′ be the graph obtained from the Cayley sum-graph of H, in which
h1, h2 are adjacent iff h1 + h2 ∈ U , by erasing all loops. The maximum degree of G′ is clearly
at most |U | < n/(2d). Since twice the product of the maximum degree of G′ and the maximum
degree of G is smaller than n, the complement of G′ contains an isomorphic copy of G — see [13,
Theorem 4.2], [27, Theorem 3]. According to the definition of G′, this embedded copy of G does
not have any sum in U , as required. This completes the proof.
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5 Discussions

The construction of an expander with a logarithmic sum-set presented in [1] is a Cayley sum-
graph, where the degree is chosen sufficiently large to ensure the desired expansion properties.
This approach does not yield sparse expanders with small sum-sets. Random graphs with the
same degrees have better expansion properties and less symmetries, which naturally leads to bigger
sum-sets. We suspect that Ramanujan graphs behave similarly to random regular graphs, i.e. that
they have sum-sets of polynomial size in n over any abelian group. More generally, for a fixed
constant d, it would be interesting to understand how S(G) depends on the spectral gap of a
d-regular expander graph G.

The upper and lower bounds provided by Theorems 1.2 and 3.1, respectively, exhibit different
asymptotic behaviours when d = O(log2 n). It remains an open question whether random d-regular
graphs attain the asymptotically maximum value of S(G) within the class of graphs with maximum
degree d in this regime. We are particularly interested in determining the correct asymptotic
behaviour for: (1) the minimum sum-sets of random regular graphs, and (2) the maximum S(G)
among graphs with maximum degree d.

Finally, we note that the proof strategy of Theorem 3.1 in the case d >
√
n can be applied

for any d ≫ log n since in this range the coupling of Gn,d with the ‘top layer’ of the ‘sandwich’
is known. It actually implies a slightly better lower bound for all d = exp(ω(log log n)): whp

S(Gn) = n
(

1 −O
(

ln2 n ln(1+lnn/ ln d)
d ln d

))
. In particular, whp S(Gn) = n(1 − O(lnn/d)) when d =

nΘ(1), making the second order terms in the lower and upper bounds differ by a O(log n)-factor.
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