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Abstract

Frankl, Füredi, Györi and Pach obtained fundamental results in extremal combi-

natorics, graph theory and discrete geometry. In this paper we describe solutions or

partial solutions of several problems in these areas. The problems considered deal with

bipartite coverings of graphs, triangle-free graphs of diameter 2, and geometric and

combinatorial designs and partical designs. This is a (short) sequel of several previous

papers of the same flavour. Each section here is essentially self contained, and can be

read separately.
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1 Introduction

The conference Summit280, celebrating the 70th birthday of Péter Frankl, Zoltán Füredi,

Ervin Györi and János Pach, took place in Budapest in July 2024. The remarkable contri-

butions of these four researchers to Extremal Combinatorics, Graph Theory and Discrete

Geometry had a profound impact on the development of modern discrete mathematics.

Their results, problems, papers and lectures form an ideal representation of the influen-

tial Hungarian school of Combinatorics. The present short article contains several recent

solutions or partial solutions of several problems in extremal combinatorics and geometry

that originated in this school. These are described in the following three sections, each of

which can be read separately. As the title of the paper suggests, this is a (short) sequel of

four previous papers [1], [2], [3], [4] of the same flavour.

In section 2 we consider bipartite coverings of graphs, extending old results of Hansel

and of Katona and Szemerédi, and slightly strengthening recent work of Kim and Lee.

In Section 3 we prove that for any 0 < ε < 1/6 and n > n0(ε), one can add to any

triangle-free graph on n vertices with maximum degree at most n1/2−ε less than 3n2−ε
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edges, transforming it to a triangle-free graph with diameter 2. This settles an open

problem of Erdős and Gyárfás and is closely related to a problem of Erdős and Pach and

to a result of Füredi and Seress.

In Section 4 we prove that there is a partial design with n vertices in which each block is

of size at least Ω(
√
n), so that every set that intersects all blocks contains at least Ω(log n)

points of one of them. We also show that the number of sequences n ≥ x1 ≥ x2 ≥ xm ≥ 2

so that there is a block design on n elements with blocks of sizes x1, x2, . . . , xm is at least

2Ω(n1/2 logn), significantly larger than the number of such sequences that correspond to

geometric designs that can be realized by points and lines in the Euclidean plane. This

settles two problems of Erdős.

2 Biparite coverings of graphs and multigraphs

2.1 Results

A bipartite covering H = {H1, . . . ,Hm} of a graph G on the set of vertices [n] =

{1, 2, . . . , n} is a collection of bipartite graphs Hi on [n], so that each edge of G belongs

to at least one of them. Note that each Hi is not necessarily a subgraph of G, the only

assumption is that it is a bipartite subgraph of the complete graph on [n]. The capacity

cap(H) of the cover is the sum
∑

i |V (Hi)| of the numbers of vertices of these bipartite

graphs. A known result of Hansel [15] is that the capacity of any bipartite covering of the

complete graph Kn on n vertices is at least n log2 n. This bound is tight when n is power

of 2.

In [20] Kim and Lee consider the analogous problem, where the complete graph Kn

is replaced by the complete multigraph Kλ
n in which every pair of distinct vertices is

connected by λ parallel edges. A bipartite covering here is a collection of bipartite graphs

so that each edge belongs to at least λ of them. They prove that the capacity of each

bipartite covering of Kλ
n is at least

max{2λ(n− 1), n[log n+ ⌊(λ− 1)/2⌋ log( log n
λ

)− λ− 1]},

where all logarithms here and in the rest of this section are in base 2. They also establish

an upper bound: there exists a bipartite covering of Kλ
n of capacity at most

n(log(n− 1) + (1 + o(1))λ log logn).

This shows that for λ = (log n)1−Ω(1) the smallest possible capacity is n log n+Θ(nλ log logn)

but leaves an additive gap of Ω(λn log logn) between the upper and lower bounds.

The proofs in [20] proceed by studying a more general problem regarding graphons.

Our first contribution in this section is a shorter combinatorial proof of the results above,

slightly improving the bounds. Let cap(n, λ) denote the minimum possible capacity of a

bipartite covering of Kλ
n .
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Theorem 2.1 (Lower bound). For positive integers n ≥ 2 and λ,

cap(n, λ) ≥ max{2λ(n− 1), n[log n+ ⌊(λ− 1)/2⌋ log(2 log n
λ− 1

)]}

Theorem 2.2 (Upper bound). Let k(n, λ) denote the minimum length of a binary error

correcting code with distance at least λ which has at least n codewords. Then cap(n, λ) ≤
n · k(n, λ). Therefore

1. For any n ≥ 2

cap(n, 2) ≤ n(⌈log n⌉+ 1) < n(log n+ 2).

2. For any n and λ ≤ 0.5 log n

cap(n, λ) ≤ n[log n+ (λ− 1)(log(
log n

λ− 1
) + 4)]

3. For any 0 < c < 1/2, and for λ ≥ c logn
1−H(c) where H(x) = −x log x− (1−x) log(1−x)

is the binary entropy function,

cap(n, λ) ≤ λ

c
n.

4. For any fixed λ there are infinitely many values of n so that

cap(n, λ) ≤ n[log n+ ⌊(λ− 1)/2)⌋ log logn+ 2].

Katona and Szemerédi [21] proved the following generalization of the result of Hansel,

dealing with the capacity of bipartite coverings of general graphs.

Theorem 2.3 ([21]). Let G be a graph on the set of vertices [n] and let d1, d2, . . . , dn

denote the degrees of its vertices. Then the capacity of any bipartite covering of G is at

least
n∑

i=1

log(
n

n− di
).

Our second contribution here is the following strengthening of this result.

Theorem 2.4. Let G be a graph on the set of vertices [n]. For each vertex i let αi denote

the maximum size of an independent set of G that contains the vertex i. Then the capacity

of any bipartite covering of G is at least

n∑
i=1

log(
n

αi
).
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Since it is clear that αi ≤ n−di for every i, this is indeed a strengthening of the Katona-

Szemerédi result (Theorem 2.3). The binomial random graph G = G(n, 0.5) is one example

for which Theorem 2.4 is strictly stronger than Theorem 2.3. Indeed, with high probability

for G = G(n, 0.5), di = (1/2 + o(1))n for every i and αi = (2 + o(1)) log n for every i.

Therefore the lower bound of Theorem 2.3 for this G is typically (1 + o(1))n, whereas the

lower bound provided by Theorem 2.4 is n log n−(1+o(1))n log logn. This is tight since the

chromatic number of G = G(n, 0.5) is, with high probability, χn = (1+o(1)) n
2 logn implying

that G admits a bipartite covering consisting of ⌈logχn⌉ spanning bipartite graphs, and

the corresponding capacity is n log n− (1 + o(1))n log logn.

The rest of this section contains the (short) proofs of the results above.

2.2 Complete multigraphs: the lower bound

Let H = {H1, . . . ,Hm} be a bipartite covering of the complete multigraph Kλ
n on the set

of vertices [n] = {1, 2, . . . , n}. We first prove that cap(H) ≥ 2λ(n− 1). Let ni denote the

number of vertices of Hi. Since it is bipartite the number of its edges is at most n2
i /4. As

the edges of all these graphs cover each of the n(n− 1)/2 edges of the complete graph on

[n] at least λ times, and since ni ≤ n for all i, it follows that

n

4

m∑
i=1

ni ≥
m∑
i=1

n2
i

4
≥ λn(n− 1)/2.

This implies that cap(H) =
∑m

i=1 ni ≥ 2λ(n− 1), as needed.

Note that for any even n this inequality is tight for infinitely many (large) values of λ.

In particular it is tight for λ = n
4n−4

(
n

n/2

)
, and if there is a Hadamard matrix of order n

then it is tight for λ = n/2 as well. In addition, if for some fixed n it is tight for λ1 and

λ2 then it is also tight for their sum λ = λ1 + λ2.

We next prove the second inequality, that

cap(H) ≥ n[log n+ ⌊(λ− 1)/2⌋ log(2 log n
λ− 1

)].

Without loss of generality assume that each of the bipartite graphs Hi in H is a complete

bipartite graph, and let Li, Ri ⊂ [n] denote its two color classes. For each vertex j ∈ [n]

let Aj denote the set of indices i for which the vertex j belongs to the vertex class Li of

Hi and let Bj be the set of indices i for which j ∈ Ri. Let xj = |Aj | + |Bj | be the total

number of bipartite graphs Hi that contain the vertex j. Note that xj ≥ λ for each j, as

any edge incident with j must be covered at least λ times.

Put r = ⌊(λ − 1)/2⌋ and let v = (v1, v2, . . . , vm} be a uniform random binary vector

of length m. For each j, 1 ≤ j ≤ n, let Ej denote the event that the number of indices

i that belong to Aj for which vi = 1 plus the number of indices i that belong to Bj for
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which vi = 0 is at most r. It is clear that the probability of Ej is exactly the probability

that the binomial random variable B(xj , 1/2) is at most r, which is

p(xj , 1/2) =

∑r
q=0

(
xj
q

)
2xj

.

Note, crucially, that the events Ej are pairwise disjoint. This is because for every two

distinct vertices j and j′ there are at least λ > 2r indices i for which j and j′ belong to

the two distinct vertex classes of Hi. Therefore

n∑
j=1

p(xj , 1/2) ≤ 1.

The desired lower bound for cap(H) =
∑n

j=1 xj can be deduced from the last inequality

by a convexity argument. We proceed with the details. Note, first, that for every x,

p(x, r) ≥ (x/r)r2−x. Therefore

n∑
j=1

(xj/r)
r2−xj ≤ 1. (1)

Recall also that for each j, xj ≥ λ ≥ 2r + 1. Consider the function f(x) = (x/r)r2−x. A

simple computation shows that for r = 1 its second derivative is (ln 2)2−x[x ln 2−2] which

is positive for all x ≥ 2r + 1 = 3. For r ≥ 2 the second derivative of f(x) is

(x/r)r−22−x[((x/r) ln 2− 1)2 − 1/r].

It is not difficult to check that this is positive for all x ≥ 2r + 1. This shows that f(x)

is convex in the relevant range. Therefore, by (1) together with Jensen’s Inequality, if we

denote x = cap(H) =
∑

xj we get

n(
x

nr
)r2−x/n ≤ 1

implying that

x ≥ n[log n+ r log(
x

nr
)].

Since x/n ≥ log n this shows that

x ≥ n[log n+ r log(
log n

r
] ≥ n[log n+ ⌊(λ− 1)/2⌋ log(2 log n

λ− 1
)].

This completes the proof of Theorem 2.1. □

2.3 Complete multigraphs, the upper bound

In this subsection we prove Theorem 2.2. Put k = k(n, λ) and let A = (aij) be the k by

n binary matrix whose columns are n of the codewords of a binary code of length k with
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minimum distance (at least) λ. For each i, 1 ≤ i ≤ k, let Hi be the complete bipartite

graph on the classes of vertices Li = {j : aij = 0} and Ri = {j : aij = 1}. It is easy to see

that these bipartite graphs cover every edge of the complete graph on [n] at least λ times.

The capacity of this covering is at most kn, establishing the first part of the theorem. The

subsequent items in the theorem follow by considering appropriate known error correcting

codes, see, e.g. [22].

For the first item simply take the code consisting of all 2k−1 codewords with even

Hamming weight. Since 2k−1 ≥ n for k = ⌈log n⌉ + 1 the claimed result follows. The

second and third items follow from the Gilbert-Varshamov bound which gives that the

maximum cardinality of a binary code with length k and distance λ is at least

2k∑λ−1
i=0

(
k
i

) .
This quantity is at least 2k( ek

λ−1)
−(λ−1), implying the second item. For any λ = ck ≤ k/2

this quantity is also at least 2(1−H(c)k, where H(x) is the binary entropy function. This

yields the third item.

The fourth follows by considering an appropriate augmented BCH code. For any k

which is a power of 2 and for any d this is a (linear) binary code of length k with

n =
2k

2kd−1

codewords and minimum distance 2d. For d− 1 = ⌊(λ− 1)/2⌋, 2d ≥ λ and

k = log n+ 1 + (d− 1) log k ≤ log n+ ⌊(λ− 1)/2⌋ log logn+ 2.

This completes the proof of Theorem 2.2. □

2.4 General graphs

In this subsection we prove Theorem 2.4. We need the following simple lemma.

Lemma 2.5. Let Ei, i ∈ I be a finite collection of events in a (discrete) probability space.

Suppose that for every point x in the space, if x ∈ Ei then the total number of events Ej

in the collection that contain x is at most ai. Then∑
i∈I

Prob(Ei)

ai
≤ 1. (2)

It is worth noting that the above holds (with the same proof) for any probability space,

the assumption that it is discrete here is merely because this is the case we need, and it

slightly simplifies the notation in the proof.
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Proof. Let x be an arbitrary point of the space, and let p(x) denote its probability. Suppose

it belongs to r of the events Ei, let these be Ei1 , . . . Eir . By the definition of the numbers

ai it follows that aij ≥ r for all 1 ≤ j ≤ r. Therefore the total contribution of the point x

to the sum in the left-hand-side of (2) is

r∑
j=1

p(x)

aij
≤

r∑
j=1

p(x)

r
≤ p(x).

The desired result follows by summing over all points x in the space.

Proof of Theorem 2.4: Let G be a graph on the set of vertices [n], let αi denote

the maximum cardinality of an independent set of G containing the vertex i, and let

H = {H1, H2, . . . ,Hm} be a bipartite covering of G.

As in the proof of Theorem 2.1 we may and will assume, without loss of generality,

that each of the bipartite graphs Hi in H is a complete bipartite graph. Let Li, Ri ⊂ [n]

denote its two color classes. For each vertex j ∈ [n] let Aj denote the set of indices i for

which the vertex j belongs to the vertex class Li of Hi and let Bj be the set of indices i

for which j ∈ Ri. Let xj = |Aj | + |Bj | be the total number of bipartite graphs Hi that

contain the vertex j. Our objective is to prove a lower bound for the capacity of H, which

is exactly the sum
∑n

j=1 xj .

Let v = (v1, v2, . . . , vm} be a uniform random binary vector of length m. For each j,

1 ≤ j ≤ n, let Ej denote the event that vi = 0 for every index i that belongs to Aj and

vi = 1 for every index i that belongs to Bj . Note that the probability of Ej is exactly

2−xj . Note also that if some point v = (v1, v2, . . . , vm} belongs to the events Ej , j ∈ J ,

then the set of vertices J ⊂ [n] is an independent set of G. Indeed, if some two vertices

in J are adjacent, then the edge connecting them belongs to at least one of the graphs Hi

implying that one of these vertices belongs to Li whereas the other lies in Ri and showing

that they can’t both satisfy the requirement given by vi. It thus follows that any point v

that lies in Ej belongs to at most αj of the events Ej′ . Therefore, by Lemma 2.5

n∑
j=1

2−xj−logαj =

n∑
j=1

2−xj

αj
≤ 1.

By the arithmetic-geometric means inequality this implies

n2−(
∑n

j=1 xj+
∑n

j=1 logαj)/n ≤ 1,

giving

2
∑n

j=1 xj ≥ nn2−
∑n

j=1 logαj = 2
∑n

j=1(logn−logαj).

Therefore
n∑

j=1

xj ≥
n∑

j=1

log(
n

αj
),

completing the proof. □
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3 Triangle-free graphs of diameter 2

The following problem was raised by Erdős and Gyárfás ([12], see also [9], Problem number

134).

Problem 3.1. Let ε, δ > 0 be two fixed positive reals, and suppose n is large as a function

of ε, δ. Let G be a triangle-free graph on n vertices with maximum degree smaller than

n1/2−ε. Can G be made into a triangle-free graph with diameter 2 by adding at most δn2

edges ?

They proved that the conclusion holds if the maximum degree is at most log n/ log log n.

It is mentioned in [12] that Simonovits showed that this does not necessarily hold if the

maximum degree is C
√
n for some large fixed C. In fact, maximum degree (1+o(1))

√
n/2

suffices as shown by the incidence graph of the lines and points of a projective plane of order

p. This is a bipartite (p+ 1)-regular (triangle-free, of course) graph on n = 2(p2 + p+ 1)

vertices, where p is a prime power. Any two vertices of the same vertex class in this

graph have a common neighbor. Therefore one cannot add any edge connecting two

vertices of the same vertex class without creating a triangle. It follows that in order to

reduce the diameter to 2 one must add all missing edges between pairs of nonadjacent

vertices that do not lie in the same vertex class. The number of these missing edges is

(1/4− o(1))n2 = Ω(n2).

We describe a short proof of the following, which settles the Erdős-Gyárfás problem

in a strong form. Here and in what follows we do not make any effort to optimize the

absolute constants.

Theorem 3.2. Let G = (V,E) be a triangle-free graph with n vertices and maximum

degree d ≤ c(n)
√
n, where

2
(log n)1/3

n1/6
≤ c = c(n) ≤ 1

10

and n is sufficiently large. Then one can add to G at most 2.5cn2 edges and get a triangle-

free graph of diameter 2.

Note that by taking c(n) = n−ε the above theorem implies that if in the Erdős-Gyárfás

problem the maximum degree is at most n1/2−ε then it suffices to add at most O(n2−ε)

edges.

A related problem of Erdős and Pach dealing with triangle-free graphs appears right

before the problem above in [12], see also [9], Problem 133.

Problem 3.3. Let f(n) denote the smallest integer for which there is a triangle-free graph

G on n vertices, diameter 2 and maximum degree f(n). What is the order of growth of

f(n) ?

8



Erdős and Pach conjectured that f(n)/
√
n tends to infinity as n tends to infinity.

A tight asymptotic expression for f(n) is still open. Clearly f(n) ≥ (1−o(1))
√
n as any

graph with maximum degree f and diameter 2 can have at most 1+ f + f(f − 1) = f2+1

vertices. We suspect that f(n) = (1 + o(1))
√
n. It is known that for r ∈ {1, 2, 3, 7}

and possibly also for r = 57 there is an r-regular triangle-free graph of diameter 2 with

r2 + 1 vertices. Although the Hoffman-Singleton Theorem [18] asserts that there are no

such graphs for additional values of r, it is possible that there are triangle-free graphs of

diameter 2, maximum degree r and (1− o(1))r2 vertices for infinitely many values of r.

3.1 The proof

Proof of Theorem 3.2. Let G = (V,E), d and c = c(n) be as in the statement of the

theorem. Throughout the proof we assume, whenever this is needed, that n > n0 where

n0 is a sufficiently large constant. We first apply (a variant of) the triangle-free process

for m = c2n3/2 steps as follows. Starting with G = G0, in each step i for 1 ≤ i ≤ m let

Gi be obtained from Gi−1 by adding a random edge chosen uniformly among all pairs of

nonadjacent vertices of Gi−1 that are both of degree smaller than 2c
√
n and that do not

have a common neighbor. Note that by construction the maximum degree of Gm (and

hence of all the graphs during the process) is at most 2c
√
n. In addition, by construction,

Gm (and all graphs during the process) are triangle-free.

Claim : With high probability Gm does not contain an independent set of size 5cn.

Proof: Fix an independent set U of 5cn vertices of G = G0. We estimate the probability

that it stays independent in Gm. Since the maximum degree in each Gi is at most 2c
√
n,

the number of pairs of vertices in U that have a common neighbor is at most

n

(
2c
√
n

2

)
< 2c2n2.

In addition, the total number of vertices whose degrees have been increased already to

2c
√
n is at most 2cn (since the total number of edges added is at most c2n3/2 so the graph

consisting of all added edges can have at most 2cn vertices of degree at least c
√
n). If

follows that in every Gi during the process there are at least(
|U | − 2cn

2

)
− 2c2n2 > 2c2n2

pairs of vertices of U that are of degree smaller than 2c
√
n and that do not have a common

neighbor. Each such pair can be chosen as the selected random edge in each step, and the

probability none of these edges have been chosen during the process is at most

(1− 4c2)m ≤ e−4c4n3/2
.
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There are at most (
n

5cn

)
≤ 2H(5c)n < 210c log(1/c)n

possible sets U , where H is the binary entropy function. Our choice of c ensures that

210c log(1/c)ne−4c4n3/2
= o(1).

The assertion of the claim thus follows by the union bound.

Returning to the proof of the theorem, fix a graph Gm satisfying the conclusion of the

claim and add to it, repeatedly, edges to make it a maximal (with respect to containment)

triangle-free graph. In other words, as long as there is a pair of nonadjacent vertices with

no common neighbor, add the edge connecting them. This creates a triangle-free graph

G′ of diameter 2, and its independence number is at most that of Gm, which is smaller

than 5cn, by the claim. This implies that the maximum degree in G′ is smaller than 5cn,

as the set of all neighbors of any vertex is an independent set. Therefore G′ contains at

most 2.5cn2 edges, completing the proof of Theorem 3.2. □

Problem 3.3 has been solved up to a constant factor already in the 80s by Hanson and

Seyffarth [16] who proved that f(n) ≤ 2
√
n. Additional constructions appear in [10],

[17]. The problem of deciding whether or not f(n) = (1 + o(1))
√
n remains open. The

constructions in all three papers above are Cayley graphs of Abelian groups, and it is easy

to see that using such a construction cannot provide graphs with maximum degree smaller

than (
√
2 + o(1))

√
n. A better upper estimate of (2/

√
3 + o(1))

√
n is described by Füredi

and Seress in [14]. See also [5] for some related constructions.

4 Blocking partial designs and block-compatible sequences

4.1 Results

In this section we consider two related open problems of Erdős on block designs. Recall

that a family of subsets A1, A2 . . . , Am of a finite set X is a (pairwise balanced) block

design if every pair of distinct elements of X is contained in exactly one of the subsets Ai.

It is a partial design if every pair of distinct elements of X is contained in at most one of

the subsets Ai (equivalently, if |Ai ∩Aj | ≤ 1 for all 1 ≤ i < j ≤ m.)

The first problem deals with partial designs and appears in [13], see also [9], problem

number 664.

Problem 4.1. Is it true that for every fixed positive constant c < 1 there is a finite

constant C = C(c) so that the following holds. For every m and n and for every family of

subsets {A1, A2, . . . , Am} of [n] = {1, 2, . . . , n} that satisfies |Ai| > c
√
n for all 1 ≤ i ≤ m,

and |Ai∩Aj | ≤ 1 for all 1 ≤ i < j ≤ m, there is a subset B ⊂ [n] so that 0 < |B∩Ai| ≤ C

for all 1 ≤ i ≤ m?

10



The second problem appears in [11], page 35, see also [9], problem number 732.

Problem 4.2. Call a sequence n ≥ x1 ≥ x2 ≥ . . . ≥ xm ≥ 2 block-compatible for n

if there is a pairwise balanced block design A1, A2, . . . , Am of m subsets of [n] such that

|Ai| = xi for 1 ≤ i ≤ m. Is there an absolute constant c > 0 so that for all large n there

are at least ecn
1/2 logn sequences that are block-compatible for n ?

We show that the answer to the first problem is “no” and the answer to the second is

“yes”. The proofs are short, based on appropriate modifications of the family of lines of a

projective plane which form a block design with m = n = q2 + q+1 subsets of cardinality

q + 1 = (1 + o(1))
√
n of a set of size n = q2 + q + 1. It is well known that such a plane

exists for any prime power q.

4.2 Proofs

Throughout the proofs we assume, whenever this is needed, that the parameter n is

sufficiently large. All logarithms are in base 2, unless otherwise specified. To simplify the

presentation we omit all floor and ceiling signs whenever these are not crucial. We make

no serious attempt to optimize the absolute constants that appear in the proofs.

The following result settles Problem 4.1

Theorem 4.3. Let q be a (large) prime power and put m = n = q2 + q + 1. Then there

is a partial design consisting of m subsets A1, A2, . . . , Am of an n element set P , so that

|Ai| > 0.4
√
n for all 1 ≤ i ≤ m, |Ai ∩Aj | ≤ 1 for all 1 ≤ i < j ≤ m, and for any subset B

of P that has a nonempty intersection with all sets Aj, there is some 1 ≤ i ≤ m so that

|B ∩Ai| ≥ 0.1 log n.

Proof. Let P be the set of n = q2 + q + 1 points of a projective plane of order q, and let

L1, L1, . . . , Lm ⊂ P be the sets of points of the m lines of this plane. Thus each point lies

in q + 1 lines and each line is of size q + 1. For each 1 ≤ i ≤ m let Ai be a random subset

of Li obtained by picking every point of Li, randomly and independently, to lie in Ai with

probability 1/2. Note that the choices of distinct subsets Ai here are independent. By the

standard estimates for Binomial distributions (c.f., e.g., [6], Appendix A) together with

the union bound, with high probability (that is, with probability tending to 1 as q (or n)

tend to infinity) the following conditions hold:

1. Each set Ai is of cardinality (1/2 + o(1))
√
n.

2. Each point lies in (1/2 + o(1))
√
n of the sets Ai.

3. |Ai ∩Aj | ≤ 1 for all 1 ≤ i < j ≤ m.

Claim 4.4. With high probability there is no subset B ⊂ P of cardinality at most 0.3
√
n log n

that intersects all the sets Ai.

11



Proof: Let B be a fixed set of cardinality at most 0.3
√
n log n. Consider the set of pairs

S = {(b, Li) : b ∈ B, 1 ≤ i ≤ m, b ∈ Li}. Clearly |S| = |B|(q + 1). If J = J(B) is the set

of all indices i so that |B ∩ Li| ≥ 0.4 log n then |S| ≥ |J |0.4 log n. Thus

|J | ≤ |B|(q + 1)

0.4 log n
≤ (3/4 + o(1))n < 0.8n.

Therefore there are at least 0.2n lines Li that contain less that 0.4 log n points of B. For

each such line Li, the probability that Ai contains no point of B is at least 2−0.4 logn =

n−0.4. Therefore, the probability that there is no such line (that is, that B intersects all

these sets Ai) is at most

(1− 1/n0.4)0.2n ≤ e−0.2n0.6
.

Since the total number of possible sets B as above is smaller than

n0.3
√
n logn = 20.3

√
n(logn)2 = o(20.2n

0.6
) ( = o(e0.2n

0.6
) ),

the union bound implies the assertion of the claim.

Returning to the proof of the theorem, fix a choice of the sets Ai that satisfy the

conditions 1, 2, 3 above and the assertion of Claim 4.4. If a set B intersects all subsets Ai

then it must satisfy |B| > 0.3
√
n log n. Since each point is contained in (1/2 + o(1))

√
n

of the sets Ai this implies, by averaging, that the intersection of B with some set Ai is of

size at least |B|(1/2 + o(1))
√
n/n > 0.1 log n. This completes the proof.

The next result settles problem 4.2.

Theorem 4.5. Let q be a large prime power and put n = q2 + q + 1. Let S = (x1 ≥ x2 ≥
x3 ≥ . . . ≥ xm) be any sequence of integers satisfying

q + 1 ≥ x1 ≥ x2 ≥ x3 . . . ≥ xn ≥ 3,

m = n+
n∑

i=1

[

(
q + 1

2

)
−
(
xi
2

)
],

and xi = 2 for all n < i ≤ m. Then S is block-compatible for n. Therefore, the number of

sequences that are block-compatible for n is at least(
n+ q − 2

q − 2

)
= 2(0.5+o(1))n1/2 logn.

Proof. Let P and L1, L2, . . . , Ln ⊂ P be, as in the proof of Theorem 4.3, the set of points

of a projective plane of order q and the sets of points of the n lines of P . For each 1 ≤ i ≤ n

let Xi be a subset of cardinality xi of Li. Consider the block design consisting of the n

blocks Xi together with the following additional

n∑
i=1

[

(
q + 1

2

)
−
(
xi
2

)
]

12



blocks of cardinality 2: for each 1 ≤ i ≤ n, every pair of distinct elements of Li which is not

contained in Xi. This is clearly a block design and the ordered sequence of cardinalities of

its blocks is the sequence S. This completes the first part of the proof. For the estimate

note that the number of possibilities for the subsequence x1 ≥ x2 ≥ . . . ≥ xn ≥ 3 in the

above construction is the number of ordered sequences of q−1 nonnegative integers whose

sum is n, which is (
n+ q − 2

q − 2

)
.

4.3 Remarks

• It is easy to see that the estimate in Theorem 4.3 is tight up to constant factors,

for every partial design in which all blocks are of sizes Θ(
√
n). Indeed the following

simple fact can be proved by choosing the set B randomly and by applying the union

bound and the standard estimates for Binomial distribution.

Proposition 4.6. For any two positive constants c1 < c2 there are two positive

constants C1(c) < C2(c) so that the following holds. For every m and n and for

every family of subsets {A1, A2, . . . , Am} of [n] = {1, 2, . . . , n} that satisfies c1
√
n ≤

|Ai| ≤ c2
√
n for all 1 ≤ i ≤ m, and |Ai ∩ Aj | ≤ 1 for all 1 ≤ i < j ≤ m, there is a

subset B ⊂ [n] so that C1 log n < |B ∩Ai| ≤ C2 log n for all 1 ≤ i ≤ m.

In fact the conclusion holds, of course, even without any assumption on the sizes of

the intersections of pairs of blocks Ai.

• Problem 4.1 for block designs (and not for partial designs) was also asked by Erdős

in [11]. This remains open although we suspect that the answer here is negative

as well. We suggest the following conjecture which, if true, would establish this

negative answer.

Conjecture 4.7. Let q be a (large) prime power, put n = q2 + q + 1, let P be the

set of n points of a projective plane of order q and let L1, L2, . . . , Ln be the sets of

points of its lines. Let R be a random subset of P obtained by picking each point

of P randomly and independently to lie in R with probability 1/2. Then with high

probability the smallest cardinality of a subset B of R that intersects all the subsets

L1 ∩R,L2 ∩R, . . . , Ln ∩R satisfies |B|/q > f(q) for some function f(q) tending to

infinity as q tends to infinity. In fact, this may even be true with f(q) = Ω(log q).

This conjecture remains open, although related results have been proved in [7], [8]

using the container method. The parameters in these papers are very different and

it seems that a proof here, if true, would require additional ideas.
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• As mentioned by Erdős in [11], the ecn
1/2 logn lower bound for the number of block-

compatible sequences for n is tight up to the absolute constant c. For completeness

we include a brief proof of the upper bound. It is clear that if n ≥ x1 ≥ . . . ≥ xm ≥ 2

is block-compatible for n, then m ≤
(
n
2

)
< n2/2. Therefore, the number of choices

of all xi which are, say, at most 2
√
n is smaller than(

n2/2 + 2
√
n

2
√
n

)
< 24

√
n logn.

Next, observe that for each block-compatible sequence xi for n, the number of indices

i with xi > 2
√
n is smaller than

√
n. Indeed, otherwise the size of the union of a set

of blocks Ai, i ∈ I with |Ai| = xi > 2
√
n and |I| =

√
n in a block design realizing

the sequence is at least∑
i∈I

|Ai| −
∑

i,j∈I,i<j

|Ai ∩Aj | >
√
n · 2

√
n−

(√
n

2

)
> n,

which is impossible. Thus there are less than
√
n such large xi, and the number of

choices for those is at most (
n+

√
n√

n

)
< 2

√
n logn.

This gives the required 2O(
√
n logn) upper bound for the total number of block-

compatible sequences for n.

• Call a sequence n ≥ x1 ≥ x2 ≥ . . . ≥ xm ≥ 2 line-compatible for n if there is a set

P of n points in the Euclidean plane R2 so that for the family L1, L2, . . . , Lm of all

lines in R2 determined by the points of P , |Li ∩ P | = xi for 1 ≤ i ≤ m. Note that

every line-compatible sequence for n is also block-compatible for n, but the converse

is not true. Erdős conjectured in [11] (see also [9], problem 733) that the number

of sequences which are line compatible for n is only 2O(n1/2). This upper bound was

proved by Szemerédi and Trotter in [24]. Note that in view of Theorem 4.5 this is

much smaller than the number of block-compatible sequences for n.

Indeed, there are far more block designs on n points than designs that can be de-

scribed by the lines determined by a set of points in the plane. This is demonstrated

by the following result.

Proposition 4.8. 1. The number of hypergraphs on n labelled vertices whose edges

form a block design is 2Θ(n2 logn).

2. The number of hypergraphs whose vertices are n labelled points in R2 and whose

edges are the sets of points contained in the lines determined by the points is

only 2Θ(n logn).
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Proof. The lower bound in the first part follows from the known lower bound for

the number of Steiner triple systems on n points, which, as proved in [19], is

2(1+o(1)n2 logn/6. (This is the case for n congruent to 1 or 3 modulo 6. For the

other values of n we can include some blocks of size 2 as needed.) To prove the up-

per bound let x1, x2, . . . xm be the sizes of the blocks. Then
∑

i

(
xi
2

)
=

(
n
2

)
and thus∑

xi ≤ n2. The number of choices of the number of blocks m and their sizes xi is at

most 2O(
√
n logn). Given those, the number of ways to choose subsets of cardinalities

x1, x2, . . . , xm in [n] is at most(
n

x1

)(
n

x2

)
. . .

(
n

xm

)
< n

∑
i xi ≤ nn2

= 2n
2 logn.

The lower bound in the second part is proved by considering all possible labelings

of the hypergraph consisting of a matching of ⌊n/3⌋ pairwise disjoint edges of size

3 and additional
(
n
2

)
− ⌊n/3⌋ edges of size 2. It is easy to realize this hypergraph

by points in the plane and the lines they determine by placing 3 points on each of

⌊n/3⌋ parallel lines where no other line contains more than two points.

We prove the upper bound in the second part by using the result of [23] on the

number of zero patterns of a sequence of polynomials.

If f = (f1, . . . , fa) is a sequence of polynomials in b variables over a field K, then

the zero pattern of f evaluated at the point u ∈ Kb is the set

Zf (u) = {i ∈ [a] : fi(u) = 0}.

Let Zf denote the total number of distinct zero patterns that appear as u ranges

over Kb. We need the following result of Rónyai, Babai, and Ganapathy [23].

Theorem 4.9 ([23]). Let f = (f1, . . . , fa) be a sequence of polynomials in b variables

over a field K, and let di denote the degree of fi. Then

Zf ≤
(
b+

∑a
i=1 di
b

)
.

In our case the field is R, each point can be described by 2 real variables, so b = 2n,

and for each set of 3 points there is a degree 2 polynomial that vanishes iff they lie

on a line. The zero pattern of these
(
n
3

)
real polynomials of degree 2 in 2n variables

determines all the lines, and therefore, by Theorem 4.9, the number of possible

hypergraphs here is at most(
2n+ (n3/6)2

2n

)
= 2(4+o(1))n logn.

This completes the proof.
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[12] Paul Erdős, Some old and new problems in various branches of combinatorics, Discrete

Math. 165/166 (1997), 227–231.
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