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Abstract11

Computing a shortest path between two nodes in an undirected unweighted graph is among the most12

basic algorithmic tasks. Breadth first search solves this problem in linear time, which is clearly also13

a lower bound in the worst case. However, several works have shown how to solve this problem in14

sublinear time in expectation when the input graph is drawn from one of several classes of random15

graphs. In this work, we extend these results by giving sublinear time shortest path (and short path)16

algorithms for expander graphs. We thus identify a natural deterministic property of a graph (that17

is satisfied by typical random regular graphs) which suffices for sublinear time shortest paths. The18

algorithms are very simple, involving only bidirectional breadth first search and short random walks.19

We also complement our new algorithms by near-matching lower bounds.20
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1 Introduction26

Computing shortest paths in an undirected unweighted graph is among the most fundamental27

tasks in graph algorithms. In the single source case, the textbook breadth first search (BFS)28

algorithm computes such shortest paths in O(m + n) time in a graph with n nodes and m29

edges. Linear time is clearly also a lower bound on the running time of any algorithm that30

is correct on all input graphs, even if we only consider computing a shortest s-t path for a31

pair of nodes s, t, and not a shortest path from s to all other nodes. Initial intuition might32

also suggest that linear time is necessary for computing a shortest path between two nodes33

s, t in a random graph drawn from any reasonable distribution, such as an Erdős-Rényi34

random graph or a random d-regular graph. However, this intuition is incorrect and there35

exists an algorithm with a sublinear expected running time for many classes of random36

graphs [6, 10, 18]. Moreover, the algorithm is strikingly simple! It is merely the popular37

practical heuristic of bidirectional BFS [19]. In bidirectional BFS, one simultaneously runs38

BFS from the source s and destination t, expanding the two BFS trees by one layer at a39

time. If the input graph is e.g. an Erdős-Rényi random graph, then it can be shown that the40

two BFS trees have a node in common after exploring only O(
√

n) nodes in expectation. If41

the node v is first to be explored in both trees, then the path from s → v → t in the two42

BFS trees form a shortest path between s and t. The fact that only O(
√

n) nodes need to be43

explored intuitively follows from the birthday paradox and the fact that the nodes nearest44
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3:2 Sublinear Time Shortest Path in Expander Graphs

to s and t are uniform random in an Erdős-Rényi random graph (although not completely45

independent). Note that for sublinear time graph algorithms to be meaningful, we assume46

that we have random access to the nodes and their neighbors. More concretely, we assume47

the nodes are indexed by integers [n] = {1, . . . , n} and that we can query for the number of48

nodes adjacent to a node v, as well as query for the j’th neighbor of a node v. We remark49

that several works have also extended the bidirectional BFS heuristic to weighted input50

graphs and/or setups where heuristic estimates of distances between nodes and the source or51

destination are known [19, 20, 12]. There are also works giving sublinear time algorithms for52

other natural graph problems under the assumption of a random input graph [14].53

A caveat of the previous works that give provable sublinear time shortest path algorithms,54

is that they assume a random input graph. In this work, we identify "deterministic" properties55

of graphs that may be exploited to obtain sublinear time s-t shortest path algorithms.56

Concretely, we study shortest paths in expander graphs. An n-node d-regular (all nodes have57

degree d) graph G, is an (n, d, λ)-graph if the eigenvalues λ1 ≥ · · · ≥ λn of the corresponding58

adjacency matrix A satisfies maxi̸=1 |λi| ≤ λ. Note that the eigenvalues are real since A is59

symmetric and real. We start by presenting a number of algorithmic results when the input60

graph is an expander.61

Shortest s-t Path.62

Our first contribution demonstrates that the simple bidirectional BFS algorithm efficiently63

computes a shortest path between most pairs of nodes s, t in an expander:64

▶ Theorem 1. If G is an (n, d, λ)-graph, then for every node s ∈ G, every 0 < δ < 1, it65

holds for at least (1 − δ)n nodes t, that bidirectional BFS between s and t, finds a shortest66

s-t path after visiting O((d − 1)⌈(1/4) lgd/λ(n/δ)⌉) nodes.67

While the bound in Theorem 1 on the number of nodes visited may appear unwieldy at68

first, we note that it simplifies significantly for natural values of d and λ. For instance, an69

(n, d, λ)-graph is Ramanujan if λ ≤ 2
√

d − 1. For Ramanujan graphs, and more generally for70

graphs with λ = O(
√

d), the bound in Theorem 1 simplifies to near-
√

n:71

▶ Corollary 2. If G is an (n, d, O(
√

d))-graph, then for every node s ∈ G, every 0 < δ < 1,72

it holds for at least (1 − δ)n nodes t, that bidirectional BFS between s and t, finds a shortest73

s-t path after visiting O((n/δ)1/2+O(1/ ln d)) nodes.74

We also demonstrate that the bound can be tightened even further for Ramanujan graphs:75

▶ Theorem 3. If G is a d-regular Ramanujan graph where d ≥ 3, then for every node s ∈ G,76

it holds for at least (1 − o(1))n nodes t, that bidirectional BFS between s and t, finds a77

shortest s-t path after visiting O(
√

n · ln3/2(n)) nodes.78

Short s-t Path.79

One drawback of bidirectional BFS in expanders, is that it is only guaranteed to find a80

shortest path efficiently for most pairs of nodes s, t. One can show that this is inherent.81

In particular, as we sketch in Section 4, for constant d and infinitely many n, there exists82

(n, d, 3
√

d)-graphs with diameter at least 1.998 lgd−1 n. Picking two nodes s and t of maximum83

distance in such a graph and running BFS from both will only terminate after having visited84

Ω((d − 1)(1.998/2) lgd−1 n) = Ω(n0.999) nodes.85

Motivated by this shortcoming, we also present a simple randomized algorithm for finding86

a short, but not necessarily shortest, s-t path. For any parameter 0 < δ < 1, the algorithm87
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starts by growing a BFS tree from s until Θ(
√

n ln(1/δ)) nodes have been explored. It then88

performs O(
√

n ln(1/δ)/ lgd/λ(n)) random walks starting at t. Each of these random walks89

run for O(lgd/λ(n)) steps. If any of these walks discover a node in the BFS tree, it has found90

an s-t path of length O(lgd/λ(n)).91

We show that this BFS + Random Walks algorithm has a high probability of finding an92

s-t path:93

▶ Theorem 4. If G is an (n, d, λ)-graph with λ ≤ d/2, then for every pair of nodes s, t,94

every 0 < δ < 1, it holds with probability at least 1 − δ, that BFS + Random Walks between s95

and t, finds an s-t path of length O(lgd/λ(n)) while visiting O(
√

n ln(1/δ)) nodes.96

Finally, let us mention the two previous works [9, 7] that have also identified deterministic97

properties of graphs which suffice for provable speedups from bidirectional BFS. The determ-98

inistic properties they identify are vaguely related to expansion, but are not as standard99

and clean-cut as our results using the standard definition of expanders. The work [16]100

has also investigated short paths in expanders in the context of multicommodity flow and101

approximating the maximum number of disjoint paths between pairs of nodes.102

Lower Bounds.103

While bidirectional BFS, or BFS + Random Walks, are natural algorithms for finding s-t104

paths efficiently, it is not a priori clear that better strategies do not exist. One could e.g.105

imagine sampling multiple nodes in an input graph, growing multiple small BFS trees from106

the sampled nodes and somehow use this to speed up the discovery of an s-t path. To107

rule this approach out, we complement the algorithms presented above with lower bounds.108

For proving lower bounds, we consider distributions over input graphs and show that any109

algorithm that explores few nodes fails to find an s-t path with high probability in such a110

random input graph. As Erdős-Rényi random graphs (with large enough edge probability)111

and random d-regular graphs are both expanders with good probability, we prove lower112

bounds for both these random graph models. The distribution of an Erdős-Rényi random113

graph on n nodes is defined from a parameter 0 < p < 1. In such a random graph, each edge114

is present independently with probability p. A random d-regular graph on the other hand, is115

uniform random among all n-node graphs where every node has degree d.116

Our lower bounds hold even for the problem of reporting an arbitrary path connecting117

a pair of nodes s, t, not just for reporting a short/shortest path. Furthermore, our lower118

bounds are proved in a model where we allow node-incidence queries. A node-incidence119

query is specified by a node index v and is returned the set of all edges incident to v. Our120

first lower bound holds for Erdős-Rényi random graphs:121

▶ Theorem 5. Any (possibly randomized) algorithm for reporting an s-t path in an Erdős-122

Rényi random graph, where edges are present with probability p ≥ 1.5 ln(n)/n, either makes123

Ω(1/(p
√

n)) node-incidence queries or outputs a valid path with probability at most o(1) + p.124

Note that the lower bound assumes p ≥ 1.5 ln(n)/n. This is a quite natural assumption125

since for p ≪ ln(n)/n, the input graph is disconnected with good probability. The concrete126

constant 1.5 is mostly for simplicity of the proof. We remark that the additive p in the127

success probability is tight as an algorithm always reporting the direct path consisting of128

the single edge (s, t) is correct with probability p. Also observe that the number of edges129

discovered after O(1/(p
√

n)) node-incidence queries is about O(pn/(p
√

n)) = O(
√

n) since130

each node has p(n − 1) incident edges in expectation.131
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3:4 Sublinear Time Shortest Path in Expander Graphs

For the case of random d-regular graphs, we show the following lower bound for constant132

degree d:133

▶ Theorem 6. Any (possibly randomized) algorithm for reporting an s-t path in a random134

d-regular graph with d = O(1), either makes Ω(
√

n) node-incidence queries or outputs a valid135

path with probability at most o(1).136

We remark that a random d-regular graph is near-Ramanujan with probability 1 − o(1) as137

proved in [13], confirming a conjecture raised in [1]. A near-Ramanujan graph is an (n, d, λ)-138

expander with λ ≤ 2
√

d − 1 + o(1). Thus our upper bounds in Theorem 1 and Theorem 4139

nearly match this lower bound.140

Overview.141

In Section 2, we present our upper bound results and prove the claims in Theorem 1 and142

Theorem 4. The upper bounds are all simple algorithms and also have simple proofs using143

well-known facts about expanders.144

In Section 3, we prove our lower bounds. These proofs are more involved and constitute145

the main technical contributions of this work.146

2 Upper Bounds147

In the following, we present and analyse simple algorithms for various s-t reachability148

problems in expander graphs.149

2.1 Shortest Path150

Let G be an (n, d, λ)-graph and consider the following bidirectional BFS algorithm for finding151

a shortest path between a pair of nodes s, t: grow a BFS tree Ts from s and a BFS tree Tt152

from t simultaneously. In each iteration, the next layer of Ts and Tt is computed and as soon153

as a node v appears in both trees, we have found a shortest path from s to t, namely the154

path s → v → t in the two BFS trees.155

We show that this algorithm is efficient for most pairs of nodes s, t as claimed in Theorem 1.156

To prove Theorem 1, we show that in any (n, d, λ)-graph G, it holds for every node s ∈ G157

that most other nodes have a small distance to s. Concretely, we show the following158

▶ Lemma 7. If G is an (n, d, λ)-graph, then for every node s ∈ G, it holds for every 0 < δ < 1159

that there are no more than δn nodes with distance more than (1/2) lgd/λ(n/δ) from s.160

Theorem 1 now follows from Lemma 7 by observing that for a pair of nodes s, t of distance k161

in an (n, d, λ)-graph, the bidirectional searches will meet after expanding for ⌈k/2⌉ steps from162

s and t. Since each node explored during breadth first search has at most d − 1 neighbors163

outside the previously explored tree, it follows that the total number of nodes visited is164

O((d − 1)⌈k/2⌉). Since it holds for every s ∈ G that dist(s, t) ≤ (1/2) lgd/λ(n/δ) for a 1 − δ165

fraction of all other nodes t, the conclusion follows.166

Corollary 2 follows from Theorem 1 by observing that when λ = O(
√

d), we have167

(1/4) lgd/λ(n/δ) = (1/2) lgΩ(d)(n/δ). Noting that lgΩ(d)(n/δ) = ln(n/δ)/(ln(d) − O(1)) =168

(1 + O(1/ ln d)) lgd−1(n/δ), the conclusion follows.169

What remains is to prove Lemma 7. While the contents of the lemma is implicit in170

previous works, we have not been able to find a reference explicitly stating this fact. We171

thus provide a simple self-contained proof building on Chung’s [11] proof that the diameter172

of an (n, d, λ)-graph is bounded by ⌈lgd/λ n⌉.173
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Proof of Lemma 7. Let A be the adjacency matrix of an (n, d, λ)-graph G. Letting d =174

λ1 ≥ λ2 ≥ · · · ≥ λn denote the (real-valued) eigenvalues of the real symmetric matrix A, we175

may write A in its spectral decomposition A = UΣUT with λ1, . . . , λn being the diagonal176

entries of the diagonal matrix Σ. By definition, we have max{λ2, |λn|} = λ.177

Notice that (Ak)s,t gives the number of length-k paths from node s to node t in G.178

Furthermore, we have Ak = UΣkUT . Now let s be an arbitrary node of G and let Z ⊆ [n]179

denote the subset of columns t such that (Ak)s,t = 0. The eigenvalues of Ak are λk
1 , . . . , λk

n180

and the all-1’s vector 1 is an eigenvector corresponding to λ1. Let 1Z denote the indicator181

for the set Z, i.e. the coordinates of 1Z corresponding to t ∈ Z are 1 and the remaining182

coordinates are 0. By definition of Z, we have that eT
s Ak1Z = 0. At the same time,183

we may write 1Z = (|Z|/n)1 + βu where u is a unit length vector orthogonal to 1 and184

β =
√

|Z| − |Z|2/n. Hence185

0 = eT
s Ak1Z186

= eT
s Ak((|Z|/n)1 + βu)187

= eT
s λk

1(|Z|/n)1 + βeT
s Aku188

≥ dk|Z|/n − β · ∥es∥ · ∥Aku∥189

≥ dk|Z|/n − βλk.190

From this we conclude |Z| ≤ (λ/d)knβ ≤ (λ/d)kn
√

|Z|, implying |Z| ≤ (λ/d)2kn2. For191

k = (1/2) lgd/λ(n/δ), this is |Z| ≤ δn. ◀192

For the special case of Ramanujan graphs, Theorem 3 claims an even stronger result than193

Theorem 1. Recall that an (n, d, λ)-graph is Ramanujan if it satisfies that λ ≤ 2
√

d − 1. To194

prove Theorem 3 we make use of the following concentration result on distances in Ramanujan195

graphs:196

▶ Theorem 8 ([17]). Let G be a d-regular Ramanujan graph on n nodes, where d ≥ 3. Then197

for every node s ∈ G it holds that198

|{t ∈ G : |dist(s, t) − lgd−1 n| > 3 lgd−1 lg n}| = o(n).199

Using Theorem 8, we conclude that for every node s ∈ G, it holds for (1 − o(1))n choices of t200

that dist(s, t) ≤ lgd−1 n + 3 lgd−1 lg n. The middle node v on a shortest path from s to t thus201

has distance at most k = ⌈(lgd−1 n + 3 lgd−1 lg n)/2⌉ ≤ (1/2) lgd−1 n + (3/2) lgd−1 lg n + 1202

from s and t. Since the nodes in a layer ℓ of a BFS tree in a d-regular graph G has at most203

d − 1 neighbors in layer ℓ + 1, we conclude that the two BFS trees Ts and Tt contain at most204

O((d − 1)k) ≤ O(
√

n · ln3/2(n)) nodes each upon termination. Note that the same proof205

shows how to find a shortest path in time n1/2+o(1) between most pairs of vertices s and t in206

near Ramanujan graphs, as it is also proved in [17] that in such graphs, for every node s207

there are only o(n) nodes t of distance exceeding (1 + o(1)) lgd−1 n from s.208

2.2 Connecting Path209

In the following, we analyse our algorithm, BFS + Random Walks, for finding a short s-t210

path in an (n, d, λ)-graph. The algorithm is parameterised by an integer k ≥
√

n and is as211

follows: First, run BFS from s until k nodes have been discovered. Call the set of discovered212

nodes Vs. Next, run τ = k/(3 lgd/λ(n)) random walks p1, . . . , pτ from t, with each random213

walk having a length of 3 lgd/λ(n). If any of the random walks intersects Vs, we have found214

an s-t path of length O(lgd/λ(n)) as the paths pi have length O(lgd/λ(n)) and the diameter,215

and hence the depth of the BFS tree, in an (n, d, λ)-graph is at most ⌈lgd/λ(n)⌉ [11].216
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3:6 Sublinear Time Shortest Path in Expander Graphs

To analyse the success probability of the algorithm, we bound the probability that all217

paths pi avoid Vs. For this, we use the following two results218

▶ Theorem 9 ([15]). Let G be an (n, d, λ)-graph. For any two nodes s, t in G, the probability219

pk
s,t that a random walk starting in s and of length k ends in the node t, satisfies |1/n−pk

s,t| ≤220

(λ/d)k.221

▶ Theorem 10 ([3]). Let G be an (n, d, λ)-graph and let W be a set of w vertices in G and222

set µ = w/n. Let P (W, k) be the total number of length k paths (k + 1 nodes) that stay in223

W . Then224

P (W, k) ≤ wdk(µ + (λ/d)(1 − µ))k.225

Now consider one of the length 3 lgd/λ(n) random walks p = pi starting in t. To show that226

it is likely that the path intersects Vs, we split the random walk p = (t, v1, . . . , v3 lgd/λ(n)+1)227

into two parts, namely the first 2 lgd/λ(n) steps p(1) = (t, v1, . . . , v2 lgd/λ(n)+1) and the228

remaining lgd/λ(n) steps p(2) = (v2 lgd/λ(n)+1, . . . , v3 lgd/λ(n)+1). Note that we let the last229

node e(p(1)) = v2 lgd/λ(n)+1 in p(1) equal the first node s(p(2)) = v2 lgd/λ(n)+1 in p(2). We230

use p(1) to argue that p(2) has a near-uniform random starting node. We then argue that231

p(2) intersects Vs with good probability.232

By Theorem 9, it holds for any node r ∈ G that Pr[e(p(1)) = r] ≤ 1/n + 1/n2. Next,233

conditioned on e(p(1)) = r, the path p(2) is uniform random among the dlgd/λ(n) length234

lgd/λ(n) paths starting in r. It follows that for any fixed path p of length lgd/λ(n) in G,235

we have Pr[p(2) = p] ≤ Pr[e(p(1)) = s(p)]d− lgd/λ(n) ≤ (1/n + 1/n2)d− lgd/λ(n). Now by236

Theorem 10 with W = V (G) \ Vs and assuming λ ≤ d/2, there are at most ndlgd/λ(n)((1 −237

k/n)+(λ/d)(k/n))lgd/λ(n) ≤ ndlgd/λ(n)(1−k/(2n))lgd/λ(n) ≤ ndlgd/λ(n) exp(− lgd/λ(n)k/(2n))238

paths in G that stay within V (G) \ Vs. A union bound over all of them implies that the239

probability that p(2) avoids Vs is at most240

(1/n + 1/n2)d− lgd/λ(n)ndlgd/λ(n) exp(− lgd/λ(n)k/(2n)) ≤ exp(− lgd/λ(n)k/(2n) + 1/n).241

Since the τ = k/(3 lgd/λ(n)) random walks p1, . . . , pτ are independent, we conclude that the242

probability they all avoid Vs is no more than243

exp(−k2/(6n) + k/(3 lgd/λ(n)n)).244

Letting k =
√

7n ln(1/δ) and assuming n is at least some sufficiently large constant, we have245

that at least one path pi intersects Vs with probability at least 1 − δ. This completes the246

proof of Theorem 4.247

3 Lower Bounds248

In this section, we prove lower bounds on the number of queries made by any algorithm for249

computing an s-t path in a random graph. Our query model allows node-incidence queries.250

Here the n nodes of a graph G are assumed to be labeled by the integers [n]. A node-incidence251

query is specified by a node index i ∈ [n], and the query algorithm is returned the list of252

edges (i, j) incident to i.253

We start by considering an Erdős-Rényi random graph, as it is the simplest to analyse.254

We then proceed to random d-regular graphs. For the lower bounds, the task is to output255

a path between nodes s = 1 and t = n. An algorithm for finding an s-t path works as256
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follows: In each step, the algorithm is allowed to ask one node-incidence query. We make no257

assumption about how the algorithm determines which query to make in each step, other258

than it being computable from all edges seen so far (the responses to the node-incidence259

queries). For randomized algorithms, the choice of query in each step is chosen randomly260

from a distribution over queries computable from all edges seen so far.261

3.1 Erdős-Rényi262

Let G be an Erdős-Rényi random graph, where each edge is present independently with263

probability p ≥ 1.5 ln(n)/n and let A⋆ be a possibly randomized algorithm for computing264

an s-t path in G when s = 1 and t = n. Let α⋆ be the probability that A⋆ outputs a valid265

s-t path (all edges on the reported path are in G) and let q be the worst case number of266

queries made by A⋆ (for A⋆ making an expected q queries, we can always make it worst case267

O(q) queries by decreasing α by a small additive constant). Here the probability is over both268

the random choices of A⋆ and the random input graph G. By linearity of expectation, we269

may fix the random choices of A⋆ to obtain a deterministic algorithm A that outputs a valid270

s-t path with probability α ≥ α⋆. It thus suffices to prove an upper bound on α for such271

deterministic A.272

For a graph G, let π(G) denote the trace of running the deterministic A on G. If273

i1(G), . . . , iq(G) denotes the sequence of queries made by A on G and N1(G), . . . , Nq(G)274

denotes the returned sets of edges, then275

π(G) := (i1(G), N1(G), i2(G), . . . , iq(G), Nq(G)).276

Observe that if we condition on a particular trace τ = (i1, N1, i2, . . . , iq, Nq), then the277

distribution of G conditioned on π(A, G) = τ is the same as if we condition on the set of278

edges incident to i1, . . . , iq being precisely N1, . . . , Nq. This is because the algorithm A is279

deterministic and the execution of A is the same for all graphs G with the same such sets of280

edges incident to i1, . . . , iq. Furthermore, no graph G with a different set of incident edges281

for i1, . . . , iq will result in the trace τ .282

For a trace τ = (i1, N1, . . . , iq, Nq), call the trace connected if there is a path from s to t283

using the discovered edges284

q⋃
j=1

Nj .285

Otherwise, call it disconnected. Intuitively, if a trace is disconnected, then it is unlikely that286

A will succeed in outputting a valid path connecting s and t as it has to guess some of the287

edges along such a path. Furthermore, if A makes too few queries, then it is unlikely that288

the trace is connected. Letting A(G) denote the output of A on the graph G, we have for a289

random graph G that290

α = Pr[A(G) is valid] ≤ Pr[π(G) is connected]+Pr[A(G) is valid | π(G) is disconnected].291

We now bound the two quantities on the right hand side separately.292

The simplest term to bound is293

Pr[A(G) is valid | π(A, G) is disconnected].294

For this, let τ = (i1, N1, . . . , iq, Nq) be an arbitrary disconnected trace in the support of295

π(G) when G is an Erdős-Rényi random graph, where each edge is present with probability296
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3:8 Sublinear Time Shortest Path in Expander Graphs

p ≥ 1.5 ln(n)/n. Observe that the output of A is determined from τ . Since τ is disconnected,297

the path reported by A on τ must contain at least one edge (u, v) where neither u nor v298

is among ∪j{ij} or otherwise the output path is valid with probability 0 conditioned on τ .299

But conditioned on the trace τ , every edge that is not connected to {i1, . . . , iq} is present300

independently with probability p. We thus conclude301

Pr[A(G) is valid | π(G) = τ ] ≤ p.302

Since this holds for every disconnected τ , we conclude303

Pr[A(G) is valid | π(G) is disconnected] ≤ p.304

Next we bound the probability that π(G) is connected. For this, define for 1 ≤ k ≤ q305

πk(G) := (i1(G), N1(G), i2(G), . . . , ik(G), Nk(G))306

as the trace of A on G after the first k queries. As for π(G), we say that πk(G) is connected307

if there is a path from s to t using the discovered edges308

E(πk(G)) =
k⋃

j=1
Nj(G)309

and that it is disconnected otherwise. We further say that πk(G) is useless if it is both310

disconnected and |E(πk(G))| ≤ 2pnk. Since311

Pr[πk(G) is disconnected] ≥ Pr[πk(G) is useless]312

we focus on proving that Pr[πk(G) is useless] is large. For this, we lower bound313

Pr[πk(G) is useless | πk−1(G) is useless].314

Note that the base case π0(G) is defined to be useless as s and t are not connected315

when no queries have been asked and also |E(π0(G))| = 0 ≤ 2pn0 = 0. Let τk−1 =316

(i1, N1, . . . , ik−1, Nk−1) be any useless trace. The query ik = ik(G) is uniquely determined317

when conditioning on πk−1(G) = τk−1 and so is the edge set Ek−1 = E(πk−1(G)). Fur-318

thermore, we know that |Ek−1| ≤ 2pn(k − 1). We now bound the probability that the319

query ik discovers more than 2pn new edges. If ik has already been queried, no new edges320

are discovered and the probability is 0. So assume ik /∈ {i1, . . . , ik−1}. Now observe that321

conditioned on πk−1(G) = τk−1, the edges (ik, i) where i /∈ {i1, . . . , ik−1} are independently322

included in G with probability p each. The number of new edges discovered is thus a sum of323

m ≤ n independent Bernoullis X1, . . . , Xm with success probability p. A Chernoff bound324

implies Pr[
∑

i Xi > (1 + δ)µ] < (eδ/(1 + δ)1+δ)µ for any µ ≥ mp and any δ > 0. Letting325

µ = np and δ = 1 gives326

Pr[
∑

i

Xi > 2np] < (e/4)np < e−np/3.327

Since we assume p > 1.5 ln(n)/n, this is at most 1/
√

n.328

We next bound the probability that the discovered edges Nk(G) makes s and t connected329

in E(πk(G)). For this, let Vs denote the nodes in the connected component of s in the330

subgraph induced by the edges Ek−1. Define Vt similarly. We split the analysis into three331

cases. First, if ik ∈ Vs, then Nk(G) connects s and t if and only if one of the edges {ik} × Vt332
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is in G. Conditioned on πk−1(G) = τk−1, each such edge is in G independently either333

with probability 0, or with probability p (depending on whether one of the end points is334

in {i1, . . . , ik−1}). A union bound implies that s and t are connected in E(πk(G)) with335

probability at most p|Vt|. A symmetric argument upper bounds the probability by p|Vs| in336

case ik ∈ Vt. Finally, if ik is in neither of Vs and Vt, it must have an edge to both a node in337

Vs and in Vt to connect s and t. By independence, this happens with probability at most338

p2|Vt||Vs|. We thus conclude that339

Pr[πk(G) is connected | πk−1(G) = τk−1] ≤ p max{|Vs|, |Vt|} ≤ p(|Ek−1| + 1) ≤ 2p2nk.340

A union bound implies341

Pr[πk(G) is useless | πk−1(G) is useless] ≥ 1 − 2p2nk − 1/
√

n.342

This finally implies343

Pr[π(G) is useless] =
q∏

k=1
Pr[πk(G) is useless | πk−1(G) is useless]344

≥
q∏

k=1

(
1 − 2p2nk − 1/

√
n

)
345

≥ 1 −
q∑

k=1
(2p2nk + 1/

√
n)346

≥ 1 − p2n(q + 1)2 − q/
√

n.347

It follows that348

Pr[π(G) is connected] = 1 − Pr[π(G) is disconnected]349

≤ 1 − Pr[π(G) is useless]350

≤ p2n(q + 1)2 + q/
√

n.351

For q = o(1/(p
√

n)) and p ≥ 1.5 ln(n)/n, this is o(1). Note that for the lower bound to be352

meaningful, we need p = O(1/
√

n) as otherwise the bound on q is less than 1. (Indeed, for353

p = Ω(1/
√

n), s and t have a common neighbor with probability bounded away from 0 and354

if so 2 queries suffice). This concludes the proof of Theorem 5.355

3.2 d-Regular Graphs356

We now proceed to random d-regular graphs. Assume dn is even, as otherwise a d-regular357

graph on n nodes does not exist. Similarly to our proof for the Erdős-Rényi random graphs,358

we will condition on a trace of A. Unfortunately, the resulting conditional distribution of359

a random d-regular graph is more cumbersome to analyse. We thus start by reducing to a360

slightly different problem.361

Let Mn,d denote the set of all graphs on nd nodes where the edges form a perfect362

matching on the nodes. There are thus nd/2 edges in any such graph. We think of the nodes363

of a graph G ∈ Mn,d as partitioned into n groups of d nodes each, and we index the nodes364

by integer pairs (i, j) with i ∈ [n] and j ∈ [d]. Here i denotes the index of the group. For a365

graph G ∈ Mn,d and a sequence of group indices p := s, i1, . . . , im, t, we say that p is a valid366

s-t meta-path in G, if for every two consecutive indices a, b in p, there is at least one edge367

((a, j1), (b, j2)) in G. A meta-path is thus a valid path if and only if s and t are connected in368

the graph resulting from contracting the nodes in each group.369
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Now consider the problem of finding a valid s-t meta-path in a graph G drawn uniformly370

from Mn,d (we write G ∼ Mn,d to denote such a graph) while asking group-incidence queries.371

A group-incidence query is specified by a group index i ∈ [n] and the answer to the query is372

the set of edges incident to the nodes {i} × {1, . . . , d}.373

We start by showing that an algorithm A⋆ for finding an s-t path in a random d-regular374

n-node graph, gives an algorithm A for finding an s-t meta-path in a random G ∼ Mn,d375

using group-incidence queries.376

▶ Lemma 11. If there is a (possibly randomized) algorithm A⋆ that reports a valid s-t path377

with probability α in a random d-regular graph on n nodes while making q node-incidence378

queries, then there is a deterministic algorithm A that reports a valid s-t meta-path with379

probability at least exp(−O(d2))α in a random graph G ∼ Mn,d while making q group-380

incidence queries.381

Proof. Given an algorithm A⋆ that reports a valid s-t path in a random d-regular graph on n382

nodes with probability α, we start by fixing its randomness to obtain a deterministic algorithm383

A′ with the same number of queries that outputs a valid s-t path with probability at least α.384

Next, let G ∼ Mn,d. Let i1 ∈ [n] be the first node that A′ queries (which is independent of the385

input graph). Our claimed algorithm A for reporting an s-t meta-path in G starts by querying386

the group i1. Upon being returned the set of edges {((i1, 1), (j1, k1)), . . . , ((i1, d), (jd, kd))}387

incident to {i1} × {1, . . . , d}, we contract the groups such that each edge ((i1, h), (j, k)) is388

replaced by (i1, j). If this creates any duplicate edges or self-edges, A aborts and outputs an389

arbitrarily chosen s-t meta-path. Otherwise, the resulting set of edges {(i1, j1), . . . , (i1, jd)}390

is passed on to A′ as the response to the first query i1. The next query i2 of A′ is then391

determined and we again ask it as a group-incidence query on G and proceed by contracting392

groups in the returned set of edges and passing the result to A′ if there are no duplicate393

or self-edges. Finally, if we succeed in processing all q queries of A′ without encountering394

duplicate or self-edges, A outputs the s-t path reported by A′ as the s-t meta-path.395

To see that this strategy has the claimed probability of reporting a valid s-t meta-path, let396

G⋆ be the graph obtained from G by contracting all groups. Observe that if we condition on397

G⋆ being a simple graph (no duplicate edges or self-edges), then the conditional distribution398

of G⋆ is precisely that of a random d-regular graph on n nodes. It is well-known [5, 8, 22, 21]399

that the contracted graph G⋆ is indeed simple with probability at least exp(−O(d2)) and400

the claim follows. ◀401

In light of Lemma 11, we thus set out to prove lower bounds for deterministic algorithms402

that report an s-t meta-path in a random G ∼ Mn,d using group-incidence queries.403

Let A be a deterministic algorithm making q group-incidence queries that reports a404

valid s-t meta-path with probability α in a random G ∼ Mn,d. Similarly to our proof405

for Erdős-Rényi graphs, we start by defining the trace of A on a graph G ∈ Mn,d. If406

i1(G), . . . , iq(G) ∈ [n] denotes the sequence of group-incidence queries made by A on G and407

N1(G), . . . , Nq(G) denotes the returned sets of edges, then for 1 ≤ k ≤ q, we define408

πk(G) = (i1(G), N1(G), . . . , ik(G), Nk(G)).409

We also let π(G) := πq(G) denote the full trace. Call a trace τk = (i1, N1, . . . , ik, Nk)410

connected if there is a sequence of group indices p := s, i1, . . . , im, t such that for every two411

consecutive indices a, b in p, there is an edge ((a, h), (b, k)) in ∪iNi. Otherwise, call the trace412

disconnected. Letting A(G) denote the output of A on the graph G, we have413

α = Pr[A(G) is valid] ≤ Pr[π(G) is connected]+Pr[A(G) is valid | π(G) is disconnected].414
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We bound the two terms separately, starting with the latter. So let τ = (i1, N1, . . . , iq, Nq) be a415

disconnected trace in the support of π(G). The output meta-path A(G) = p = s, i1, . . . , im, t416

of A is determined from τ . Since τ is disconnected, there must be a pair of consecutive417

indices a, b in p such that there is no edge ((a, h), (b, k)) ∈ ∪iNi. Fix such a pair a, b. We418

now consider two cases. First, if either a or b is among i1, . . . , iq, then all edges incident419

to that group are among ∪iNi conditioned on π(G) = τ . It thus follows that p is a valid420

s-t meta-path with probability 0 conditioned on π(G) = τ . Otherwise, neither of a and b421

are among i1, . . . , iq. The set of edges ∪iNi specify at most dq edges of the matching G.422

For any node whose matching edge is not specified by ∪iNi, the conditional distribution of423

its neighbor is uniform random among all other nodes whose matching edge is not in ∪iNi.424

For each of the d2 possible edges ((a, h), (b, k)) between the groups a and b, there is thus425

a probability at most 1/(nd − 1 − 2dq) that the edge is in G conditioned on π(G) = τ . A426

union bound over all d2 such edges finally implies427

Pr[A(G) is valid | π(G) = τ ] ≤ d2

nd − 1 − 2dq
.428

Since this holds for every disconnected τ , we conclude429

Pr[A(G) is valid | π(G) is disconnected] ≤ d2

nd − 1 − 2dq
.430

Next, to bound Pr[π(G) is connected], we show that431

Pr[πk(G) is disconnected | πk−1(G) is disconnected]432

is large. So let τk−1 = (i1, N1, . . . , ik−1, Nk−1) be a disconnected trace in the support of433

πk−1(G). The next query ik = ik(G) of A is fixed conditioned on πk−1(G) = τk−1. We have434

a two cases. First, if ik ∈ {i1, . . . , ik−1} then no new edges are returned by the query and we435

conclude436

Pr[πk(G) is disconnected | πk−1(G) = τk−1] = 1.437

Otherwise, let Vs denote the subset of group-indices j for which there is a meta-path from s438

to j. Similarly, let Vt denote the subset of group-indices j for which there is a meta-path439

from t to j. We have Vs ∩ Vt = ∅. Now if ik ∈ Vs, we have that πk(G) is connected only440

if there is an edge between a node (ik, j) with j ∈ [d] and a node (b, k) with b ∈ Vt. Let441

r ∈ {0, . . . , d} denote the number of nodes (ik, j) with j ∈ [d] for which the corresponding442

matching edge is not in ∪iNi. Conditioned on πk−1(G) = τk−1, the neighbor of any such443

node is uniform random among all other nodes for which the corresponding matching edge444

is not in ∪iNi. There are at least nd − 1 − 2d(k − 1) such nodes. A union bound over at445

most rd|Vt| ≤ d2|Vt| pairs ((ik, j), (b, k)) implies that πk(G) is connected with probability446

at most d2|Vt|/(nd − 1 − 2d(k − 1)). A symmetric arguments gives an upper bound of447

d2|Vs|/(nd − 1 − 2d(k − 1)) in case ik ∈ Vt. Finally, if ik is in neither of Vs and Vt, then there448

must still be an edge ((ik, j), (a, k)) for a group a ∈ Vs. We thus conclude449

Pr[πk(G) is connected | πk−1(G) = τk−1] ≤ d2 max{|Vs|, |Vt|}
nd − 1 − 2d(k − 1) ≤ d3k

nd − 1 − 2dq
.450
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Since this holds for every disconnected trace τk−1, we finally conclude451

Pr[π(G) is disconnected] ≥
q∏

k=1

(
1 − d3k

nd − 1 − 2dq

)
452

≥ 1 −
q∑

k=1

d3k

nd − 1 − 2dq
453

≥ 1 − d3q2

nd − 1 − 2dq
,454

and thus455

Pr[π(G) is connected] ≤ d3q2

nd − 1 − 2dq
.456

For constant degree d, if q = o(
√

n), this is o(1). Together with Lemma 11, we have thus457

proved Theorem 6.458

4 Large Diameter Expanders459

In this section, we sketch the claim from Section 1 that there exists large diameter expanders.460

Concretely, using the techniques in [4] with a slightly different choice of parameters it is461

not difficult to show that there are (n′, d, λ)-graphs with λ < 3
√

d and diameter larger than462

(2 − 0.003) lgd−1 n′ for constant d. Here is a sketch of the argument proving this fact.463

Start with a Ramanujan (n, d, 2
√

d − 1)-graph, with girth Ω(lgd−1 n) (for example, taking464

an LPS expander). Choose in it a set X of 2(d − 1)0.999 lgd−1 n vertices so that the distance465

between any pair of them is Ω(lgd−1 n). This can be done by choosing the vertices one by one,466

always adding a vertex far from all vertices chosen already. Omit these vertices and identify467

their 2d(d − 1)0.999 lgd−1 n neighbors with the leaves of two d-regular trees, each of depth468

0.999 lgd−1 n and each having d(d − 1)0.999 lgd−1 n leaves. The graph obtained is d-regular469

and has n′ vertices (the original n plus the vertices of the two trees). The distance between470

the roots of the two trees is clearly bigger than (2 − 0.002) lgd−1 n > (2 − 0.003) lgd−1 n′.471

By the argument in [4] (see also [2], Lemma 3.2) based on the delocalization of eigenvectors472

of high girth graphs it is not difficult to show that the absolute value of every nontrivial473

eigenvalue of the graph obtained is smaller than 3
√

d, implying the required fact. We omit474

the detailed computation.475
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