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Abstract

We show that any finite simple graph with minimum degree d contains a spanning
star forest in which every connected component is of size at least Ω((d/ log d)1/3). This
settles a problem of Havet, Klazar, Kratochvil, Kratsch and Liedloff.

Dedication

This paper is dedicated to Laci Lovász, for his 60th birthday. It settles a prob-
lem presented by Jan Kratochvil at the open problems session of the meeting Building
Bridges, which took place in Budapest in August 2008, celebrating this birthday. The
Lovász Local Lemma is applied extensively throughout the proof. This work is there-
fore a typical example illustrating the immense influence of Laci, who not only provided
the community with powerful tools and techniques, but also stimulated research by his
books, lectures and organization of conferences.

1 Introduction

All graphs considered here are finite and simple. A star is a tree with one vertex, the center,

adjacent to all the others, which are leaves. A star factor of a graph G is a spanning forest of

G in which every connected component is a star. It is easy to see that any graph with positive

minimum degree contains a star factor in which every component is a star with at least one
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edge. A conjecture of Havet et al. [9], communicated to us by Jan Kratochvil [10], asserts that

if the minimum degree is large then one can ensure that all stars are large. More precisely,

they conjectured that there is a function g(d) that tends to infinity as d tends to infinity, so

that every graph with minimum degree d contains a star factor in which every star contains

at least g(d) edges. Our main result shows that this is indeed the case, for a function g(d)

that grows moderately quickly with d, as follows.

Theorem 1.1 There exists an absolute positive constant c so that for all d ≥ 2, every graph

with minimum degree d contains a star factor in which every star has at least cd1/3/(log d)1/3

edges.

The motivation for the conjecture of Havet et al. arises in the running time analysis of a

recent exact exponential time algorithm for the so called L(2, 1)-labeling problem of graphs.

See [9] for more details.

As preparation for the proof of the main result, we prove the following simpler statement.

Theorem 1.2 There exists an absolute positive constant c′ such that for all d ≥ 2, every

d-regular graph contains a star factor in which every star has at least c′d/ log d edges. This is

optimal, up to the value of the constant c′.

Throughout the paper we make no attempt to optimize the absolute constants. To simplify

the presentation we omit all floor and ceiling signs whenever these are not crucial. We may

and will assume, whenever this is needed, that the minimum degree d considered is sufficiently

large. It is easy to find, in any graph with all vertices of degree at least 1, a star factor with

stars of at least two vertices each, so the theorems then follow for all d ≥ 2. All logarithms

are in the natural base, unless otherwise specified.

Our notation is standard. In particular, for a graph G = (V, E) and a vertex v ∈ V , we let

NG(v) denote the set of all neighbors of v in the graph G, and let dG(v) = |NG(v)| denote the

degree of v in G. For X ⊂ V , NG(X) = ∪x∈XNG(x) is the set of all neighbors of the members

of X.

The rest of this short paper is organized as follows. In Section 2 we present the simple

proof of Theorem 1.2, and in Section 3 the proof of the main result. Section 4 contains some

concluding remarks and open problems.
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2 Regular graphs

Proof of Theorem 1.2: Let G = (V, E) be a d-regular graph. Put p = (2 + 2 log d)/d

and let C be a random set of vertices obtained by picking each vertex of G, randomly and

independently, to be a member of C, with probability p. We will show that, with positive

probability, some such set C will be a suitable choice for the set of centres of the stars in the

desired star factor.

For each vertex v ∈ V , let Av be the event that either v has no neighbors in C or v has more

than 3pd neighbors in C. By the standard known estimates for binomial distributions (c.f.,

e.g., [4], Theorem A.1.12), the probability of each event Av is at most (1−p)d+(e2/27)2+2 log d <

e−p + (1/e)2+2 log d < 1/ed2. Moreover, each event Av is mutually independent of all events Au

except those that satisfy NG(v)∩NG(u) 6= ∅. As there are at most d(d− 1) < d2 such vertices

u we can apply the Lovász Local Lemma (c.f., e.g., [4], Corollary 5.1.2) to conclude that with

positive probability none of the events Av holds. Therefore, there is a choice of a set C ⊂ V

so that for every vertex v, 0 < |NG(v) ∩ C| ≤ 3pd = 6 + 6 log d.

Fix such a set C, and let B be the bipartite graph whose two classes of vertices are C and

V \ C, where each v ∈ C is adjacent in B to all vertices u ∈ V \ C which are its neighbors in

G. By the choice of C, for every vertex v ∈ C, dB(v) ≥ d − 6 − 6 log d and for every vertex

u ∈ V \ C, 0 < dB(u) ≤ 6 + 6 log d. It thus follows by Hall’s theorem that one can assign to

each vertex v ∈ C a set consisting of

d− 6− 6 log d

6 + 6 log d
>

d

7 log d

of its neighbors in V \ C, where no member of V \ C is assigned to more than one such

v. (To see this from the standard version of Hall’s theorem, split each vertex v in C into

(d−6−6 log d)/(6+6 log d) identical ‘sub-vertices’, each with the same neighbours in V \C as

v, and find a matching that hits every sub-vertex using Hall’s theorem. Then for each v ∈ C,

coalesce the subvertices of v back together to form v.) By assigning each unassigned vertex u

of V \ C arbitrarily to one of its neighbors in C (note that there always is such a neighbor)

we get the required star factor, in which the centers are precisely the members of C and each

star contains more than d/(7 log d) edges.

It remains to show that the above estimate is optimal, up to a constant factor. Note that

the centers of any star factor form a dominating set in the graph, and thus if the minimum

size of a dominating set in a d-regular graph on n vertices is at least Ω(n log d/d), then the

star factor must contain a component of size at most O(d/ log d). It is not difficult to check

that the minimum size of a dominating set in a random d-regular graph on n vertices is
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Θ(n log d/d) with high probability. In fact, if c < 1, the expected number of dominating sets

of size k = n(c + o(1))(log d)/d tends to 0 for d sufficiently large. We give some details of

verifying this claim. One can use the standard pairing or configuration model of random d-

regular graphs, in which there are n buckets with d points in each bucket. It is enough to prove

the result for the multigraph arising from taking a random pairing of the points and regarding

the buckets as vertices (see e.g. [12] for details). The expected number of dominating sets S

of size k with m edges from S to N(S) is

A :=

(
n

k

)
f(k,m)

(m−1∏
i=0

(kd− i)

)
M(kd−m)M((n− k)d−m)

M(nd)

where f(k,m) is the coefficient of xm in
(
(1 + x)d− 1

)n−k
and M(r) is the number of pairings

or perfect matchings of an even number r of points, i.e. (r − 1)(r − 3) · · · 1. In the above

formula, the binomial chooses the k buckets of S, f(k, m) is the number of ways to choose m

points in the other n−k buckets such that at least one point comes from each bucket (so that

S dominates the graph), and the next factor counts the ways to pair those points with points

in buckets in S. The other factors in the numerator count the ways to pair up the remaining

points, first within S, and then within the rest of the graph. The denominator is the total

number of pairings. We may use standard methods to see that f(k, m) ≤
(
(1+x)d−1

)n−k
x−m

for all real x > 0 (since f ’s coefficients are all nonnegative). We set x = k/n and take

k = nc(log d)/d, which is justified by regarding c as a function of n that tends to a limit equal

to the value c referred to in the claim above. This gives

A ≤
(

n

k

)(
(1 + k/n)d − 1

)n−k(n

k

)m
(kd)!

(kd−m)!
· M(kd−m)M((n− k)d−m)

M(nd)
.

Considering replacing m by m + 2 shows this expression is maximised when n2(kd − m) ≈
k2
(
(n − k)d − m

)
and certainly only when kd − m ∼ n

(
(c log d)2/d

)
. In fact, kd − m =

O
(
n(log2 d)/d

)
is sufficient for our purposes. Fixing such a value of m, using n! = (n/e)nnθ(1)
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and M(r) = Θ((r/e)r/2), and noting that(
n

k

)
= exp

(
O(n(log2 d)/d)

)
,

(1 + k/n)d − 1 = dc
(
1− d−c + O(d−1 log2 d)

)
,(

n

k

)m
=

(
n

k

)−(kd−m)(
n

k

)kd
=

(
n

k

)kd
exp

(
O(n(log3 d)/d)

)
,

((kd−m)/e)kd−m = nkd−m exp
(
O(n(log3 d)/d)

)
,

((n− k)d−m)((n−k)d−m)/2 = (nd− 2kd + (kd−m))((n−k)d−m)/2

= (nd)((n−k)d−m)/2

(
1− 2k

n
+

k −m/d

2n

)nd(1−2k/n+(k−m/d)/2n)/2

= (nd)((n−k)d−m)/2 exp
(
− dk + O(n(log2 d)/d)

)
we find everything in the upper bound for A cancels except for

e−kddc(n−k)+(kd−m)/2(1− d−c)n exp
(
O(nd−1 log3 d)

)
.

Since dc = ekd/n and the power of d is absorbed in the error term, this equals nO(1)
(
1− d−c +

O(d−1 log3 d)
)n

, which, if c < 1, tends to 0 for large d as required. On the other hand, for

c > 1 and large d, nc(log d)/d is an upper bound on the minimum dominating set size in all

d-regular graphs [4, Theorem 2.2].

An explicit example can be given as well: if d = (p− 1)/2 with p being a prime, consider

the bipartite graph H with two classes of vertices A1 = A2 = Zp in which aibj forms an edge

iff (ai− bj) is a quadratic non-residue. A simple consequence of Weil’s Theorem (see, e.g., [2],

Section 4) implies that for every set S of at most, say, 1
3

log2 p elements of Zp, there are more

than
√

p members z of Zp so that (z − s) is a quadratic residue for all s ∈ S. This implies

that any dominating set of H must contain either more than 1
3

log2 p vertices of A2 or at least
√

p vertices of A1, and is thus of size bigger than 1
3

log2 p. (This can in fact be improved to

(1− o(1)) log2 p, but as we are not interested in optimizing the absolute constants here and in

the rest of the paper, we omit the proof of this stronger statement). For degrees d that are not

of the form (p−1)/2 for a prime p one can take any spanning d-regular subgraph of the graph

above with the smallest p for which (p− 1)/2 ≥ d. Such a subgraph exists by Hall’s theorem,

and any dominating set in it is also dominating in the original (p− 1)/2-regular graph, hence

it is of size at least 1
3

log2 p. By the known results about the distribution of primes this prime

p is (2 + o(1))d, and we thus get a d-regular graph on at most n = (4 + o(1))d vertices in

which every dominating set is of size greater than 1
3

log2 p > 1
3

log2 d ≥ Ω
(
n(log d)/d

)
. This

completes the proof.
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3 The proof of the main result

In this section we prove Theorem 1.1. The idea of the proof is based on that of Theorem 1.2.

Given a graph G = (V, E) with minimum degree d, we wish to define a dominating set C ⊂ V

whose members will form the centers of the star factor, and then to assign many leaves to

each of them. The trouble is that here we cannot pick the set of centers randomly, as our

graph may contain a large set R of vertices of degree d whose total number of neighbors is

much smaller than |R|, and then the number of centers in R is limited. This may happen if

some or all of the neighbors of the vertices in R have degrees which are much higher than d.

Thus, for example, if our graph is a complete bipartite graph with classes of vertices R and

U , with |R| = n−d and |U | = d << n−d, it is better not to choose any centers in R. In fact,

it seems reasonable in the general case to force all vertices of degree much higher than d to

be centers, and indeed this is the way the proof starts. However, if we then have a vertex all

(or almost all) of whose neighbors have already been declared to be centers, then this vertex

cannot be a center itself, and will have to be a leaf. Similarly, if almost all neighbors of a

vertex are already declared to be leaves, then this vertex will have to become a center.

The proof thus proceeds by declaring, iteratively, some vertices to be centers and other

vertices to be leaves. At the end, if there are any vertices left, we choose a small subset of

them randomly to be additional centers. The Local Lemma has to be applied to maintain the

desired properties that will enable us to apply Hall’s theorem at the end to a bipartite graph,

defined in a way similar to that in the proof of Theorem 1.2. An additional complication arises

from the fact that we have to assign time labels to vertices and use them in the definition of

the bipartite graph. We proceed with the detailed proof.

Proof of Theorem 1.1: Let G = (V, E) be a graph with minimum degree d. We first modify

G by omitting any edge whose two endpoints are of degree strictly greater than d, as long as

there is such an edge. We thus may and will assume, without loss of generality, that every

edge has at least one endpoint of degree exactly d. Put h = 1
10

d4/3/(log d)1/3, and let H (for

High) denote the set of all vertices of degree at least h. Since each of their neighbors is of

degree precisely d, we can apply Hall’s theorem and assign a set of h/d neighbors to each of

them, so that no vertex is assigned twice. Let S ′ denote the set of all the |H| · 1
10

d1/3/(log d)1/3

assigned vertices, and let S (for Special) be a random subset of S ′ obtained by choosing each

member of S ′ to be in S randomly and independently with probability 1/2.

Claim 3.1 In the random choice of S, with positive probability the following conditions hold:

(i) For each v ∈ H, |NG(v) ∩ S| > 1
25

d1/3/(log d)1/3.
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(ii) For each v ∈ V \H, |NG(v) \ S| ≥ d/3.

Proof: For each vertex v ∈ H let Av be the event that condition (i) is violated for v.

Similarly, for each vertex v ∈ V \H let Bv be the event that condition (ii) is violated for v.

By the standard known estimates for binomial distributions, the probability of each event Av

is exp
(
− Ω(d1/3/(log d)1/3)

)
and that of each event Bv is e−Ω(d). In addition, each event Av

is independent of all other events except for the events Bu for vertices u that have a neighbor

among the 1
10

d1/3/(log d)1/3 vertices of S ′ assigned to v (note that there are less than d4/3 such

vertices u). The same reasoning shows that each event Bv is mutually independent of all other

events Au, Bw with the exception of at most hd < d3 events. The desired result thus follows

from the Local Lemma (with a lot of room to spare). This completes the proof of the claim.

Fix an S satisfying the assertion of the claim, and define G′ = G − S = (V ′, E ′). Note

that by the above claim, part (ii),

for each v ∈ V (G′) = V \ S, |NG′(v)| ≥ d/3. (1)

Note also that by part (i) of the claim, each vertex v ∈ H has a set of at least 1
25

d1/3/(log d)1/3

vertices from S assigned to it, and can thus serve as a center of a star of at least that size.

We now construct two sets of vertices C, L ⊂ V \S. The set C will consist of vertices that

are declared to be centers, and will serve as centers of stars in our final star factor. The set L

will consist of vertices that are declared to be leaves in the final factor. Note that the vertices

in S will not form part of these sets; they will also be leaves in the final star factor, and their

associated centers will be the vertices in H to which they have been assigned, but since we

have already specified their centers we do not need to consider them any more. Initially, define

C = H and L = ∅. We will also need a time label t(v) which will be defined in the following

for each vertex in V \ (H ∪ S); in the beginning set t = 0.

Put V ′ = V (G′) = V \S and define D = d2/3(log d)1/3. Now apply repeatedly the following

two rules to define additional centers and leaves, and assign them time labels.

• (a) If there is a vertex v ∈ V ′ \ (C ∪L) such that |NG′(v) \C| ≤ D, add v to L, increase

t by 1, and define t(v) = t.

• (b) If there is a vertex v ∈ V ′ \ (C ∪ L) such that |NG′(v) \ L| ≤ d/6, add v to C,

increase t by 1, and define t(v) = t.

The process continues by repeatedly applying rules (a) and (b) in any order until there

are no vertices left in V ′ \ (C ∪ L) that satisfy the conditions in rule (a) or in rule (b). Let
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t0 denote the value of the time parameter t at this point. Actually, since L and C will be

disjoint, by (1) no vertex will satisfy the conditions in both rules simultaneously. Let F (for

Free) denote the set of all vertices in V ′ \ (C ∪ L) remaining once the process terminates.

Define p = 20(log d)/d, and let T be a random subset of F obtained by picking each vertex

v ∈ F , randomly and independently, to be in T with probability p. Assign the vertices of

F \ T the time labels t0 + 1, t0 + 2, . . . , t0 + |F \ T | in any order. Finally, assign the vertices

of T the time labels t0 + |F \ T |+ 1, t0 + |F \ T |+ 2, . . . , t0 + |F |.
In our final star factor, the vertices H ∪ C ∪ T will serve as centers, while the remaining

vertices, that is, those in S ∪ L ∪ (F \ T ), will serve as leaves. In order to show that it is

possible to define large stars with these centers and leaves, we need the following.

Claim 3.2 With positive probability, every vertex of F has at least one neighbor in C ∪ T ,

and no vertex v ∈ V ′ −H has more than 2ph = 4d1/3(log d)2/3 neighbors in T .

Proof: For each vertex v ∈ F that does not have any neighbor in C, let Av be the event

that it has no neighbor in T . Note that as v ∈ F , the definition of rule (b) implies that

|NG′(v) \ L| > d/6, and as it has no neighbor in C, it has more than d/6 neighbors in F .

Therefore, the probability that none of these neighbors is in T is at most (1 − p)d/6 < d−3.

For each vertex v ∈ V ′ \ H, let Bv be the event that v has more than 2ph neighbors in T .

Since the degree of v in G′ is at most h, its number of neighbors in F is certainly at most

h, and hence the standard estimates for binomial distributions imply that the probability of

each event Bv is at most e−Ω(ph) which is much smaller than, say, d−3.

Note that each event Av is mutually independent of all other events Au or Bw apart from

those corresponding to vertices u or w that have a common neighbor with v in F , and the

number of such vertices u, w is smaller than hd < d7/3. Similarly, each of the events Bv is

independent of all others but at most hd < d7/3. The claim thus follows from the Local

Lemma.

Returning to the proof of the theorem, fix a choice of F satisfying the assumptions in the

last claim. Let B be the bipartite graph with classes of vertices (C \H)∪ T and L∪ (F \ T ),

in which each v ∈ (C \H) ∪ T is adjacent to any of its neighbors u that lies in L ∪ (F \ T )

and satisfies t(u) < t(v). Note that, crucially, prospective centers are connected in B only to

prospective leaves with smaller time labels.

Our objective is to show, using Hall’s theorem, that we can assign to each vertex v in

(C\H)∪T some Ω(d1/3/(log d)1/3) neighbors of v (in B, and hence also in G′) from L∪(F \T ),

such that each vertex in L ∪ (F \ T ) is assigned at most once. To do so, we first establish

several simple properties of the bipartite graph B that follow from its construction.
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Claim 3.3 The following properties hold.

(i) For each vertex u ∈ L, |NB(u) ∩ (C \H)| ≤ D = d2/3(log d)1/3.

(ii) For each vertex u ∈ L, |NB(u) ∩ T | ≤ 4d1/3(log d)2/3.

(iii) For each vertex u ∈ F \ T , |NB(u)| = |NB(u) ∩ T | ≤ 4d1/3(log d)2/3.

(iv) For each vertex v ∈ C \H, dB(v) ≥ d/6.

(v) For each vertex v ∈ T , |NB(v)| ≥ D − 4d1/3(log d)2/3 > D/2 = 1
2
d2/3(log d)1/3.

Proof:

(i) By the definition of rule (a), each u ∈ L can have at most D neighbors with time labels

exceeding t(u), and therefore can have at most that many neighbors in B.

(ii) This follows immediately from the condition in Claim 3.2 that F was chosen to satisfy.

(iii) By the definition of the graph B, the vertices in F \ T are joined in B only to vertices of

T , as these are the only vertices with bigger time labels. Therefore, |NB(u)| = |NB(u)∩T | for

each u ∈ F \ T , and the claimed upper estimate for this cardinality follows from Claim 3.2.

(iv) By the definition of rule (b), each vertex v ∈ C \ H satisfied |NG′(v) \ L| ≤ d/6 at the

point of being added to C. Since by (1), |NG′(v)| ≥ d/3, it follows that at that time, v had

at least d/3− d/6 = d/6 neighbors in L. As all these leaves have smaller time labels than v,

it is joined in B to all of them.

(v) If v ∈ T , then v ∈ F , and thus, by the definition of rule (a), |NG′(v) \C| > D. Vertices in

T are given the largest time labels, so in the graph B, v is joined to all members of NG′(v)\C
except for those that lie in T . However, by the condition in Claim 3.2, at most 4d1/3(log d)2/3

of these vertices are members of T , implying the desired estimate. This completes the proof

of the claim.

Corollary 3.1 For each subset X ⊂ (C \H) ∪ T , |NB(X)| ≥ |X| · 1
16

d1/3/(log d)1/3.

Proof: If at least half the elements of X belong to C \H, then, by Claim 3.3 (iv), the total

number of edges of B incident with them is at least 1
2
|X| · 1

6
d. By the first observation in the

proof of part (iii) of the claim, these edges are not incident in B with any member of F \ T .

By part (i) of the claim, at most D = d2/3(log d)1/3 of these edges are incident with any one

vertex in L. Thus, in this case, |N(X)| ≥ 1
2
|X| · 1

6
d · 1/D = |X| · 1

16
d1/3/(log d)1/3, providing

the required estimate.

Otherwise, at least half of the vertices of X lie in T . By Claim 3.3, part (v), the total

number of edges of B incident with them is greater than 1
2
|X| · 1

2
D. By parts (ii) and (iii) of

the claim, each neighbor of these vertices in L∪ (F \T ) is incident with at most 4d1/3(log d)2/3
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of these edges, implying that in this case

|N(X)| ≥ |X|
2

D

2

1

4d1/3(log d)2/3
=

d1/3

16(log d)1/3
|X|.

This completes the proof of the corollary.

By the last Corollary and Hall’s theorem, one can assign a set of 1
16

d1/3/(log d)1/3 members

of L ∪ (F \ T ) to any element of (C \H) ∪ T , so that no member of L ∪ (F \ T ) is assigned

more than once. This makes all elements of (C \H)∪ T centers of large vertex disjoint stars.

Adding to these stars the stars whose centers are the elements of H and whose leaves are

those of S, we may apply Claim 3.2 to conclude that in case there are any unassigned vertices

left in L we can connect each of them to one of the existing centers. Similarly, (1) and the

definition of rule (a) do the same job for unassigned vertices in F \ T . Thus, we get a star

factor in which each star has at least 1
25

d1/3/(log d)1/3 leaves. This completes the proof.

4 Concluding remarks and open problems

We have shown that for every positive integer g there is an integer d so that any graph with

minimum degree at least d contains a star factor in which every component has at least g edges.

Let d(g) denote the minimum number d for which this holds. Our main result shows that

d(g) ≤ O(g3 log g), while the construction described in the proof of Theorem 1.2 implies that

d(g) ≥ Ω(g log g). It seems plausible to conjecture that d(g) = Θ(g log g), but this remains

open. It will be interesting to determine d(g) precisely (or estimate it more accurately) for

small values of g, like g = 2 or 3. Our proof, even if we try to optimize the constants in it, will

yield only some crude upper bounds that are certainly far from being tight. It is worth noting,

however, that even for showing that d(2) is finite, we do not know any proof simpler than the

one given here for the general case. On the other hand, a random 3-regular graph contains

a Hamilton cycle with probability tending to 1. Hence, if it has number of vertices divisible

by 3, it contains a spanning factor of stars of two edges each. Similarly, a random 4-regular

graph having number of vertices divisible by 4 contains a spanning factor of stars of three

edges each with probability tending to 1 [5]. Immediately from contiguity results discussed

in [12], the same statements are true if we change 4-regular to d-regular for any d ≥ 4.

Our proof, together with the algorithmic version of the local lemma proved by Beck in

[6] (see also [1]), and any efficient algorithm for bipartite matching, show that the proof here

can be converted to a deterministic, polynomial time algorithm that finds, in any given input
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graph with minimum degree at least d, a star factor in which every star is of size at least

Ω((d/ log d)1/3). We omit the details.

There are several known results that show that any connected graph with large minimum

degree contains a spanning tree with many leaves, see [11], [8], [7]. In particular, it is known

(and not difficult) that any connected graph with minimum degree d and n vertices contains a

spanning tree with at least n−O
(
n(log d)/d

)
leaves. A related question to the one considered

here is whether it is true that any connected graph with large minimum degree contains a

spanning tree in which all non-leaf vertices have large degrees. Specifically, is there an absolute

positive constant c so that any connected graph with minimum degree at least d contains a

spanning tree in which the degree of any non-leaf is at least cd/ log d ? Another intriguing

question is the following possible extension of the main result here. Is it true that the edges

of any graph G with minimum degree d can be partitioned into pairwise disjoint sets, so that

each set forms a spanning star forest of G in which every component is of size at least h(d),

where h(d) tends to infinity with d ? A related result is proved in [3], but the proof of the

last statement, if true, seems to require additional ideas.
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