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Abstract

Since its inception in the mid-60s, the inventory staggering problem has been explored

and exploited in a wide range of application domains, such as production planning, stock

control systems, warehousing, and aerospace/defense logistics. However, even with a rich

history of academic focus, we are still very much in the dark when it comes to cornerstone

computational questions around inventory staggering and to related structural characteri-

zations, with our methodological toolbox being severely under-stocked.

The central contribution of this paper consists in devising a host of algorithmic techniques

and analytical ideas — some being entirely novel and some leveraging well-studied concepts

in combinatorics and number theory — for surpassing essentially all known approximation

guarantees for the inventory staggering problem. In particular, our work demonstrates that

numerous structural properties open the door for designing polynomial-time approxima-

tion schemes, including polynomially-bounded cycle lengths, constantly-many distinct time

intervals, so-called nested instances, and pairwise coprime settings. These findings offer sub-

stantial improvements over currently available constant-factor approximations and resolve

outstanding open questions in their respective contexts (Teo et al., 1998; Hum et al., 2005;

Hochbaum and Rao, 2019, 2020). In parallel, we develop new theory around a number of

yet-uncharted questions, related to the sampling complexity of peak inventory estimation

as well as to the plausibility of groupwise synchronization. Interestingly, we establish the

global nature of inventory staggering, proving that there are n-item instances where, for

every subset of roughly
√
n items, no policy improves on the worst-possible one by a factor

greater than 1 + ϵ, whereas for the entire instance, there exists a policy that outperforms

the worst-possible one by a factor of nearly 2, which is optimal.
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1 Introduction

The principal goal of this paper is to deepen our understanding and to inject fresh algorithmic

ideas into a foundational inventory management model, commonly known as the inventory

staggering problem. Since its inception in the mid-60s (Homer, 1966; Page and Paul, 1976;

Hartley and Thomas, 1982), this paradigm has been explored and exploited in a wide range

of application domains, such as production planning, stock control systems, warehousing, and

aerospace/defense logistics, just to name a few. Concurrently, on the theoretical front, we have

been witnessing a steady stream of advances in this context, including an appreciable number

of highly innovative papers; see, e.g., Zoller (1977), Gallego et al. (1992), Teo et al. (1998), Hum

et al. (2005), and Hochbaum and Rao (2019). That said, even with a rich history of academic

focus, we are still very much in the dark when it comes to cornerstone computational questions

around inventory staggering and to related structural characterizations, with our methodological

toolbox being severely under-stocked.

Broadly speaking, while inventory staggering problems present themselves in various con-

figurations, they all fundamentally address the challenge of efficiently synchronizing multiple

periodic replenishment policies via horizontal offsets, with the objective of minimizing peak

storage requirement across a given planning horizon. In spite of its deceivingly-simple geomet-

ric interpretation, what renders this synchronization task particularly elusive is the interplay

between numerous replenishment policies, whose individual cycle lengths and ordering quan-

tities may be completely unrelated. Consequently, even very elementary questions, such as

evaluating the peak storage requirement of a given solution in polynomial time, remain unre-

solved to date. Moreover, when we turn the spotlight to optimization-focused questions, nearly

all known research directions continue to lack definitive answers. To delve into the finer details

of these questions and to preface our main contributions, we proceed by providing a formal

mathematical description of the inventory staggering problem in its most general form.

1.1 Model formulation

Input description and replenishment policies. Whether one considers discrete forms of

the inventory staggering problem or their continuous counterparts, they are all defined with

respect to a finite collection of n items. Across the continuous planning horizon [0,∞), the

inventory level of each item i ∈ [n] is replenished via an individual stationary order sizes and

stationary intervals (SOSI) policy. Here, i-orders of identical quantities are evenly positioned

along the timeline, each leaving us with zero inventory upon arriving at its subsequent order.

Consequently, any such policy is fully characterized by the next three features:

• The uniform time interval Ti between successive i-orders.

• The number of units Hi comprising every i-order.

• The horizontal shift τi ∈ [0, Ti].

It is important to mention that both the time interval Ti between successive i-orders and the

ordering quantity Hi are assumed to be integer-valued, specified as part of our input description.
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By contrast, τi is a decision variable, which will be restricted to integer values in the discrete

problem setting, and to real values in the continuous setting. Given these parameters, i-orders

will be placed at the time points

. . . , −2Ti + τi , −Ti + τi , τi , Ti + τi , 2Ti + τi , . . . , (1)

each consisting of exactly Hi units, meaning that zero-inventory levels are reached at each of

these points. For simplicity, this policy will be designated by P i
τi , noting that we have extended

the sequence (1) into the negative orthant just to avoid convoluted notation later on.

Inventory levels and objective value. Based on the preceding discussion, it is easy to

verify that, when replenished according to P i
τi , the inventory level of item i at any time t ∈ R

is given by

Ii(τi, t) = Hi ·

(
1 −

t− ⌊t⌋Pi
τi

Ti

)
,

where ⌊·⌋Pi
τi

is an operator that rounds its argument down to the nearest ordering point in

P i
τi . As such, for any shift vector τ = (τ1, . . . , τn), the overall inventory level of the joint policy

Pτ = (P1
τ1 , . . . ,P

n
τn) at any time t ∈ R is precisely IΣ(τ, t) =

∑
i∈[n] Ii(τi, t).

Now, let us observe that, since the time intervals T1, . . . , Tn are assumed to be integers, the

policy Pτ is necessarily cyclic, with a cycle length of Λ = LCM(T1, . . . , Tn). In turn, the peak

inventory level of this policy can be written as

Imax(τ) = max
t∈[0,Λ]

IΣ(τ, t) .

As a side note, the above-mentioned maximum is indeed attained, since the policy Pτ has a finite

number of ordering points across [0,Λ], and since the function IΣ(τ, ·) is decreasing between

any successive pair of these points.

In the discrete inventory staggering problem, our objective is to determine a shift vector

τ ∈ Zn+ for which the peak inventory level Imax(τ) of the policy Pτ is minimized. Here, the

optimum value is clearly attained at an integer time point, and for any given instance I, this

measure will be designated by

OPTdisc(I) = min
τ∈Zn

+

max
t∈[0,Λ]∩Z

IΣ(τ, t) .

In the continuous setting, we arrive at precisely the same formulation, except for expanding our

solution space to τ ∈ Rn+. The optimum peak inventory level of such instances, which is not

necessarily attained at an integer time point, will be denoted by

OPTcont(I) = min
τ∈Rn

+

max
t∈[0,Λ]

IΣ(τ, t) .

1.2 Known results and main contributions

The central contribution of this paper consists in devising a host of algorithmic techniques

and analytical ideas — some being entirely novel and some leveraging well-studied concepts
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in combinatorics and number theory — for surpassing essentially all known approximation

guarantees for the inventory staggering problem. Concurrently, we develop new theory around

a number of yet-uncharted questions, related to the sampling complexity of peak inventory

estimation as well as to the plausibility of groupwise synchronization.

For ease of exposition, we proceed by providing a formal account of our main findings,

subsequent to a concise preamble on existing state-of-the-art results in each of these directions.

As a side note, the upcoming presentation order is primarily designed to offer logical and

user-friendly content; this order is uncorrelated with importance, uniqueness, or magnitude of

improvement. Additionally, given the extensive body of work dedicated to studying inventory

staggering problems, including rigorous methods, heuristics, and experimental evidence, we

cannot do justice and exhaustively discuss these research domains. For an in-depth literature

review, readers are referred to useful articles in this context (Gallego et al., 1996; Hall, 1998;

Murthy et al., 2003; Boctor, 2010; Hochbaum and Rao, 2019) as well as to the references therein.

Main result 1: Sample complexity of peak evaluation. As previously mentioned, ef-

ficiently evaluating the peak inventory level Imax(τ) of a given replenishment policy Pτ has

remained an unresolved issue since the very inception of inventory staggering, forcing most

efforts around this problem to focus on stylized formulations. In Section 2, we provide the

first rigorous evidence for the inherent difficulty of this question, by deriving an exponential

lower bound on its sample complexity. Specifically, suppose we randomly draw M indepen-

dent time points X1, . . . , XM ∼ U{0, . . . ,Λ − 1}, and consider the maximal inventory level

ĨMmax = maxm∈[M ] IΣ(τ∗, Xm) across these points as our estimator for Imax(τ∗), where τ∗ is

a given optimal shift vector. Then, as an immediate conclusion of the next theorem, 2Ω(ϵ2n)

random points should generally be drawn in order to estimate Imax(τ∗) within factor 1
2 + ϵ with

constant probability.

Theorem 1.1. There exists a discrete inventory staggering instance, together with an optimal

shift vector τ∗ ∈ Zn+, for which

Pr

[
ĨMmax ≥

(
1

2
+ ϵ

)
· Imax(τ∗)

]
≤ Me−ϵ

2n/6 .

Main result 2: Infeasibility of groupwise synchronization. Our next contribution is

motivated by the yet-unknown usefulness of pairwise synchronization, recently investigated

by Segev (2024) in the context of economic warehouse lot scheduling. Deferring the nuts-

and-bolts of this concept to Section 2, at a high level, suppose we initially compute a near-

optimal shift vector τ ij for each pair of items i ̸= j, hoping to meaningfully drop below the

trivial peak inventory level of Hi + Hj for a significant portion of these pairs. Then, the

essential question is whether there exists a partition M of the item set into pairs, such that∑
(i,j)∈M Imax(τ ij) ≤ (1 − δ) ·

∑
i∈[n]Hi, for some absolute constant δ > 0. As explained later

on, such a result would immediately lead to a 2(1− δ)-approximation for the discrete inventory

staggering problem in its utmost generality, beating the best known approximation guarantee

for arbitrarily-structured instances. Surprisingly, we prove that this approach cannot succeed

for pairs of items, for triplets, or for subsets of much larger size. Specifically, as a direct corollary
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of Theorem 1.2 below, even when optimal shift vectors are readily available for subsets of nearly
√
n items, gluing them together across all subsets would still be far from optimal by a factor of

2 −O(ϵ).

Theorem 1.2. There exists a discrete inventory staggering instance I such that:

1. OPTdisc(I) ≤ (12 + ϵ) ·
∑

i∈[n]Hi.

2. OPTdisc(IF̂ ) ≥ (1 − ϵ) ·
∑

i∈F̂ Hi, for every subset F̂ of O(
√
n

logn) items.

The boundary between trivial and non-trivial. Moving forward, to clearly mark an

informative reference point for recognizing non-trivial approximation guarantees, it is worth

keeping in mind that the peak inventory level of any shift vector is always within factor 2

of optimal. This property is a direct outcome of the simple classic average-space bound (see

Lemma 2.1), stating that OPTdisc(I) ≥ 1
2 ·
∑

i∈[n]Hi · (1 + 1
Ti

) and OPTcont(I) ≥ 1
2 ·
∑

i∈[n]Hi.

Main result 3: Approximation scheme in terms of cycle length. As far as proximity to

optimum is concerned, state-of-the-art performance guarantees for the discrete inventory stag-

gering problem have recently culminated to polynomial-time approximation schemes (PTAS),

when the cycle length Λ = LCM(T1, . . . , Tn) we are facing is bounded by a constant, i.e.,

Λ = O(1). In particular, when items are associated with identical time intervals, Hochbaum

and Rao (2019) employed dynamic programming ideas to devise an approximation scheme in

O(n · (1ϵ )
O(Λ+1/ϵ)) time. Shortly thereafter, Hochbaum and Rao (2020) were successful in elim-

inating the identical-intervals assumption, albeit ending up with an O(nO(Λ) · (1ϵ )
O(Λ))-time

approach. As part of their concluding remarks, the authors asked whether it is possible to

obtain a fixed-parameter tractable PTAS, namely, one admitting an f1(Λ,
1
ϵ ) · |I|

f2(1/ϵ)-time

implementation, where |I| stands for our input length in its binary representation.

In Section 3, we resolve the above-mentioned question, in a much stronger sense: As long as

Λ is polynomial in the input size (rather than a mere constant), we prove that the optimal peak

inventory level can be efficiently approached within any degree of accuracy, as formally stated

in Theorem 1.3 below. For convenience, we design our LP-based approximation scheme while

shooting for a success probability of 1
2 ; the latter can be arbitrarily amplified via independent

repetitions. Yet another important remark is that this result can easily be adapted to the

continuous problem formulation, as well as to exponentially-large identical time intervals, via

relatively simple reductions to the discrete setting (see Sections 3.1 and 5.1).

Theorem 1.3. For any ϵ > 0, the discrete inventory staggering problem can be approximated

within factor 1 + ϵ of optimal. The running time of our randomized algorithm is O(ΛÕ(1/ϵ3) ·
|I|O(1)), and it is successful with probability at least 1

2 .

Main result 4: Approximation scheme in terms of distinct time intervals. The next

thread of work we consider is that of approximating inventory staggering instances characterized

by constantly-many distinct time intervals, noting that this setting will play an important role

within the algorithmic advances presented in future sections. In spite of their misleadingly

simple structure, such instances continue to elude truly near-optimal solution methods, with
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non-trivial guarantees currently available only for two distinct time intervals. In this scenario,

Teo et al. (1998) showed that continuous inventory staggering can be efficiently approximated

within factor 4
3 , when one time interval is an integer multiple of the other. Later on, Hum et al.

(2005) eliminated the latter assumption, attaining an approximation ratio of roughly 1.34312

via a generalized Homer’s policy (Homer, 1966).

In Section 4, we improve on the above-mentioned guarantees, further lifting these results

beyond the two-interval scenario, along the lines of Theorem 1.4 below. Specifically, letting K

designate the underlying number of distinct time intervals, we devise a deterministic approach

for discrete inventory staggering, arguing that the latter setting can be approximated within

factor 1+ϵ in O(2Õ(K/ϵ2) ·|I|O(1)) time. Similarly to Theorem 1.3, this result seamlessly migrates

to the continuous problem formulation. A particularly interesting tool we develop en route is

an exact O(nO(n) · |I|O(1))-time oracle for computing the peak inventory level of a given policy,

thereby resolving the open question of peak evaluation for constantly-many items.

Theorem 1.4. For any ϵ > 0, the discrete inventory staggering problem can be approximated

within factor 1 + ϵ of optimal. The running time of our algorithm is O(2Õ(K/ϵ2) · |I|O(1)).

Main result 5: Approximation scheme for nested instances. Beyond the aforemen-

tioned scenarios, prior studies have uncovered non-trivial approximation guarantees under two

additional structural features. The first such finding has been established for so-called nested

instances; here, when the set of items is indexed such that T1 ≤ · · · ≤ Tn, each time interval

divides its successor. This setting, which is highly compelling due to its emergence in power-of-2

policies (see, e.g., Roundy (1985, 1986); Jackson et al. (1985); Muckstadt and Roundy (1993))

is known to admit a polynomial-time 15
8 -approximation (Teo et al., 1998). Our main result for

nested instances, whose specifics are discussed in Section 5, resides in devising a polynomial-time

approximation scheme.

Theorem 1.5. For any ϵ > 0, the nested inventory staggering problem can be approximated

within factor 1 + ϵ of optimal. The running time of our algorithm is O(2Õ(1/ϵ3) · |I|O(1)).

Main result 6: Approximation scheme for continuous pairwise coprime instances.

The second setting for which a sub-2-approximation has been demonstrated to exist is centered

around pairwise coprime instances of the continuous inventory staggering problem. Here, all

pairs Ti ̸= Tj of time intervals are assumed to be relatively prime, meaning that gcd(Ti, Tj) = 1.

It is worth noting that, by the Chinese Remainder Theorem, the peak inventory level of any

replenishment policy for the discrete problem formulation is precisely
∑

i∈[n]Hi, rendering it

completely trivial. However, when continuous inventory staggering is concerned, this property

can easily be violated, making such instances particularly difficult to deal with. As outlined

in Section 6, our final contribution comes in the form of a polynomial-time approximation

scheme for pairwise coprime instances of the latter formulation, improving on its existing 1.4-

approximation due to Hum et al. (2005).

Theorem 1.6. For any ϵ > 0, the continuous coprime inventory staggering problem can

be approximated within factor 1 + ϵ of optimal. The running time of our algorithm is

O(tower4(O(1ϵ ), O(1ϵ )) · |I|
O(1)).
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As a side note, to avoid convoluted running time expressions, this theorem utilizes the

function towerβ(h, x), where β is iteratively exponentiated h − 1 times, finally taken to the

power of x, i.e.,

towerβ(h, x) = ββ
··
·β
x

︸ ︷︷ ︸
h times

.

As such, tower4(O(1ϵ ), O(1ϵ )) is a function of 1
ϵ and nothing more. To our knowledge, approx-

imation schemes characterized by power-tower running times are few and far between, mostly

arising as algorithmic applications of Szemerédi’s Regularity Lemma; see, for instance, Alon

et al. (1994) and Duke et al. (1995).

Hardness results. To better understand the nature of algorithmic outcomes one could be

striving for, it is worth briefly mentioning known intractability results surrounding inventory

staggering. Along these lines, Gallego et al. (1992) were the first to rigorously investigate

how plausible it is to efficiently compute optimal shift vectors, proving that the continuous

problem formulation is strongly NP-hard. Subsequently, Hall (1998) studied discrete inventory

staggering, establishing weak NP-hardness even when all items share a common time interval

of T = 2. Recently, Hochbaum and Rao (2019) showed that the latter setting becomes strongly

NP-hard when T could be arbitrarily large. To our knowledge, whether the discrete formulation

or its continuous counterpart are APX-hard in their full generality is still a major unresolved

question.

2 Impossibility Results

In this section, we explore fundamental questions about estimating the peak inventory level

of a given shift vector as well as about the plausibility of identifying non-trivial solutions via

groupwise synchronization. Toward these objectives, Section 2.1 presents a number of known

observations that will be helpful down the road. Then, Section 2.2 derives an exponential lower

bound on the sample complexity of peak evaluation. Finally, Section 2.3 is devoted to arguing

that even Ω̃(
√
n)-synchronization is insufficient to obtain non-straightforward approximation

guarantees.

2.1 Auxiliary claims

The average-space lower bound. Moving forward, it will be useful to keep in mind well-

known lower bounds on the peak inventory levels of optimal replenishment policies for the

discrete and continuous formulations, OPTdisc(I) and OPTcont(I). These bounds follow from a

simple averaging argument, and we provide their proof for completeness. To avoid cumbersome

expressions, HΣ =
∑

i∈[n]Hi will stand for the total ordering quantity of all items.

Lemma 2.1. OPTdisc(I) ≥ 1
2 ·
∑

i∈[n]Hi · (1 + 1
Ti

) and OPTcont(I) ≥ HΣ
2 .

Proof. Recalling that Λ = LCM(T1, . . . , Tn) is the cycle length of any replenishment policy,

suppose we draw a random point X ∼ U{0, 1, . . . ,Λ − 1}. Then, for any shift vector τ ∈ Zn+
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and for any item i ∈ [n], it is easy to verify that Ii(τi, X) ∼ U{Hi
Ti
, 2Hi
Ti
, . . . , TiHi

Ti
}. Therefore,

Imax(τ) ≥ E [IΣ(τ,X)] =
∑
i∈[n]

E [Ii(τi, X] =
1

2
·
∑
i∈[n]

Hi ·
(

1 +
1

Ti

)
,

implying that OPTdisc(I) ≥ 1
2 ·
∑

i∈[n]Hi ·(1+ 1
Ti

). In the continuous setting, we repeat precisely

the same argument, except for sampling X ∼ U [0,Λ]. As a result, Ii(τi, X) ∼ U [0, Hi], ending

up with OPTcont(I) ≥ 1
2 ·
∑

i∈[n]Hi = HΣ
2 .

The near-optimality regime of random shifts. Let τR be a random shift vector where,

for each item i ∈ [n], we pick τRi ∼ U{0, . . . , Ti − 1}, independently of any other item. In what

follows, we focus our attention on the next question: What conditions guarantee that τR is

near-optimal with high probability, or at least with some positive probability? To derive such

conditions, we first establish the next claim, providing an upper bound on the probability that

the random inventory level of τR pointwise exceeds the average-space bound by a factor greater

than 1 + ϵ.

Lemma 2.2. For every time point t ∈ [0,Λ] ∩ Z,

Pr

IΣ(τR, t) ≥ 1 + ϵ

2
·
∑
i∈[n]

Hi ·
(

1 +
1

Ti

) ≤ exp

(
−ϵ

2

6
· HΣ

Hmax

)
.

Proof. To derive the desired claim, for every item i ∈ [n], let Y t
i = Ii(τ

R
i , t) be its in-

ventory level at time t in terms of the random policy PτR . It is easy to see that Y t
i ∼

U{Hi
Ti
, 2Hi
Ti
, . . . , TiHi

Ti
}, and consequently,

Pr

IΣ(τR, t) ≥ 1 + ϵ

2
·
∑
i∈[n]

Hi ·
(

1 +
1

Ti

)
= Pr

∑
i∈[n]

Y t
i

Hmax
≥ (1 + ϵ) · E

∑
i∈[n]

Y t
i

Hmax


≤ exp

(
−ϵ

2

6
· HΣ

Hmax

)
.

The last inequality is obtained by employing the next Chernoff-Hoeffding bound (see Dubhashi

and Panconesi (2009, Thm. 1.1 and Ex. 1.1)) with respect to { Y t
i

Hmax
}i∈[n]: Let Z1, . . . , Zn be

independent [0, 1]-bounded random variables. Then, for every µ̄ ≥ E[
∑

i∈[n] Zi] and ξ ∈ (0, 1),

we have

Pr

∑
i∈[n]

Zi > (1 + ξ) · µ̄

 ≤ exp

(
−ξ

2µ̄

3

)
. (2)

The first implication of Lemma 2.2 is that, when Λ < exp( ϵ
2

6 · HΣ
Hmax

), by taking the union

bound over all times point in [0,Λ) ∩ Z, we have Imax(τR) ≤ 1+ϵ
2 ·

∑
i∈[n]Hi · (1 + 1

Ti
) with
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positive probability. Consequently, OPTdisc(I) ≤ 1+ϵ
2 ·
∑

i∈[n]Hi · (1 + 1
Ti

) for any such instance

I, nearly matching the average-space lower bound of Lemma 2.1. The second implication of

this result is that, when Λ < δ · exp( ϵ
2

6 · HΣ
Hmax

), the peak inventory level of τR is within factor

1 + ϵ of optimal, with probability at least 1 − δ. It is worth mentioning that bounds of similar

flavor have previously been obtained by Croot and Huang (2013); however, their precise form

is somewhat cumbersome to exploit in our particular setting.

2.2 The sample complexity of peak evaluation

In what follows, we derive Theorem 1.1, showing that 2Ω(ϵ2n) randomly drawn points are required

in order to estimate the peak inventory level of a given shift vector within factor 1
2 + ϵ with

constant probability.

Construction. Let us consider a discrete inventory staggering instance I with n ≥ 2
ϵ items,

whose ordering quantities are uniform, say H1 = · · · = Hn = 1. The time intervals T1, . . . , Tn

of these items are distinct primes, each of value at least n; as a result, our cycle length is

Λ =
∏
i∈[n] Ti. Focusing on the shift vector τ = 0⃗, we wish to estimate the peak inventory level

of P0⃗, which is clearly Imax(⃗0) = n. To this end, our randomized procedure operates as follows:

• We independently draw M time points, X1, . . . , XM , such that Xm ∼ U{0, . . . ,Λ − 1}.

• Our estimate ĨMmax for Imax(⃗0) is given by the maximum value of IΣ(⃗0, ·) across these

points, i.e., ĨMmax = maxm∈[M ] IΣ(⃗0, Xm).

Analysis. The next claim shows that, with probability at least 1 −Me−ϵ
2n/6, the maximal

inventory level inferred from our sample is at most (12 + ϵ) ·n. As previously noted, Imax(⃗0) = n,

meaning that the number of points required to attain a (12+ϵ)-estimate with constant probability

is 2Ω(ϵ2n).

Lemma 2.3. Pr[ĨMmax ≥ (12 + ϵ) · n] ≤Me−ϵ
2n/6.

Proof. By taking the union bound over X1, . . . , XM , it suffices to show that Pr[IΣ(⃗0, Xm) ≥
(12 + ϵ) · n] ≤ e−ϵ

2n/6 for every m ∈ [M ]. To this end, letting IXm
i = Ii(0, Xm) be the inventory

level of item i at time Xm, it is easy to see that IXm
i ∼ U{ 1

Ti
, 2
Ti
, . . . , TiTi }, implying in particular

that E[IXm
i ] = 1

2(1 + 1
Ti

). The important observation is that {IXm
i }i∈[n] are mutually indepen-

dent. To verify this claim, given a vector s = (s1, . . . , sn) ∈ [T1]×· · ·× [Tn], let ts be the unique

solution modulo Λ to the system of congruences

t ≡ Ti − si (mod Ti) ∀ i ∈ [n]

Recalling that T1, . . . , Tn are distinct primes, by the Chinese Remainder Theorem (see, e.g.,

(Niven et al., 1991, Sec. 2.3)), we know that ts indeed exists, and also, that it is unique (modulo

Λ). Since we are considering the shift vector τ = 0⃗, it follows that
∧
i∈[n]{I

Xm
i = si

Ti
} = {Xm =
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ts}, implying that {IXm
i }i∈[n] are mutually independent, as

Pr

 ∧
i∈[n]

{
IXm
i =

si
Ti

} = Pr [Xm = ts] =
1

Λ
=

1∏
i∈[n] Ti

=
∏
i∈[n]

Pr

[
IXm
i =

si
Ti

]
.

Based on these observations, we derive the desired upper bound on Pr[IΣ(⃗0, Xm) ≥ (12 + ϵ) · n]

by noting that

Pr

[
IΣ(⃗0, Xm) ≥

(
1

2
+ ϵ

)
· n
]

≤ Pr

∑
i∈[n]

IXm
i ≥ (1 + ϵ) · E

∑
i∈[n]

IXm
i

 (3)

≤ exp

−ϵ
2

3
· E

∑
i∈[n]

IXm
i

 (4)

≤ e−ϵ
2n/6 . (5)

Here, inequality (3) holds since (1 + ϵ) · E[
∑

i∈[n] I
Xm
i ] = 1+ϵ

2 ·
∑

i∈[n](1 + 1
Ti

) ≤ (12 + ϵ) · n,

as Ti ≥ n ≥ 2
ϵ . Inequality (4) follows by specializing the Chernoff-Hoeffding bound (2) with

respect to the random variables {IXm
i }i∈[n], which are independent and [0, 1]-bounded. Finally,

inequality (5) follows by recalling that E[IXm
i ] = 1

2(1 + 1
Ti

) ≥ 1
2 .

2.3 Infeasibility of groupwise synchronization

Our second impossibility result is motivated by the recent work of Segev (2024) on economic

warehouse lot scheduling, where among other ideas, pairwise synchronization has been crucial

for improving on the long-standing 2-approximation in this context (Anily, 1991; Gallego et al.,

1996). Migrating this notion to inventory staggering, one would operate along the following

lines:

• First, for each pair of items i ̸= j, we compute an optimal shift vector τ ij . This step

is implementable in polynomial time, given the existence of closed-form solutions for

two-item instances (Hartley and Thomas, 1982; Murthy et al., 2003). Our hope is to

discover that, for a significant portion of these pairs, a peak inventory level of Imax(τ ij) ≤
(1 − δij) · (Hi +Hj) can be attained, for some δij > 0.

• Then, the big unknown is whether there exists a partition M of the overall set of items

into pairs, such that
∑

(i,j)∈M Imax(τ ij) ≤ (1 − δ) · HΣ, for some absolute constant δ >

0. Combined with Lemma 2.1, such a result would immediately lead to a 2(1 − δ)-

approximation for the discrete inventory staggering problem in its full generality.

Unfortunately, we argue that this approach cannot succeed for pairs of items, for triplets,

or for subsets of much larger size. As formally stated in Theorem 1.2, the remainder of this

section is dedicated to presenting an inventory staggering instance I where, on the one hand,

OPTdisc(I) ≤ (1 + 2ϵ) · HΣ
2 , and on the other hand, OPTdisc(IF̂ ) ≥ (1 − ϵ) · H(F̂) for every

subset F̂ of O(
√
n

logn) items. Consequently, even when one is capable of computing optimal shift
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vectors for subsets of nearly
√
n items, simply gluing them together across all subsets would

still be far from the global optimum by a factor of 2 −O(ϵ).

Construction. To describe our construction, it will be convenient to utilize a well-known

result regarding sparse combinatorial designs. Specifically, suppose that F is a family of q-

element subsets of [n]. For r ≤ q, we say that F is r-sparse when any two subsets in F intersect

in at most r − 1 elements; M(n, q, r) will designate the maximum size of such a family. The

next result is taken from the work of Alon et al. (2012, Sec. 2.2), noting that bounds in this

spirit have also been suggested earlier, for example, by Hartman et al. (1982) and by Nisan and

Wigderson (1994).

Theorem 2.4. M(q2, q, r) ≥ qr, for every prime power q and 2 ≤ r ≤ q.

Now, given an error parameter ϵ > 0, the inventory staggering instance I we consider is

constructed as follows:

• For a prime q ≥ e1/(2ϵ
2), let K = q2, and let p1, . . . , pK be a collection of distinct primes

within [K, 2K lnK]. By the Prime Number Theorem (see, e.g., Davenport and Mont-

gomery (2013, Sec. 7)), for sufficiently large K, we indeed have at least K such primes,

with room to spare.

• Items: By Theorem 2.4, we know that M(K,
√
K, 3) ≥ K3/2, implying the weaker

claim that there exists a 3-sparse family F of
√
K-element subsets of [K], with |F| =

⌈12K ln2K⌉. For every subset S ∈ F , we introduce a corresponding item iS , meaning

that n = |F|.

• Time intervals and ordering quantities: For every item iS , the time interval between

successive iS-orders is TiS =
∏
k∈S pk, with an ordering quantity of HiS = 1.

Upper bound on global optimum. With respect to this instance, we begin by arguing that

its optimal peak inventory level is essentially n
2 , up to ϵ-dependent terms. This finding will be

deduced by showing that I meets our sufficient condition for nearly matching the average-space

lower bound of Lemma 2.1.

Lemma 2.5. OPTdisc(I) ≤ (1 + 2ϵ) · n2 .

Proof. Based on the concluding paragraph of Section 2.1, when Λ < exp( ϵ
2

6 · HΣ
Hmax

), we have

OPTdisc(I) ≤ 1 + ϵ

2
·
∑
S∈F

HiS ·
(

1 +
1

TiS

)
≤ (1 + ϵ)(1 + e−2/ϵ)

2
·
∑
S∈F

HiS ≤ (1 + 2ϵ) · n
2
.

To verify the above-mentioned condition for sufficiently large K, note that since p1, . . . , pK are

distinct primes within [K, 2K lnK], we have

Λ = LCM {TiS : S ∈ F}

≤
∏
k∈[K]

pk
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< (2K lnK)K

≤ e2K lnK

≤ exp

(
ϵ2n

6

)
(6)

= exp

(
ϵ2

6
· HΣ

Hmax

)
. (7)

Here, inequality (6) holds since K ≥ e1/ϵ
2

and n = ⌈12K ln2K⌉, whereas equality (7) is obtained

by noting that HΣ = n and Hmax = 1, since HiS = 1 for every S ∈ F .

Lower bound on O(
√

n
logn

)-wise optimum. Now, let us consider any subset F̂ ⊆ F of size

at most
√
K
2 , noting that

√
K = Θ(

√
n

logn). We make use of IF̂ to designate the instance obtained

by restricting I to this subset. To conclude the proof of Theorem 1.2, we show that with

respect to this instance, the optimal peak inventory level is nearly |F̂ |, which identifies with the

combined ordering quantity across all F̂-items, and therefore, attainable by any shift vector.

Lemma 2.6. OPTdisc(IF̂ ) ≥ (1 − ϵ) · |F̂ |.

To establish this bound, we begin by deriving an auxiliary number-theoretic claim. Here,

the primes p1, . . . , pL are said to be unique divisors of the positive integers n1, . . . , nL when, for

every ℓ ∈ [L], the next two properties are satisfied: (1) pℓ is a divisor of nℓ; and (2) pℓ is a not

a divisor of nk, for every k ̸= ℓ.

Lemma 2.7. Suppose that p1, . . . , pL are unique divisors of n1, . . . , nL. Then, for any τ ∈ ZL,
there exists an integer t such that, for every ℓ ∈ [L],

(t− τℓ) mod nℓ ∈
[
0,
nℓ
pℓ

− 1

]
.

Proof. In what follows, we make use of αℓ ≥ 1 to denote the largest integer for which pαℓ
ℓ is

a divisor of nℓ. With this notation, we will actually prove a stronger result, showing that there

exists an integer t such that (t− τℓ) mod nℓ ∈ [0, nℓ

p
αℓ
ℓ

− 1], for every ℓ ∈ [L].

To this end, for every ℓ ∈ [L] and 0 ≤ r ≤ pαℓ
ℓ − 1, consider the system of congruences

(Fℓ,r)

{
t ≡ 0 (mod nℓ

p
αℓ
ℓ

)

t ≡ r (mod pαℓ
ℓ )

Since nℓ

p
αℓ
ℓ

and pαℓ
ℓ are relatively prime, by the Chinese Remainder Theorem, (Fℓ,r) has a

unique integer solution tℓ,r modulo nℓ. It is easy to verify that tℓ,0, . . . , tℓ,pαℓ
ℓ −1 are distinct

multiples of nℓ

p
αℓ
ℓ

in [0, nℓ − 1], and clearly, there are exactly pαℓ
ℓ such multiples. Therefore,

(tℓ,0 − τℓ) mod nℓ, . . . , (tℓ,pαℓ
ℓ −1 − τℓ) mod nℓ necessarily stab each segment of nℓ

p
αℓ
ℓ

consecutive

integers in Znℓ
. In particular, there exists some index rℓ for which (tℓ,rℓ−τℓ) mod nℓ ∈ [0, nℓ

p
αℓ
ℓ

−1].

Now, to identify the desired integer t, letting M = LCM(n1,...,nL)∏
ℓ∈[L] p

αℓ
ℓ

, consider the system of

congruences {
t ≡ 0 (mod M)

t ≡ rℓ (mod pαℓ
ℓ ) ∀ ℓ ∈ [L]
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Once again, since M,pα1
1 , . . . , pαL

L are pairwise coprime, this system has a unique integer solution

t modulo LCM(n1, . . . , nL). We conclude the proof by observing that (t−τℓ) mod nℓ ∈ [0, nℓ

p
αℓ
ℓ

−1]

for every ℓ ∈ [L]. Indeed, since nℓ

p
αℓ
ℓ

divides M , we know in particular that t is a solution to

(Fℓ,rℓ). However, as explained above, the latter system has a unique solution tℓ,rℓ modulo nℓ,

implying that by our choice of rℓ,

(t− τℓ) mod nℓ ≡ (tℓ,rℓ − τℓ) mod nℓ ∈
[
0,
nℓ
pαℓ
ℓ

− 1

]
.

Given this claim, we proceed by arguing that OPTdisc(IF̂ ) ≥ (1− ϵ) · |F̂ |. For this purpose,

let τ∗ be an optimal shift vector with respect to IF̂ , meaning that Imax(τ∗) = OPTdisc(IF̂ ).

Focusing on a single subset S ∈ F̂ , we observe that there are at least two elements in S that

do not appear in any other subset in F̂ , since∣∣∣∣∣∣S \

 ⋃
Ŝ∈F̂\{S}

Ŝ

∣∣∣∣∣∣ ≥ |S| −
∑

Ŝ∈F̂\{S}

∣∣∣S ∩ Ŝ
∣∣∣ ≥

√
K − 2 ·

(√
K

2
− 1

)
= 2 ,

where the second inequality holds since F is a 3-sparse family of
√
K-element subsets and since

|F̂ | ≤
√
K
2 . We make use of kS ∈ S to denote one of these two elements.

As a result of this observation, it follows that the primes (pkS )S∈F̂ are unique divisors of

(TiS )S∈F̂ . Therefore, by Lemma 2.7, there exists an integer t such that (t − τ∗iS ) mod TiS ∈
[0,

TiS
pkS

− 1], for every S ∈ F̂ . In other words, with respect the policy Pτ∗ , the time elapsing

between the last iS-order in [0, t] and the point t itself is at most
TiS
pkS

. In turn, the inventory

level of this item at time t is

IiS (τ∗iS , t) ≥ HiS ·
(

1 − TiS/pkS
TiS

)
= 1 − 1

pkS
≥ 1 − ϵ ,

where the last inequality holds since pkS ≥ K ≥ e1/ϵ
2
. In conclusion,

OPTdisc(IF̂ ) = Imax(τ∗) ≥ IΣ(τ∗, t) =
∑
S∈F̂

IiS (τ∗iS , t) ≥ (1 − ϵ) · |F̂ | .

3 Approximation Scheme in Terms of Cycle Length

This section is dedicated to presenting a randomized algorithm for discrete inventory staggering,

showing that as long as our cycle length Λ = LCM(T1, . . . , Tn) is not exponentially large,

the optimal peak inventory level can be efficiently approached within any degree of accuracy.

Formally, as stated in Theorem 1.3, we will argue that for any ϵ ∈ (0, 1), the discrete setting

can be approximated within factor 1 + ϵ of optimal via an O(ΛÕ(1/ϵ3) · |I|O(1))-time algorithm,

which is successful with probability at least 1
2 .
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3.1 O(1
ϵ
)-sized discretization sets

For this purpose, rather than allowing the shift τi of each item i ∈ [n] to take arbitrary integer

values in [0, Ti], we will restrict our choice to an O(1ϵ )-sized set of values Di as follows.

Construction of Di. Given an error parameter ϵ ∈ (0, 1), we say that item i is large when

Ti >
1
ϵ ; in the opposite case, this item is said to be small. From this point on, L and S will

respectively denote the sets of large and small items. We proceed by associating each item

i ∈ [n] with a discrete set of values Di, defined according to the next case disjunction:

• When i ∈ S: Here, we keep our set of options as Di = {0, 1, . . . , Ti}.

• When i ∈ S: In this scenario, on top of the singular value Ti, only rounded-down multiples

of ϵTi will be allowed, specifically meaning that Di = {⌊ϵTi⌋, ⌊2ϵTi⌋, . . . , ⌊⌊1ϵ ⌋ · ϵTi⌋, Ti}.

In any case, we clearly have |Di| ≤ ⌊1ϵ ⌋+1. With these definitions, a shift vector τ = (τ1, . . . , τn)

is called D-restricted when τi ∈ Di for every item i.

Analysis. For the remainder of this section, τ∗ will stand for some fixed optimal shift vector;

without loss of generality, we assume that τ∗i ∈ [0, Ti − 1] ∩ Z for every item i ∈ [n]. The next

claim shows that, in terms of their peak inventory level, D-restricted shift vectors are capable

of competing against the unrestricted optimal vector τ∗.

Lemma 3.1. There exists a D-restricted shift vector τ for which Imax(τ) ≤ (1 + 4ϵ) · Imax(τ∗).

Proof. Let us consider the shift vector τ , defined by setting τi = ⌈τ∗i ⌉Di for every item i ∈ [n].

Here, ⌈·⌉Di is an operator that rounds its argument up to the nearest point in Di, implying that

τ is D-restricted. With respect to this definition, we clearly have τi = τ∗i for every item i ∈ S,

meaning in particular that Ii(τi, t) = Ii(τ
∗
i , t) at any time point t ∈ [0,Λ]. For every item i ∈ L,

while we generally have τi ≥ τ∗i , note that

Ii(τi, t) ≤ Ii(τ
∗
i , t) +

Hi

Ti
· (⌈τ∗i ⌉Di − τ∗i )

≤ Ii(τ
∗
i , t) +

Hi

Ti
· (ϵTi + 1)

≤ Ii(τ
∗
i , t) + 2ϵHi ,

where the last inequality holds since Ti >
1
ϵ . By summing these relations over all items, we get

IΣ(τ, t) ≤ IΣ(τ∗, t) + 2ϵHΣ, and therefore, Imax(τ) ≤ Imax(τ∗) + 2ϵHΣ ≤ (1 + 4ϵ) · Imax(τ∗),

noting that the last inequality follows from Lemma 2.1.

3.2 The LP-rounding algorithm

Step 1: Guessing the peak inventory level. Let τD be a D-restricted near-optimal shift

vector, whose existence is guaranteed by Lemma 3.1, meaning that Imax(τD) ≤ (1+4ϵ)·Imax(τ∗).

As our first algorithm step, we guess an over-estimate ÕPT for the peak inventory level Imax(τD),

such that ÕPT ∈ [1, 1+ϵ]·Imax(τD). Since we clearly have Imax(τD) ≤ HΣ, and since Imax(τD) ≥
Imax(τ∗) ≥ HΣ

2 by Lemma 2.1, there are only O(1ϵ ) candidate values to play the role of ÕPT.
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Step 2: Guessing heavy contributions. Letting δ = ϵ3

36 ln(2Λ) , we say that item i ∈ [n]

is heavy when Hi ≥ δHΣ; otherwise, this item is said to be light. In what follows, H and L
will respectively denote the sets of heavy and light items, noting that |H| ≤ 1

δ . Our next step

consists of guessing the shift τDi ∈ Di of every item i ∈ H with respect to τD. Over all heavy

items, the number of required guesses is only

∏
i∈H

|Di| ≤
(⌊

1

ϵ

⌋
+ 1

)|H|
=

(
1

ϵ

)O(1/δ)

= ΛÕ(1/ϵ3) .

Step 3: The feasibility LP. With these parameters in place, we proceed by considering the

following linear feasibility problem:

(1)
∑
i∈[n]

∑
τ∈Di

Itiτxiτ ≤ ÕPT ∀ t ∈ [0,Λ] ∩ Z

(2)
∑
τ∈Di

xiτ = 1 ∀ i ∈ [n]

(3) xiτDi
= 1 ∀ i ∈ H

(4) xiτ ≥ 0 ∀ i ∈ [n], τ ∈ Di

(LP)

In an integer-valued solution to this formulation, each decision variable xiτ is necessarily binary,

indicating whether we choose a shift of τ ∈ Di for item i. As such, constraint (1) states that

the combined inventory level at any point t is at most ÕPT. Here, we make use of Itiτ as a

shorthand notation for Ii(τ, t), which is the inventory level of item i at time t with respect to

the policy P i
τ . Constraint (2) can be understood as choosing exactly one of the shifts in Di for

each item i. Finally, constraint (3) forces any feasible solution to be aligned with our guesses

for the shifts of heavy items. It is not difficult to verify that (LP) is feasible; for example, by

setting xiτ = 1 if and only if τDi = τ , for every item i ∈ [n] and shift τ ∈ Di, we obtain a feasible

solution.

Step 4: Randomized rounding. Let x∗ be a feasible solution to (LP). For each item i ∈ [n],

we draw its random shift τRi , such that each τ ∈ Di is selected with probability x∗iτ . This choice

is made independently of any other item. As a side note, due to constraints (2) and (4), the

quantities {x∗iτ}τ∈Di are all non-negative and sum up to 1, meaning that they can indeed be

utilized as probabilities.

Step 5: Peak evaluation. Due to the guessing procedure described in steps 1 and 2, we have

constructed up until now a random collection of ΛÕ(1/ϵ3) shift vectors. Out of these vectors, we

return one whose peak inventory level is minimal. Even though the question of efficient peak

evaluation is still wide open (see Section 1.2), it can naively be resolved in ΛnO(1) time, simply

by enumerating over all integer time points in [0,Λ].

3.3 Analysis

As stated in Lemma 3.2 below, we proceed by proving that, when steps 3-5 are employed with

the correct set of guesses, the inventory level of our random policy PτR at any given time point
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is at most (1 + 2ϵ) · ÕPT, with probability at least 1 − 1
2Λ . By taking the union bound over all

time points t ∈ [0,Λ − 1] ∩ Z, we infer that Pr[Imax(τR) ≤ (1 + 2ϵ) · ÕPT] ≥ 1
2 . As explained

in step 1, we know that ÕPT ≤ (1 + ϵ) · Imax(τD) and that Imax(τD) ≤ (1 + 4ϵ) · Imax(τ∗).

Therefore, with probability at least 1
2 , the peak inventory level of the random policy PτR is

within factor 1 + 29ϵ of optimal.

Lemma 3.2. For every time point t ∈ [0,Λ] ∩ Z,

Pr
[
IΣ(τR, t) ≥ (1 + 2ϵ) · ÕPT

]
≤ 1

2Λ
.

Proof. For every item i ∈ [n] and shift τ ∈ Di, we introduce the random variable Xiτ , as an

indicator of the event {τRi = τ}. In addition, the random variable Y t
i will be defined as Y t

i =∑
τ∈Di

ItiτXiτ , which is the inventory level of item i at time t in terms of the random policy PτR .

As such, the combined inventory level of PτR at time t can be written as IΣ(τR, t) =
∑

i∈[n] Y
t
i .

With this notation, the bound we wish to prove is equivalent to

Pr

∑
i∈[n]

Y t
i ≥ (1 + 2ϵ) · ÕPT

 ≤ 1

2Λ
. (8)

To argue about
∑

i∈[n] Y
t
i , let us decompose this summation into the contributions of heavy

and light items, i.e.,
∑

i∈[n] Y
t
i =

∑
i∈H Y

t
i +

∑
i∈L Y

t
i . The next two claims, whose proofs are

provided in Section 3.4, separately treat each of these terms.

Claim 3.3.
∑

i∈H Y
t
i =

∑
i∈H

∑
τ∈Di

Itiτx
∗
iτ almost surely.

Claim 3.4. Pr[
∑

i∈L Y
t
i ≥ max{ϵÕPT, (1 + ϵ) ·

∑
i∈L
∑

τ∈Di
Itiτx

∗
iτ}] ≤ 1

2Λ .

With these claims in place, we proceed to prove (8) by observing that

Pr

∑
i∈[n]

Y t
i ≥ (1 + 2ϵ) · ÕPT


= Pr

[∑
i∈H

Y t
i +

∑
i∈L

Y t
i ≥ (1 + 2ϵ) · ÕPT

]

= Pr

∑
i∈L

Y t
i ≥ (1 + 2ϵ) · ÕPT −

∑
i∈H

∑
τ∈Di

Itiτx
∗
iτ

 (9)

≤ Pr

∑
i∈L

Y t
i ≥ ϵÕPT + (1 + ϵ) ·

∑
i∈L

∑
τ∈Di

Itiτx
∗
iτ

 (10)

≤ Pr

∑
i∈L

Y t
i ≥ max

ϵÕPT, (1 + ϵ) ·
∑
i∈L

∑
τ∈Di

Itiτx
∗
iτ




≤ 1

2Λ
. (11)

Here, equality (9) follows from Claim 3.3. Inequality (10) holds since
∑

i∈H
∑

τ∈Di
Itiτx

∗
iτ +∑

i∈L
∑

τ∈Di
Itiτx

∗
iτ ≤ ÕPT, by constraint (1) of (LP). Finally, inequality (11) is precisely the
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result stated in Claim 3.4.

3.4 Additional proofs

Proof of Claim 3.3. The important observation is that, for every item i ∈ H, we have

Y t
i =

∑
τ∈Di

ItiτXiτ =
∑

τ∈Di
Itiτx

∗
iτ . Here, the second equality is obtained by noting that

Xiτ = 1[τRi = τ ] = x∗iτ for every τ ∈ Di, since constraint (3) is forcing us to choose τRi = τDi
with probability x∗

iτDi
= 1. It follows that

∑
i∈H Y

t
i =

∑
i∈H

∑
τ∈Di

Itiτx
∗
iτ almost surely.

Proof of Claim 3.4. Our proof considers two cases, depending on the relation between

E[
∑

i∈L Y
t
i ] and ÕPT.

Case 1: E[
∑

i∈L Y t
i ] ≤

2ϵ
3
· ÕPT. In this scenario,

Pr

[∑
i∈L

Y t
i ≥ ϵÕPT

]
= Pr

[∑
i∈L

Y t
i

δHΣ
≥
(

1 +
1

2

)
·
2ϵ
3 · ÕPT

δHΣ

]

≤ exp

(
− ϵ

18δ
· ÕPT

HΣ

)
(12)

≤ exp
(
− ϵ

36δ

)
(13)

≤ 1

2Λ
. (14)

Here, inequality (12) follows by specializing the Chernoff-Hoeffding bound (2) with respect to

the random variables { Y t
i

δHΣ
}i∈L, which are independent and [0, 1]-bounded. Indeed, the former

property is satisfied since the random shift of each item is independently selected, whereas

the latter property is obtained by observing that Y t
i ≤ Hi ≤ δHΣ, since item i is light. In

addition, by the case hypothesis, E[
∑

i∈L Y
t
i ] ≤ 2ϵ

3 · ÕPT. Inequality (13) is obtained by noting

that ÕPT ≥ Imax(τD) ≥ HΣ
2 , where the last inequality follows from Lemma 2.1, stating that

Imax(τ∗) ≥ HΣ
2 . Finally, inequality (14) holds since δ = ϵ3

36 ln(2Λ) .

Case 2: E[
∑

i∈L Y t
i ] >

2ϵ
3
· ÕPT. To arrive at the desired bound, note that since Y t

i =∑
τ∈Di

ItiτXiτ and since E[Xiτ ] = Pr[τRi = τ ] = x∗iτ , we have

Pr

∑
i∈L

Y t
i ≥ (1 + ϵ) ·

∑
i∈L

∑
τ∈Di

Itiτx
∗
iτ


= Pr

[∑
i∈L

Y t
i

δHΣ
≥ (1 + ϵ) · E

[∑
i∈L

Y t
i

δHΣ

]]

≤ exp

(
− ϵ2

3δ
·
E[
∑

i∈L Y
t
i ]

HΣ

)
(15)

≤ exp

(
−2ϵ3

9δ
· ÕPT

HΣ

)
(16)

≤ exp

(
− ϵ3

9δ

)
(17)
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≤ 1

2Λ
. (18)

As in case 1, inequality (15) follows by specializing (2) with respect to { Y t
i

δHΣ
}i∈L. Inequality (16)

holds due to our case hypothesis. Inequality (17) is obtained by noting once again that ÕPT ≥
HΣ
2 . Finally, we arrive at inequality (18) by plugging in δ = ϵ3

36 ln(2Λ) .

4 Approximation Scheme in Terms of Distinct Time Intervals

In this section, we devise a deterministic approach for discrete inventory staggering, culminating

to a polynomial-time approximation scheme in the scenario of constantly-many distinct time

intervals. Technically speaking, as stated in Theorem 1.4, we will show that for any ϵ ∈ (0, 1),

the discrete setting can be approximated within factor 1 + ϵ of optimal in O(2Õ(K/ϵ2) · |I|O(1))

time, where K stands for the number of distinct time intervals across all items.

4.1 O(nO(n) · |I|O(1))-time peak evaluation oracle

As previously mentioned, given an arbitrary shift vector τ , the question of evaluating the peak

inventory level Imax(τ) of the replenishment policy Pτ in polynomial time is still open. That

said, since we will be dealing with O(Kϵ ) super-items in Sections 4.2 and 4.3, designing an

exponential-in-n peak evaluation oracle will suffice for our particular purposes.

Theorem 4.1. For any integer-valued shift vector τ , we can compute the peak inventory level

of Pτ in O(nO(n) · |I|O(1)) time.

ILP-formulation. To derive this result, given a shift vector τ ∈ Zn, we assume without loss

of generality that τi ∈ [0, Ti − 1] for every item i ∈ [n]. Let us consider the following integer

linear program, where our decision variables are p ∈ Z and x ∈ Zn:

max
∑
i∈[n]

Hi ·
(

1 − p− (τi + xiTi)

Ti

)
s.t. (1) τi + xiTi ≤ p ∀ i ∈ [n]

(2) 0 ≤ p ≤ Λ

(3) p ∈ Z, x ∈ Zn

(IP)

To develop some basic intuition around this formulation, one can think of p as the time point at

which the peak inventory level Imax(τ) is attained. From this perspective, constraints (2) and (3)

jointly ensure that p is an integer-valued point within [0,Λ]. Regarding the x-variables, for every

item i ∈ [n], the value of τi+xiTi represents the last i-ordering point in (−∞, p] with respect to

P i
τi . As such, the inventory level of this item at time p is given by Hi · (1 − p−(τi+xiTi)

Ti
), which

is precisely the term we are seeing in the objective function. Along these lines, constraint (1)

guarantees that τi+xiTi falls within (−∞, p], and moreover, since xi is coupled with a coefficient

of Hi > 0 in the objective function, an optimal solution will indeed set τi + xiTi as the last

i-ordering point in (−∞, p].
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Basic properties of (IP). The next claim explicitly constructs a feasible solution to (IP)

and prescribes lower and upper bounds on the optimum value of this program.

Lemma 4.2. (IP) is feasible, and moreover, OPT(IP) ∈ [Imax(τ), HΣ].

Proof. To argue about the feasibility of (IP), let us construct a candidate solution (p̂, x̂) as

follows. First, p̂ is chosen as one of the points in [0,Λ] ∩ Z for which IΣ(τ, p̂) = Imax(τ). Next,

for every item i ∈ [n], let x̂i = max{x ∈ Z : τi + xTi ≤ p̂}; this choice ensures that τi + x̂iTi

is precisely the time point where the last i-order in (−∞, p̂] occurs, with respect to the policy

P i
τi . Clearly, (p̂, x̂) is a feasible solution to (IP), with an objective value of

∑
i∈[n]

Hi ·
(

1 − p̂− (τi + x̂iTi)

Ti

)
=

∑
i∈[n]

Ii(τi, p̂) = IΣ(τ, p̂) = Imax(τ) ,

implying that we indeed have OPT(IP) ≥ Imax(τ).

In the opposite direction, to prove that OPT(IP) ≤ HΣ, suppose that (p, x) is a feasible

solution to (IP). Then, its objective value can be upper-bounded by noting that

∑
i∈[n]

Hi ·
(

1 − p− (τi + xiTi)

Ti

)
≤

∑
i∈[n]

Hi = HΣ ,

where the inequality above holds since p ≥ τi + xiTi, by constraint (1).

Inventory peaks via (IP). By Lemma 4.2, we know that (IP) is feasible and bounded,

meaning that this formulation indeed has one or more optimal solutions. In what follows, we

prove that with respect to any optimal solution (p∗, x∗), the time point p∗ must be one where

the inventory level of Pτ is maximized.

Lemma 4.3. Let (p∗, x∗) be an optimal solution to (IP). Then, IΣ(τ, p∗) = Imax(τ).

Proof. Suppose on the contrary that IΣ(τ, p∗) < Imax(τ), and let us examine the implications

of (p∗, x∗) being an optimal solution to (IP). In particular, for every item i ∈ [n], we must have

x∗i = max{x ∈ Z : τi + xTi ≤ p∗}. Otherwise, x∗i can be incremented by 1, to obtain a feasible

solution whose objective value is strictly greater than that of (p∗, x∗). As a result, τi + x∗iTi is

precisely the time point where the last i-order in (−∞, p∗] occurs, with respect to the policy

P i
τi , and in turn, Hi · (1 − p∗−(τi+x

∗
i Ti)

Ti
) = Ii(τi, p

∗). We are now ready to reveal the resulting

contradiction, arguing that (p∗, x∗) cannot be an optimal solution, by proving that its objective

value is strictly smaller than OPT(IP). To this end, note that

∑
i∈[n]

Hi ·
(

1 − p∗ − (τi + x∗iTi)

Ti

)
=

∑
i∈[n]

Ii(τi, p
∗)

= IΣ(τ, p∗)

< Imax(τ) (19)

≤ OPT(IP) . (20)

Here, inequality (19) corresponds to the scenario we are considering, where IΣ(τ, p∗) < Imax(τ).

Inequality (20) is precisely our lower bound on OPT(IP), as stated in Lemma 4.2.
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Solving (IP). In summary, to compute the peak inventory level of Pτ , it remains to identify

p∗, for some optimal solution (p∗, x∗). The next claim, whose proof is provided in Section 4.4,

argues that this goal can be accomplished in O(nO(n) · |I|O(1)) time.

Lemma 4.4. For some optimal solution (p∗, x∗) to (IP), we can determine the value of p∗ in

O(nO(n) · |I|O(1)) time.

4.2 Mimicking partitions: Definitions and usefulness

As previously alluded to, our algorithmic approach will rely on aggregating the overall set of

items into a small-sized collection of O(Kϵ ) super-items, which will be coupled with uniform

shifts. For this purpose, let T(1), . . . , T(K) be the set of distinct time intervals across T1, . . . , Tn.

For every k ∈ [K], we use Sk = {i ∈ [n] : Ti = T(k)} to denote the collection of items associated

with a time interval of T(k). Circling back to Section 3.1, we remind the reader that there exists

a D-restricted shift vector τD for which Imax(τD) ≤ (1 + 4ϵ) · OPTdisc(I). Moreover, for every

k ∈ [K], all items in Sk share the same discretization set, which will be designated by D(k),

noting that |D(k)| ≤ ⌊1ϵ ⌋ + 1.

Mimicking partitions. For every k ∈ [K] and τ ∈ D(k), let SD
k,τ = {i ∈ Sk : τDi = τ}

be the set of items in Sk whose shift with respect to τD is precisely τ . Clearly, the sets

{SD
k,τ}k∈[K],τ∈D(k)

form a partition of the underlying items, which is unknown from an algo-

rithmic perspective. To go around this obstacle, we say that a partition {SAPX
k,τ }k∈[K],τ∈D(k)

is

mimicking {SD
k,τ}k∈[K],τ∈D(k)

when it satisfies the next two properties:

1. Marginal partition: {SAPX
k,τ }τ∈D(k)

is a partition of Sk, for every k ∈ [K].

2. Cumulative ordering quantity: For every k ∈ [K] and τ ∈ D(k),

H(SAPX
k,τ ) ≤ (1 + ϵ) ·H(SD

k,τ ) +
2ϵ2

K
·HΣ .

Usefulness. To better understand the motivation behind introducing this notion, suppose

that {SAPX
k,τ }k∈[K],τ∈D(k)

is mimicking {SD
k,τ}k∈[K],τ∈D(k)

. In this case, let use define a shift vector

τAPX such that, for every index k ∈ [K] and time interval τ ∈ D(k), all items i ∈ SAPX
k,τ are given

a uniform shift of τAPX
i = τ . The next claim shows that τAPX is near-optimal, meaning that

we have just reduced our original inventory staggering problem to the computational question

of identifying a mimicking partition.

Lemma 4.5. Imax(τAPX) ≤ (1 + 17ϵ) · OPTdisc(I).

Proof. To establish the desired claim, consider some index k ∈ [K], time interval τ ∈ D(k),

and integer-valued point t ∈ [0,Λ]. Let t− be the last SAPX
k,τ -order in (−∞, t] with respect to

τAPX, namely, t− = max{τ + mT(k) : τ + mT(k) ≤ t,m ∈ Z}. According to this definition,

Ii(τ
APX
i , t) = Hi · (1 − t−t−

T(k)
) for every item i ∈ SAPX

k,τ . Therefore,

∑
i∈SAPX

k,τ

Ii(τ
APX
i , t) =

(
1 − t− t−

T(k)

)
·H(SAPX

k,τ )
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≤
(

1 − t− t−

T(k)

)
·
(

(1 + ϵ) ·H(SD
k,τ ) +

2ϵ2

K
·HΣ

)
(21)

≤ (1 + ϵ) ·
∑
i∈SD

k,τ

Ii(τ
D
i , t) +

2ϵ2

K
·HΣ , (22)

where inequality (21) follows from property 2, and inequality (22) holds since Ii(τ
D
i , t) = Hi ·

(1 − t−t−
T(k)

) for every item i ∈ SD
k,τ . By summing this relation across all k ∈ [K] and τ ∈ D(k),

we have

IΣ(τAPX, t) =
∑
k∈[K]

∑
τ∈D(k)

∑
i∈SAPX

k,τ

Ii(τ
APX
i , t) (23)

≤
∑
k∈[K]

∑
τ∈D(k)

(1 + ϵ) ·
∑
i∈SD

k,τ

Ii(τ
D
i , t) +

2ϵ2

K
·HΣ

 (24)

≤ (1 + ϵ) · Imax(τD) + 4ϵHΣ (25)

≤ (1 + 17ϵ) · OPTdisc(I) . (26)

Here, equality (23) holds since {SAPX
k,τ }k∈[K],τ∈D(k)

is a partition of the entire item set, by

property 1. Inequality (24) follows by plugging in (22). Inequality (25) is obtained by recalling

that |D(k)| ≤ ⌊1ϵ ⌋ + 1 ≤ 2
ϵ . Finally, to arrive at inequality (26), note that Imax(τD) ≤ (1 + 4ϵ) ·

OPTdisc(I) and that HΣ ≤ 2 · OPTdisc(I), by Lemma 2.1.

4.3 Mimicking partitions: Construction and testing

In what follows, we construct a family of 2O(K/ϵ2) partitions, out of which at least one

is guaranteed to be mimicking {SD
k,τ}k∈[K],τ∈D(k)

; this construction can be implemented in

O(2O(K/ϵ2) · nO(1)) time. Subsequently, we will explain how to utilize this family in order

to compute a near-optimal shift vector.

Step 1: Guessing. As our first algorithmic step, for every k ∈ [K] and τ ∈ D(k), we guess

an over-estimate HAPX
k,τ for H(SD

k,τ ), such that

H(SD
k,τ ) < HAPX

k,τ ≤ H(SD
k,τ ) +

ϵ2

K
·HΣ . (27)

To this end, it suffices to enumerate over integer multiples of ϵ2

K ·HΣ within the interval [0, HΣ].

Based on elementary balls-into-bins arguments, across all combinations of k ∈ [K] and τ ∈ D(k),

the required number of guesses is 2O(K/ϵ2).

Step 2: Load balancing formulation. For every k ∈ [K], we proceed by separately parti-

tioning the set of items Sk into {SAPX
k,τ }τ∈D(k)

. For this purpose, we create the following instance

of makespan minimization on related (uniform) machines:

• Jobs: Each item i ∈ Sk corresponds to a job, requiring Hi amount of work.
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• Machines: For every τ ∈ D(k), we represent the subset SAPX
k,τ via a corresponding machine

Mk,τ , whose speed is HAPX
k,τ . As such, when job i is assigned to this machine, it incurs a

processing time of Hi

HAPX
k,τ

.

• Goal: Our objective is to compute a job-to-machine assignment whose makespan is mini-

mized.

It is easy to see that the optimal makespan for this particular instance is at most 1. Indeed,

when for every τ ∈ D(k), the unknown set of jobs SD
k,τ is assigned to machine Mk,τ , the latter

incurs a total processing time of
H(SD

k,τ )

HAPX
k,τ

< 1, due to inequality (27).

Step 3: Approximating the load balancing problem. Luckily, makespan minimiza-

tion on related machines admits an efficient polynomial-time approximation scheme (EPTAS).

Specifically, Jansen et al. (2020) showed how to compute an assignment whose makespan is

within factor 1 + ϵ of optimal; their approach can be implemented in O(2Õ(1/ϵ) + nO(1)) time.

This result improves on a slightly less efficient approach by Jansen (2010). Migrated to our

context, it follows that within this running time, we can partition Sk into {SAPX
k,τ }τ∈D(k)

, such

that for every τ ∈ D(k),

H(SAPX
k,τ ) ≤ (1 + ϵ) ·HAPX

k,τ ≤ (1 + ϵ) ·H(SD
k,τ ) +

2ϵ2

K
·HΣ ,

where the last transition follows from inequality (27). In other words, {SAPX
k,τ }k∈[K],τ∈D(k)

is a

mimicking partition for {SD
k,τ}k∈[K],τ∈D(k)

.

Testing. Up until now, we have constructed a family of 2O(K/ϵ2) partitions, containing at

least one which is guaranteed to be mimicking {SD
k,τ}k∈[K],τ∈D(k)

. As shown in Section 4.2,

the shift vector τAPX corresponding to such a partition, {SAPX
k,τ }k∈[K],τ∈D(k)

, forms a (1 + 17ϵ)-

approximation. Therefore, the remaining question is: Given τAPX, how do we compute its peak

inventory level, Imax(τAPX)?

To resolve this question, we remind the reader that τAPX is defined such that, for every index

k ∈ [K] and time interval τ ∈ D(k), all items in SAPX
k,τ are given a uniform shift of τ . Thus, to

evaluate Imax(τAPX), we can view SAPX
k,τ as a super-item, (k, τ), associated with a time interval

of T(k) and with an ordering quantity of H(SAPX
k,τ ). Consequently, it remains to compute the

peak inventory level of a given shift vector, when the underlying number of items is O(Kϵ ). By

Theorem 4.1, Imax(τAPX) can be evaluated in O((Kϵ )O(K/ϵ) · |I|O(1)) = O(2Õ(K/ϵ) · |I|O(1)) time.

4.4 Proof of Lemma 4.4

Integer linear feasibility. For the purpose of computing an optimal solution to (IP), we will

rely on the work of Lenstra (1983), Kannan (1987), and Frank and Tardos (1987) for solving

integer linear feasibility problems in fixed dimension. Specifically, given an integer-valued matrix

A ∈ Zm×n along with an integer-valued vector b ∈ Zm, suppose we wish to decide whether there

exists a vector x ∈ Zn satisfying Ax ≤ b. Then, the above-mentioned papers aggregately proved
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that this problem is decidable in O(nO(n) · LA,b) time, where LA,b represents the combined

number of bits required to specify A and b.

The feasibility version of (IP). Prior to proceeding any further, we mention in passing that

the upcoming procedure for optimizing (IP) is rather standard, and we refer interested readers

to two excellent sources — Lokshtanov (2009, Sec. 2.8) and Cygan et al. (2015, Sec. 6.2) — for

additional explanations about obtaining an optimal solution to a given integer linear program

via its feasibility counterpart. In order to convert (IP) into a feasibility problem of the form

described above, rather than having
∑

i∈[n]Hi · (1− p−(τi+xiTi)
Ti

) as our objective function, when

this term is scaled by a factor of Λ and lower-bounded by ψ, we arrive at the next integer linear

feasibility problem:

(1) Λ ·
∑
i∈[n]

Hi ·
(

1 − p− (τi + xiTi)

Ti

)
≥ ψ

(2) τi + xiTi ≤ p ∀ i ∈ [n]

(3) 0 ≤ p ≤ Λ

(4) p ∈ Z, x ∈ Zn

(IPfeasible)

Optimizing (IP) via (IPfeasible). Let us observe that, as long as ψ is an integer, the con-

straint matrix A of this formulation and its right-side vector b are integer-valued. Therefore,

subsequently to the opening paragraph of this section, we know that (IPfeasible) can be decided

in O(nO(n) ·LA,b,ψ) time. Here, the absolute value of every entry in A and b is at most ΛnHmaxψ,

with room to spare, implying that LA,b,ψ = O(n2 log(ΛnHmaxψ)).

Now, by Lemma 4.2, we know that OPT(IP) ∈ [Imax(τ), HΣ] ⊆ [HΣ
2 , HΣ]. During the

construction of (IPfeasible), we have scaled our objective function by Λ, meaning that the exact

optimum of (IP) can be identified via binary search over the interval [ΛHΣ
2 ,ΛHΣ]. This search

will consist of O(log(ΛHΣ)) iterations, each employing a single call to (IPfeasible) with a threshold

of ψ = Θ(ΛHΣ). As a result, OPT(IP) can be computed in time

O
(
nO(n) · log2(ΛHmax)

)
= O

(
nO(n) · log2(TmaxHmax)

)
= O

(
nO(n) · |I|O(1)

)
.

Next, our objective is to determine the value of p∗, for some optimal solution (p∗, x∗) to

(IP). For this purpose, we augment (IPfeasible) with two constraints:

• First, in place of Λ ·
∑

i∈[n]Hi · (1− p−(τi+xiTi)
Ti

) ≥ ψ, since OPT(IP) is already known, we

focus on optimal solutions by writing Λ ·
∑

i∈[n]Hi · (1 − p−(τi+xiTi)
Ti

) = Λ · OPT(IP).

• Our second constraint is of the form p ≥ ψ, intended to conduct a binary search for the

value of p∗.

Similarly to the line of reasoning described above, p∗ can be computed in O(nO(n) · |I|O(1)) time

as well.
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5 Approximation Scheme for Nested Instances

In this section, we develop a polynomial-time approximation scheme for nested instances of the

inventory staggering problem, thereby establishing Theorem 1.5. Specifically, for any ϵ > 0, our

decomposition-based approach will approximate such instances within factor 1 + ϵ of optimal

in O(2Õ(1/ϵ3) · |I|O(1)) time. For ease of exposition, these ideas will be described in terms of the

discrete problem formulation; we will therefore open by explaining how continuous instances

can be reduced to discrete ones, with negligible loss in optimality.

5.1 Continuous-to-discrete reduction

Interestingly, the discretization ideas presented in Section 3.1 allow us to reduce any instance

IRn of the continuous model to a discrete instance, IZn , losing a factor of 1+O(ϵ) in its objective

value. For this purpose, all time intervals T1, . . . , Tn are uniformly scaled up by a factor of ⌈1ϵ ⌉
and nothing more. This modification clearly preserves nestedness.

To analyze the relationship between IRn and IZn , let us first observe that due to uniformly

up-scaling all time intervals, when scaled down by a factor of ⌈1ϵ ⌉, the peak inventory level of any

integer-valued shift vector τ for IZn translates to precisely the same peak for IRn . In other words,

IIR
n

max( τ
⌈1/ϵ⌉) = IIZ

n
max(τ), implying that OPTcont(IRn) ≤ OPTdisc(IZn). To relate these measures in

the opposite direction, let T̃1, . . . , T̃n be the time intervals of IZn , and suppose we associate each

item i ∈ [n] with a discrete set of integer-valued shifts, Di = {⌊ϵT̃i⌋, ⌊2ϵT̃i⌋, . . . , ⌊⌊1ϵ ⌋ · ϵT̃i⌋, T̃i}.

Then, minor modifications to the proof of Lemma 3.1 show that there exists a D-restricted shift

vector for IZn whose peak inventory level is (1 +O(ϵ)) · OPTcont(IRn).

5.2 Well-separated partitions

Our approach for devising a polynomial-time approximation scheme is driven by the notion of

well-separated partitions. To gradually introduce these objects, given a nested instance I of

the discrete inventory staggering problem, suppose that S = (S1, . . . , SM , S∞) is an ordered

partition of its item set. Then, S is called well-separated when it satisfies the next three

properties:

1. Width:
maxi∈Sm Ti
mini∈Sm Ti

≤ (1ϵ )
1/ϵ, for every m ∈ [M ].

2. Separation: Ti1 ≤ ϵTi2 , for every (i1, i2) ∈ Sm1 × Sm2 with 1 ≤ m1 < m2 ≤M .

3. S∞ is negligible: H(S∞) ≤ ϵHΣ.

In what follows, we prove the existence of well-separated partitions and propose an efficient

construction through a simple application of the probabilistic method (Alon and Spencer, 2016).

Lemma 5.1. A well-separated partition exists, and can be deterministically computed in polyno-

mial time.

Proof. We begin by defining the sequence of time interval subsets

T1 =

{
i ∈ [n] : Ti ∈

[
1,

1

ϵ

]}
, T2 =

{
i ∈ [n] : Ti ∈

(
1

ϵ
,

1

ϵ2

]}
, . . .
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so on and so forth, where in general Tq =
{
i ∈ [n] : Ti ∈

(
1

ϵq−1 ,
1
ϵq

]}
for every q ≥ 2. This

sequence proceeds up to TQ, where Q is the smallest integer for which 1
ϵQ

≥ Tmax, meaning that

Q = ⌈log1/ϵ Tmax⌉ = O(log Tmax).

Assuming without loss of generality that 1
ϵ is an integer, we randomly pick ξ ∼ U{0, . . . , 1ϵ −

1}. With respect to this choice, any subset Tq with q ≡ ξ (mod 1
ϵ ) is said to be marked, while

all other subsets are unmarked. We use Sξ1 to denote the collection of time intervals belonging

to the (unmarked) subsets appearing prior to the first marked subset (i.e., T1, . . . , Tξ−1). Then,

Sξ2 will denote the collection of time intervals in the (unmarked) subsets appearing between the

first and second marked subsets (i.e., Tξ+1, . . . , Tξ+ 1
ϵ
−1), so on and so forth, up until the last

such set, SξM . Finally, time intervals within marked subsets are collected into Sξ∞.

It is easy to verify that, for any choice of ξ, the ordered partition Sξ = (Sξ1 , . . . , S
ξ
M , S

ξ
∞)

satisfies properties 1 and 2. In addition,

E
[
H(Sξ∞)

]
= E

∑
i∈[n]

Hi · 1[i ∈ Sξ∞]

 = ϵHΣ ,

since each item i ∈ [n] ends up in Sξ∞ if and only if the unique subset Tq containing this item is

marked, which happens with probability ϵ. As an immediate consequence, it follows that there

exists some choice of ξ ∈ {0, . . . , 1ϵ −1} for which H(Sξ∞) ≤ ϵHΣ, meaning that property 3 holds

as well.

5.3 The Near-Additivity Theorem

Given a well-separated partition S = (S1, . . . , SM , S∞), our next step consists of arguing that,

by temporarily leaving the subset S∞ aside, we are left with a residual instance whose optimal

peak inventory level is nearly additive with respect to S1, . . . , SM . To formalize this claim, for

every m ∈ [M ], we make use of Im to denote the instance obtained by restricting I to the

set of items Sm. Similarly, I[m] will designate its restriction to S[m] =
⋃
µ∈[m] Sµ. With this

notation, it is easy to verify that OPTdisc(I[M ]) ≤
∑

m∈[M ] OPTdisc(Im). However, we will show

that well-separated partitions, in conjunction with nested time intervals, lead to a nearly-tight

inequality in the opposite direction.

Theorem 5.2. OPTdisc(I[M ]) ≥ (1 − 2ϵ) ·
∑

m∈[M ] OPTdisc(Im).

The basic claim. In what follows, we argue that for every m ∈ [M ],

OPTdisc(I[m]) ≥ OPTdisc(I[m−1]) + (1 − 2ϵ) · OPTdisc(Im) , (28)

with the convention that OPTdisc(I[0]) = 0. By expanding this inequality one term after the

other, we indeed get OPTdisc(I[M ]) ≥ (1 − 2ϵ) ·
∑

m∈[M ] OPTdisc(Im), as desired. Noting that

inequality (28) is trivial for m = 1, we proceed by considering the general case of m ≥ 2.

The ϵ-shortness relation. To this end, suppose that IA and IB are two inventory staggering

instances, whose corresponding sets of items A and B are disjoint. For ϵ ∈ (0, 1), we say that
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IA is ϵ-shorter than IB when LCM({Ti}i∈A) ≤ ϵ ·mini∈B Ti. Put differently, the cycle length of

any policy in regard to IA is at most an ϵ-fraction of the minimal time interval in IB. The next

claim shows that, in this scenario, the best-possible peak inventory level for the merged instance

IA∪B cannot be much smaller than the sum of optimal peaks for IA and IB. It is important to

point out that this result applies to both versions of the inventory staggering problem, which is

why we make use of OPT(·), rather than OPTdisc(·) or OPTcont(·).

Lemma 5.3. When IA is ϵ-shorter than IB,

OPT(IA∪B) ≥ OPT(IA) + (1 − 2ϵ) · OPT(IB) .

Proof. Let τ∗A∪B be an optimal shift vector with respect to IA∪B. In terms of this vector,

the total inventory level of B-items at any time point t ∈ R will be denoted by IBΣ(τ∗A∪B, t) =∑
i∈B Ii(τ

∗A∪B
i , t), with its peak level being IBmax(τ∗A∪B) = maxt∈R I

B
Σ(τ∗A∪B, t). Now, suppose

that the latter max is attained at t̂, and let ∆ = ϵTB
min, where TB

min = mini∈B Ti. Our first claim

is that, for every time point t ∈ [t̂, t̂+ ∆], we have

IBΣ(τ∗A∪B, t) ≥ (1 − 2ϵ) · IBmax(τ∗A∪B) . (29)

For this purpose, note that when there are no B-orders in [t̂, t],

IBΣ(τ∗A∪B, t) = IBΣ(τ∗A∪B, t̂) − (t− t̂) ·
∑
i∈B

Hi

Ti

≥ IBmax(τ∗A∪B) − ϵTB
min ·

∑
i∈B

Hi

Ti
(30)

≥ IBmax(τ∗A∪B) − ϵ ·H(B)

≥ (1 − 2ϵ) · IBmax(τ∗A∪B) . (31)

Here, inequality (30) holds since IBΣ(τ∗A∪B, t̂) = IBmax(τ∗A∪B), by definition of t̂, and since

t− t̂ ≤ ∆ = ϵTB
min. Inequality (31) is obtained by specializing Lemma 2.1 to the set of items B,

implying that H(B) ≤ 2 · OPT(IB) ≤ 2 · IBmax(τ∗A∪B). In the complementary case, where there

are one or more B-orders in [t̂, t], the inventory level IBΣ(τ∗A∪B, t) can only be larger.

Now, let us recall that IA is ϵ-shorter than IB, meaning that the cycle length of any policy

with respect to IA is at most ϵTB
min = ∆. In particular, focusing on the restriction of τ∗A∪B to

these items, within the interval [t̂, t̂+ ∆], there exists at least one point t̄ with

IAΣ (τ∗A∪B, t̄) = IAmax(τ∗A∪B) . (32)

Consequently, to derive the desired lower bound on OPT(IA∪B), we observe that

OPT(IA∪B) = IA∪B
max (τ∗A∪B)

≥ IA∪B
Σ (τ∗A∪B, t̄)

= IAΣ (τ∗A∪B, t̄) + IBΣ(τ∗A∪B, t̄)

≥ IAmax(τ∗A∪B) + (1 − 2ϵ) · IBmax(τ∗A∪B) (33)
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≥ OPT(IA) + (1 − 2ϵ) · OPT(IB) ,

where inequality (33) is obtained by plugging in (29) and (32).

Concluding the basic claim (28). As our last step, we explain how to derive inequality (28)

for the general case of m ≥ 2. To this end, let us recall that S is a well-separated partition,

meaning that for every pair of items i1 ∈ S[m−1] and i2 ∈ Sm, we necessarily have Ti1 ≤ ϵTi2 ,

by property 2. Consequently, since we are considering a nested instance, the cycle length of

any policy with respect to I[m−1] is given by maxi1∈S[m−1]
Ti1 ≤ ϵ · mini2∈Sm Ti2 , implying that

I[m−1] is ϵ-shorter than Im. As a result, by Lemma 5.3,

OPTdisc(I[m]) ≥ OPTdisc(I[m−1]) + (1 − 2ϵ) · OPTdisc(Im) .

5.4 Algorithmic implications

From an algorithmic perspective, in light of the preceding discussion, we first compute a (1+ϵ)-

approximate shift vector τm with respect to Im, for every m ∈ [M ]. To this end, by property 1,

we know that
maxi∈Sm Ti
mini∈Sm Ti

≤ (1ϵ )
1/ϵ. Additionally, since Im is a nested instance, the multiplicative

gap between any pair of distinct time intervals in {Ti}i∈Sm is at least 2, implying that there

are only O(log2((
1
ϵ )

1/ϵ)) = O(1ϵ log 1
ϵ ) such values. Therefore, as stated in Theorem 1.4, we can

compute τm in O(2Õ(1/ϵ3) · |I|O(1)) time. For the singular instance I∞, we pick an arbitrary

shift vector τ∞. Our final solution τ is formed by gluing τ1, . . . , τM , τ∞ together. The next

claim proves that this vector is indeed near-optimal in terms of the original instance I.

Lemma 5.4. Imax(τ) ≤ (1 + 8ϵ) · OPTdisc(I).

Proof. To upper-bound the peak inventory level of the policy Pτ , we observe that

Imax(τ) ≤
∑

m∈[M ]

Imax(τm) + Imax(τ∞)

≤ (1 + ϵ) ·
∑

m∈[M ]

OPTdisc(Im) +H(S∞) (34)

≤ 1 + ϵ

1 − 2ϵ
· OPTdisc(I[M ]) +H(S∞) (35)

≤
(

1 + ϵ

1 − 2ϵ
+ 2ϵ

)
· OPTdisc(I) (36)

≤ (1 + 8ϵ) · OPTdisc(I) .

Here, inequality (34) holds since τm is a (1 + ϵ)-approximate vector with respect to Im, for

every m ∈ [M ]. Inequality (35) follows from Theorem 5.2. Finally, inequality (36) is obtained

by observing that H(S∞) ≤ ϵHΣ ≤ 2ϵ · OPTdisc(I), due to property 3 and Lemma 2.1.

6 Approximation Scheme for Continuous Pairwise Coprime Instances

Our final contribution comes in the form of a polynomial-time approximation scheme for pairwise

coprime instances of the continuous inventory staggering problem. As stated in Theorem 1.6,
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by repurposing some of the main ideas behind Section 5, we will approximate such instances

within factor 1 + ϵ of optimal in O(tower4(O(1ϵ ), O(1ϵ )) · |I|
O(1)) time.

6.1 Instilling ϵ-shortness and near-additivity

Decomposition. Given an instance I of the continuous inventory staggering problem, com-

prised of pairwise coprime time intervals T1 < · · · < Tn, our first objective is to decompose I
into two essentially independent instances, with one being ϵ-shorter than the other. For this

purpose, assuming without loss of generality that 1
ϵ takes an integer value, we define the infinite

sequence Ψ1,Ψ2, . . ., such that

Ψ0 = 1, Ψ1 =
1

ϵ
, Ψ2 = 41/ϵ, Ψ3 = 441/ϵ , . . .

where in general, Ψm = tower4(m,
1
ϵ ) for all m ≥ 1. In correspondence to this sequence, we

additionally define the items sets S1, S2, . . ., where Sm = {i ∈ [n] : Ti ∈ [Ψm−1,Ψm)}. Clearly,

there exists some 2 ≤ m̂ ≤ 1
ϵ + 1 for which H(Sm̂) ≤ ϵHΣ, and we make use of this index to

introduce three related instances:

• Small time intervals: I− is the restriction of I to the set of items S− =
⋃
m<m̂ Sm.

• Large time intervals: I+ is its restriction to S+ =
⋃
m>m̂ Sm.

• Merged instance: I± is the instance obtained by unifying the item sets S− and S+.

The Near-Additivity Theorem. Similarly to Section 5.3, we proceed by arguing that the

best-possible peak inventory level for I± cannot be much smaller than the sum of these measures

for I− and I+.

Theorem 6.1. OPTcont(I±) ≥ OPTcont(I−) + (1 − 2ϵ) · OPTcont(I+).

Proof. The inequality in question is an immediate consequence of Lemma 5.3, as our con-

struction guarantees that I− is ϵ-shorter than I+. To verify this claim, note that

LCM({Ti}i∈S−) =
∏
i∈S−

Ti (37)

≤ Ψ
π(Ψm̂−1)
m̂−1 (38)

≤ Ψ
1.2551·

Ψm̂−1
lnΨm̂−1

m̂−1 (39)

= 41.2551·
Ψm̂−1
ln 4

≤ 4Ψm̂−1

Ψm̂−1

≤ ϵ · Ψm̂

≤ ϵ · min
i∈S+

Ti . (40)

Here, equality (37) holds since {Ti}i∈S− are pairwise coprime. Inequality (38) is obtained by

observing that all time intervals in S− are upper-bounded by Ψm̂−1. In addition, there could

27



be at most π(Ψm̂−1) such values greater than 1, where π(·) is the prime-counting function.

Inequality (39) follows by employing the upper bound π(x) ≤ 1.2551 · x
lnx for x > 1, due to

Dusart (2018, Cor. 5.2). Finally, inequality (40) holds since {Ti}i∈S+ are lower-bounded by

Ψm̂.

6.2 Algorithmic implications

Given this result, we begin by computing a (1 + ϵ)-approximate shift vector τ− with respect to

I−. For this purpose, since Ti < Ψm̂ ≤ Ψ 1
ϵ
+1 for every item i ∈ S−, the number of distinct time

intervals across this set is only O(Ψ 1
ϵ
+1). Therefore, as argued in Theorem 1.4, we can compute

τ− in time

O

(
2
Õ(Ψ 1

ϵ+1
/ϵ2) · |I|O(1)

)
= O

(
tower4

(
O

(
1

ϵ

)
, O

(
1

ϵ

))
· |I|O(1)

)
.

For the instance I+, as well as for the set of items Sm̂, we pick arbitrary shift vectors, τ+ and

τ m̂. Our final solution τ is formed by gluing τ−, τ+, and τ m̂ together.

Large pairwise coprime time intervals. While τ− is a (1+ϵ)-approximate shift vector with

respect to I−, the performance guarantee of τ+ in terms of I+ is still unclear. Recalling that all

time intervals of the latter instance are lower-bounded by Ψm̂ ≥ 1
ϵ , the next claim shows that any

shift vector is (1+ϵ)-approximate in this context, since we obtain OPTcont(I+) ≥ (1−ϵ) ·H(S+)

as a direct implication.

Lemma 6.2. Let I be a pairwise coprime inventory staggering instance. Then,

OPTcont(I) ≥
(

1 − 1

Tmin

)
·HΣ .

Proof. Our proof is based on arguing that Imax(τ) ≥ (1 − 1
Tmin

) · HΣ, for every real-valued

shift vector τ ∈ Rn. To this end, let τ̂ ∈ Zn be the vector specified by τ̂i = ⌈τi⌉, for every item

i ∈ [n]. Since the time intervals T1, . . . , Tn are pairwise coprime, by the Chinese Remainder

Theorem, the system of congruences

t ≡ τ̂i (mod Ti) ∀ i ∈ [n]

has a unique solution t modulo
∏
i∈[n] Ti. As such, for every i ∈ [n], the policy Pτ has an i-order

at time t− (τ̂i − τi), implying that the inventory level of this item at time t is

Ii(τi, t) ≥ Hi ·
(

1 − τ̂i − τi
Ti

)
= Hi ·

(
1 − ⌈τi⌉ − τi

Ti

)
≥ Hi ·

(
1 − 1

Tmin

)
.

It follows that the maximum inventory level of the policy Pτ is Imax(τ) ≥ IΣ(τ, t) ≥ (1− 1
Tmin

) ·
HΣ.

Final performance guarantee. We conclude the proof of Theorem 1.6 by observing that

Imax(τ) ≤ IS−
max(τ−) + IS+

max(τ+) + ISm̂
max(τ m̂)
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≤ (1 + ϵ) · OPTcont(I−) +H(S+) +H(Sm̂) (41)

≤ (1 + 2ϵ) ·
(
OPTcont(I−) + OPTcont(I+)

)
+ ϵHΣ (42)

≤ (1 + 2ϵ)(1 + 3ϵ) · OPTcont(I±) + 2ϵ · OPTcont(I) (43)

≤ (1 + 13ϵ) · OPTcont(I) .

Here, inequality (41) holds since τ− is a (1 + ϵ)-approximate shift vector with respect to I−.

Inequality (42) is obtained by recalling that OPTcont(I+) ≥ (1− ϵ) ·H(S+) and H(Sm̂) ≤ ϵHΣ.

Finally, inequality (43) follows from Theorem 6.1 and Lemma 2.1.

7 Concluding Remarks

We conclude our work by briefly discussing two pivotal questions that lie at the heart of inventory

staggering. The first question is concerned with the long-standing approximability gap of this

problem in its full generality, whereas the second touches upon peak inventory evaluation, which

has been circumvented in earlier papers by focusing on stylized formulations.

Sub-2-approximation/APX-hardness for general instances? As explained in Sec-

tion 1.2, the classic average-space bound (Lemma 2.1) informs us that the peak inventory level

of any shift vector is within factor 2 of optimal, regardless of how a given inventory staggering

instance is structured. In the opposite direction, this problem has been shown to be strongly

NP-hard; see Gallego et al. (1992) and Hochbaum and Rao (2019) for intractability proofs

applying to the continuous and discrete settings, respectively. Without any simplifying as-

sumptions, we believe that meaningfully narrowing the approximability region [PTAS, 2] would

be a very challenging avenue for future research, probably requiring technical developments that

are unavailable within this domain at present time.

Algorithmic/hardness results for peak evaluation? As mentioned in Section 1.2, effi-

ciently evaluating the peak inventory level attained by a given shift vector remains a central

question to be addressed. Toward this objective, Theorem 1.1 excludes standard sampling ideas,

showing that 2Ω(ϵ2n) random points should be drawn in order to estimate peak inventory levels

within factor 1
2 + ϵ with constant probability. Along these lines, it would be interesting to

examine whether exact/approximate peak evaluation is actually #P-hard. On a brighter note,

Theorem 4.1 presents an exact evaluation oracle in O(nO(n) · |I|O(1)) time, by means of integer

linear programming in fixed dimension (Lenstra, 1983; Kannan, 1987; Frank and Tardos, 1987).

Substantial improvements on the latter running time, as well as faster approximate procedures

in this context, would be challenging directions to pursue.
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