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RAINBOW STACKINGS OF RANDOM EDGE-COLORINGS

NOGA ALON, COLIN DEFANT, AND NOAH KRAVITZ

ABSTRACT. A rainbow stacking of r-edge-colorings x1, ..., xm of the complete graph on n vertices
is a way of superimposing x1, ..., Xm SO that no edges of the same color are superimposed on each
other. We determine a sharp threshold for r (as a function of m and n) governing the existence
and nonexistence of rainbow stackings of random r-edge-colorings x1, ..., Xm-

1. INTRODUCTION

Let &,, denote the symmetric group of permutations of the set [n] := {1,...,n}. Let K,, denote
the complete graph with vertex set [n] and edge set ([g]). Consider a set C, of r colors, and
let x1,..., Xm: ([g]) — C; be edge-colorings of K,. A ranbow st cking of x1,...,Xm is a tuple
o= (01,...,0m) € G such that for each edge e € ([g}), the colors

x1(o7'(€)), -, xm(o7,' ()

are all distinct (where o} *({i,7}) = {05 '(i),0;, ' (4)}). Less formally, a rainbow stacking is a way
of stacking copies of K, with the colorings xi,...,xm on top of each other so that no edge is
stacked above another edge of the same color (see Figure 1).

We are interested in the existence of rainbow stackings, especially when x1,..., Xm: ([g]) — Cy
are independent uniformly random colorings. When m is fixed and n is growing, we wish to
determine which values of r (in terms of n) guarantee the existence or nonexistence of rainbow
stackings. In what follows, the phrase with high probability always means with probability tending

FIGURE 1. A rainbow stacking m € &3 of 3 edge-colorings of K4, where there are
r = 3 total colors. The permutations in the tuple 7 are (in one-line notation)
m = 1234, mo = 2431, and w3 = 1243.
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to 1 as n — oco. Our main theorem determines a sharp threshold that governs whether rainbow
stackings exist with high probability or do not exist with high probability.

Using the first-moment method, one can quickly find a upper bound on r that guarantees the
nonexistence of a rainbow stacking with high probability, as follows. Let x1,..., Xm: ([g]) — C, be
independent uniformly random edge-colorings. For each o € &), let Z, be the indicator function
for the event that o is a rainbow stacking of x1,..., Xm, and let Z := )" _ Z, be the total number
of rainbow stackings of x1, ..., xm. Note that Z is always a multiple of n!; indeed, if (o1,...,0m)
is a rainbow stacking of x1,..., Xm, then so is each tuple of the form (7o1,...,70y,) for 7 € &,,.
For each o € G, the expectation of Z, is exactly

B ’”’ﬁl (1 - :,) (5) |

=1

Consequently,

et = < () oo (st~ (7) (2) ).

i=1

If there is a function w: N — R such that lim,, . w(n) = co and

ml) e

~ 2log(n!)  (logn)?’

then
1
m(;L) o 2log(n!) — oo,
so E[Z] = opm(n!) as n — oco. In this case, since the value of Z is always a nonnegative integer
multiple of n!, Markov’s Inequality implies that
P[Z > 0] =P[Z > nl] <E[Z]/n! = o (1),

so with high probability, there are no rainbow stackings of x1,...,xm. This establishes the first
half of the following theorem; the proof of the second half is the main work of this paper.

Theorem 1.1. Fiz an integer m > 2 and a function w: N — R such that lim,_,. w(n) = oo.

For each n > 1, let x1,---Xm: ([Z]) — C, be independent uniformly random r-edge-colorings. If
r=r(n) > 1 satisfies

m(3) w(n)
(2) = 210g(2n!) ~ (logn)?’

then with high probability, there does not exist a rainbow stacking of x1,- .., Xm- If
m(}) 2m — 1 m w(n)

3 >
3) "= 2log(n!) 3 2logn  (logn)?’
then with high probability, there exists a rainbow stacking of X1, - .-, Xm-

2. EXISTENCE OF RAINBOW STACKINGS

We will use the second-moment method to prove the second statement of Theorem 1.1. We
already computed the first moment of Z in Section 1. The second moment of Z is
2

EZ=E|| > Zo| | = Y. ElZZ]
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For each k € [m], define the new coloring ) : ([g]) — C, by X} (€) = xk(0; ' (e)). Now, ZyZ; is
the indicator function of the event that for each e € ([g}), the colors
X1(e)s -+ xam(€)

are all distinct and the colors

X111 (€))s -y Xon (T T (€))
are all distinct. Hence, Z,Z, has the same distribution as ZidZ(alel omrl) where we write
id = (id, .. .,id) for the tuple in &) whose components are all equal to the identity permutation

id € 6,,. Consequently,
E[Z%] =n!™ Y E[ZaZx).
TeGm
We derive an explicit formula for each [ZjqZx] as follows.

For each e € ([g]), let Bi(e),...,Bm(e) be m copies of e. Consider the m-partite graph G, with
vertex set V(Gr) = {Bk(e) : e € ([g]), k € [m]} in which Sk (e) is adjacent to Si/(€’) if and only
if k # k' and either e = ¢’ or m(e) = mpr(€’). The edge-colorings x1, ..., Xm naturally induce a
vertex-coloring of G, where (Si(e) is assigned the color xx(e). Observe that id and = are both
rainbow stackings of x1,...,Xxm if and only if the induced vertex-coloring of G, is proper. For
example, if 7w and x1, x2, x3 are as depicted in Figure 1, then G, and its induced coloring are
shown in Figure 2. Although 7 is a rainbow stacking of x1, x2, X3, the identity tuple id is not; this
is why there are pink edges in Figure 2 whose endpoints have the same color.

The quantity E[Z;q Z«] is equal to () Ny, where N is the number of proper r-vertex-colorings
of Gr. Hence, we will study how N, depends on 7.

The graph G has m(}) vertices and

QT;L ’2‘ — R (k, K, e) € [m] x [m] x [Z] Lk < K and my(e) = mp(e)
(3)(:) - (

edges. For each k < k/, we have

H SOECE w(e)H = (P4 e,

where f 17 (7) and ¢ 5 (7) denote the number of fixed points and the number of 2-cycles (respec-
tively) of m, 'mp (viewed as a permutation of [n]). Define the weight

Wt(ﬂ') = Z Wthk/(ﬂ),

1<k<k/<m

where

Wi () = (fkg(ﬂ')) o (7).

Then the number of edges of G is
m\ (n
A(2)(2) ~wie)

The following lemma provides an upper bound on Ny in terms of the weight wt(7).

Lemma 2.1. Let m > 2 be an integer. If m € 8™ and r = r(n) satisfies n?/r3 = o(1), then

N, < (1 + Om(l))Tm(;)EZmTGWt(ﬂ-)/(T_(Qm_l)/g).
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FIGURE 2. The graph G, where 7w = (1234, 2431, 1243) is as depicted in Figure 1.
Edges of G of the form {8x(e), Sir(e)} are drawn in , while those of the
form {Bk(e), Br(¢')} with mx(e) = mp(€') are drawn in thick navy. Edges of the
form {Bx(e), fir(e)} with mi(e) = mps(e) are drawn with both colors. The vertex-
coloring of G is induced by the edge-colorings x1, X2, x3 in Figure 1.

Proof. We use the entropy method. Let x : V(Gr) — C, be a uniformly random proper r-coloring.
Then the entropy of y is

H(x) = log(Nx),

where H () denotes the base-e entropy function. Let o € &,, be a permutation. We will reveal the
values of x on the vertices 3,(1)(e), then the vertices 3,2)(e), and so on until the vertices B,y (e).

For each stage, let xZ, denote the partial coloring on the vertices S, (e) for k' <kandece ([’21}).
Then the chain rule and the subadditivity of entropy give that

H(x) <Y Y HXBow(©) | XZp)-

k=1 E([g])

We will estimate the summands appearing on the right-hand side of this inequality individually.
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For each color ¢ € C,, each vertex 3¢(e), and each partial proper coloring x’ of the other vertices
of G, we have

(4) P[x(Be(e)) = ¢ | x and ' agree wherever Y’ is defined] < 1/(r — 2m + 2).

Indeed, because fy(e) has at most 2m — 2 neighbors, there are at most 2m — 2 forbidden values
of x(Be(e)); since the remaining colors are equally likely, each one occurs with probability at most
1/(r —2m + 2).

Now, consider a single permutation o and a single vertex 3, (e). Let y = y7(e) be such that
2(k —1) —y is the number of distinct colors already assigned by x to the neighbors of ,Bg(k)(e) that
are of the form B,()(e’) with k' < k. Then there are at most r — 2(k — 1) + y possibilities for
X(Bok)(€)), and the entropy of x(B,(x)(e)) conditioned on this partial coloring is at most

log(r—2(k—1)4y) = log(r—2(k—1))+log (1 + y> <log(r—2(k—1))+ L

r—2(k—1) r—2(k-—1)
Summing over all of the possibilities for the partial coloring xZ,, we find that
1
H 7.) <1 —2(k—1 Ely| —————.
5) (Bt (€0) | X2) < og(r — 20k = 1)) + Ely] 57—

The next task is estimating E[y].
For each triple (¢, ¢ e) with £ < ¢’ and e € ([g}), let

x(l, 0 e) = {1 if m¢(e) = me (e);

0 otherwise.

We record for future reference the identity

(6) SN w(ele) = wi(m).

(< o (In)

The neighbors of 3, (e) already colored by xZ, are the vertices B,(;s)(e) and Ba(k/)(ﬂ;é,)ﬂg(k)(e))
for k' < k. Counting collisions, we find that the number of such vertices is
2(k —1) = Y w(a(k),o(K),e).
K<k
The vertices B,(;(e) for k' < k form a clique in Gr; likewise, the vertices Bg(k/)(wgé,)wg(k)(e))

for ¥ < k form a clique in Gx. So the pairs of such vertices receiving the same color form
a matching, and the number of such pairs is at least y — >, _, x(o(k),0(k’),e). Each pair of

vertices B, (€), Bo ey (T k,)ﬂ'o(k)( e)), for k', k" < k, receives the same color with probability at
most 1/(r —2m +2) by (4 )

-1- z(o(k),o(k'), e))?
E[y] < (k 1 Zk’<k ( (k)7 (k)7 )) —i—Z:C(U(k),O’(k/),e)

- r—2m -+ 2 =

(k=1 —-1=3ppa(o(k),o (/f’),e))+
7“—2m+2

—1)2 —
— u + <1 — kl) Z JU(U(k),U(k:/),e)
k

r—2m+ 2 r—2m + 2

2 .9k —
(k=1) +< 2(k 1)+Om(1/r2)>Zx(a(k),a(k’),e).

T r—2m+2 r—k+1
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Substituting this into (5), summing over k and e, and averaging over o € G,,, gives that

m

(7) HX) < E S (U AT+ Om(1/r),
" k=1 eg(ln])
where
_ (k—1) o _ 2w<r®(o(k),0(K),€)
Qk_log(r—Q(k—l))—i—(T_2m+2)(T_2(k_1)) and  Uf k kr—k+1 .

We compute that

—1)2/r
Qp =log(r —2(k — 1)) + r(ﬁ 2(2)_/1) + Op(1/77)

12/
=log(r —2(k — 1)) + log (1 + 7%) + Om(1/73)

— log(r — Q(k — 1) + (k? — 1)2/7”) + Om(l/rg)
=logr+2log(l —(k—1)/r)+ Om(l/T3)§

the crucial point is the identity r — 2(k — 1) + (k — 1)?/r = (1 — (k — 1)/r)?. Consequently,
(" n\ v 2.3
IEG kz ;})Qk = m<2> logr + 2<2> kzllog(l —(k=1)/1) 4+ Op(n®/r°)
2

= m(Z) logr + 2log(Enmr) + om(1).

Next, using (6), the formula for the sum of the first m — 1 squares, and the hypothesis that
n?/r3 = o(1), we find that

/ 1
Z Z i :sz(&g’@ae}z@mT—maX{U_l(E)aa_l(él)}"Fl

Ueemk 1ec [n]) =<t e

) & e
06, T —max{c—1(1),071(2)} + 1

. D/(3)

Substituting these bounds back into (7), we conclude that
Ne < (14 on(1))rmB) g2 ewim)/(r—(2m=1)/3)
as desired. -



For convenience, let
r=r—(2m-1)/3.

If r satisfies (3), then it follows immediately from Lemma 2.1 that

(8) E[ZiaZ] < (1+ 0 (1) E2,, €™/

n,m,r

for each w € G}, so

9) IE[ZQ] <1+ Om(l))E’rQl,m,rn!m Z eWt(m) /7

TeGM

Our goal is to obtain an upper bound on the sum on the right-hand side of (9). The following
proposition captures the central estimate of the proof.

Proposition 2.2. If r satisfies (3), then

> e = i (14 o(1).

TeST
Proposition 2.2 tells us that if r satisfies (3), then
E[Z%] = (1 + 0p(1))(Epm,n!™)? = (1 + 0 (1))E[Z]?
(using (1) for the second equality), so Var(Z) = 0, (E[Z]). Then Chebyshev’s Inequality gives that
P[Z = 0] = o (1),

which proves the second part of Theorem 1.1. Thus, the remainder of this section will be devoted
to proving Proposition 2.2. Assume in what follows that r satisfies (3) or, equivalently, that

. m(y) m w(n)
(10) Tz 210g(2n!) 2logn  (logn)?’

Each of the n!™ summands on the left-hand side of the equation in Proposition 2.2 is at least 1, so
we must show that very few summands can be significantly larger than 1. To accomplish this, we
will split the sum according to the values of fj, j/(7) and 5 (7).

Let L(m) be the sequence obtained by listing the pairs (k, k') € [m] x [m] with k& < k' in
decreasing order of wty i/(7) (breaking ties arbitrarily). Now, let us construct a subsequence
p(m) = (p1(7w),...,pm—1(m)) of L(m) recursively as follows. Let pj(7) be the first pair in L(r).
For 2 <i < m —1, let p;(w) be the first pair in L(7) such that p;(w) & {p1(=),...,pi—1(7)} and
the (undirected) graph on the vertex set [m] with the edge set {p1(7),...,pi(m)} is acyclic (where
we are identifying the ordered pair (k, k') with the unordered pair {k,k'}). In other words, p(w) is
the lexicographically first subsequence of L(m) whose entries form the edges of a spanning tree of
the complete graph on [m]. Notice that p(7r) is uniquely determined by L(7).

Writing pe(7) = (k¢, k), we can use standard rearrangement inequalities to find that

wh(m) < mzlé Kf‘(;)) +te<7r>} :

(=1

where fo(m) == fi, k() and to(m) =ty x, (7). Note that the number of permutations in &, with
f fixed points and ¢ 2-cycles is at most

ny\fn-— n!
()" ) vt 2r= 2
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Given a sequence L and tuples (f1,..., f;m—1) and (t1,...,tm—1), the number of tuples w € &)
satisfying L(w) = L and fy(7) = fy and ty(mw) =ty for all 1 < ¢ <m — 1 is at most

m—1 1
n!™ H —_—
19tet,!’
e} fel2tety!

here, we are crucially using the fact that the entries of p(7r) form the edge set of an acyclic graph.
Let T denote the set of tuples (fi,..., fm—1,t1,...,tm—1) of integers satisfying the following

conditions:

¢ 0< fi,ooos fmo1 S

e 0<ty,....t;1 < n/2;

o M)+t = (M) + bt
Let

Yo i={(fi, s fetstty oo ostmo1) € T: (5) 411 < (B7)}

and

TZ = {(f17"')fm—1at17---’tm—l) eY: (];1) +1t > (10%71)}.

(We remark that in these definitions, the particular choice of (1o§ ") for the cutoff is not important.)

For each w € &', the tuple (fi(7),..., fm—1(7),t1(7), ..., tm—1(7)) belongs to T< or T>. The
tuples 7 with (fi(7),..., fm—1(m),ti(7), ..., tm_1(7)) € T< will end up contributing the main
term of n!™(1 + o(1)) in Proposition 2.2, while the other tuples will end up contributing only to
the o(n!™) error term.

Let us begin with Y<. If m € &) is such that (fi(w),..., fim—1(w), t1(7),... . tm_1(m)) € T<,

then
o= (3)(1)

Since there are at most n!™ such tuples 7, the sum of e"*(™)/7 over these tuples is at most

1 1
n!"™ exp <<ZL> < og n) A) < n!™ exp (Om((log n)g/n)) =nl"(1+0(1)),
R
where we have used (3).
We now turn to T>. Since there are at most (%)! possibilities for the sequence L(7r), the sum of
eVt (m™/7 over all tuples 7 € G corresponding to a given tuple T' = (f1, ..., fm—1,t1,. -, tm—1) € T>
is at most (") !n!™X (T), where

() XT) = Zi:[ll <fe!21”te! P <[<J;£> i tz] i)) .

We wish to find a uniform upper bound on X (7') as T' ranges over the elements of Y.

We first require a technical lemma. Define g, h: R>; — Rx>q by g(x) = gc(mT_l) and h(z) = Hvitse V21+8x

so that g(h(z)) = z. Let I' denote the gamma function.

Lemma 2.3. Ift and K are integers such that 0 <t < K, then
D(W(K —t) +1)2% > T(h(K) +1).
Proof. Tt suffices to prove that T'(h(K — (t — 1)) + 1)2871(t — 1)! < T(h(K —t) + 1)2't! whenever

1 <t < K. The identity g(h(z)) = x implies that h'(z) = g,(hl(x)) 2h(:§)—1' Because h'’(z) < 0
for all x > 1, we have

(12) h(z +1) < h(z) 4+ h'(z) = h(z) + ) 1



It is routine to verify that
['(2)

(13) I'(z+ 22%1)

1
> =
-2

for every real number z > 2. Assume 1 < ¢ < K. Since h(K —t)+1 > h(0) + 1 = 2, we can set
x =K —tin (12) and set z = h(K —t) + 1 in (13) to find that

P(h(K -t)+1) D(h(K —t)+1) 21
P(h(K —t+1)+1) = T(h(K —t) + 1 + grp2p—y) 2
Therefore,
L(h(K —t) +1)2%! ., T(h(K —-t)+1)
Th(K —(t— 1)+ 02 -1 Tk —t+D 10 ="' ="
as desired. O

An immediate consequence of Lemma 2.3 is that for each integer K > 0, the maximum value of

1 f 0
e ([(2) 1),

over all f,t € Z>q satisfying (g) +t = K, is at most

e ("2 )7)

Applying this estimate to each multiplicand in the definition of X (7"), we find that

4
X(T) < —— =
TeTs N Y [1 r(fr+1) P <(2> ?>
gn

fi>1o =1
14 - - N me1)/7(fm=1)),
(14) x| exp(p1/7(f1)) f;g[g?}ﬂexp(w/ (f2)) P exp(P(m—1)/7(fm—-1))

where the f,’s run over intervals of real numbers and we have set

ool f) 1= —logT(f +1) + q@
We will now study the behavior of the functions ¢,.
Since the logarithm of the gamma function is convex (by the Bohr—Mollerup Theorem; see, e.g.,
) and the function f — (5) is concave, the function ¢, is also concave for all ¢ > 0. In particular,
the maximum value of ¢, on an interval is always assumed at one of the endpoints of the interval.
So the maximum over f,,,_1 is achieved when either f,,_1 =0 or f;,—1 = fin_2. In the former case,
we simply remove this term (since ¢4(0) = 0 for all ¢). In the latter case, we “incorporate” the
fm—1 term into the preceding f,,_o term by noting that

Pm—2)/7(fm—2) + ©m—1)/7(fm—2) = 20(m—3/2)/7(fm—2)-

We then obtain the same dichotomy for the maximum over f,,_2, and we continue in this manner
until we reach fi, where the maximum occurs when either fi; = n or f; = logn. Thus, there is
some 1 < s <m — 1 such that

Fax X(T) < max {eXp <Z pe/7(log n)) , €xXp (; W/?(n)) } :

(=1
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Then the sum of e"'(™)/™ over all w € &™ with (fi(),..., fm_1(7),t1(7), ..., tm_1(7)) € T> is
thus at most

(g) I(n?/2)™ 'l max {exp (Z ¢o/7(log n)) , exp (Z W?(ﬂ)) } ,
/=1

(=1

so to prove Proposition 2.2, it suffices to show that

(m —1)log(n?/2) + max {Z p/e(logn), Y W/?(n)} — =00

/=1 /=1
as n — co. We first check that

(m —1)log(n/2) + 3" gy/r(logn) = (m — 1)log(n?/2) — slog(T(logn + 1))+ ( s 1) <10§ n) |
(=1

=)=

= —slognloglogn + Oy, (logn)

tends to —oo (with room to spare in the asymptotic condition on 7 in (10)). We next consider

S
+1 1
(15) (m = Dlog(n®/2) + 3 puyen) = (m ~ D lon(n2/2) ~ stogtu + (5 1) (5) - &
(=1
If s < m —1, then the right-hand side of (15) is —(1+o0(1))s(1 — (s +1)/m)nlogn, which certainly
tends to —oo. If s = m — 1, then the right-hand side of (15) becomes

(m— 1) [log(n2 /2) — log(n!) + % (g) : ;] ,

which tends to —oo by (10). This finishes the proof of Proposition 2.2 and hence also of Theorem 1.1.

3. FURTHER REMARKS

3.1. Comments on the proof. When m = 2, our proof of Theorem 1.1 simplifies considerably
but is still nontrivial. In this case, each graph G is a disjoint union of edges (corresponding to
edges fixed by mm, 1) and even-length cycles. One can then bound N using the known formulas
for the chromatic polynomials of cycles in lieu of Lemma 2.1. Moreover, the proof of Proposition 2.2
simplifies because the list L(7) consists of the single element (1, 2) and it is not necessary to extract
the subsequence p{().

An examination of our proofs shows that Theorem 1.1 continues to hold in the regime where m
grows reasonably slowly with n. To optimize this dependence (which we have not attempted), one
should tweak some of the parameters appearing in our proof (for instance, the cutoff (log ”) in the
definitions of Y<, YT>); we leave the details to the curious reader.

3.2. Sharp thresholds. Theorem 1.1 shows that the existence problem for rainbow stackings
exhibits a sharp threshold, in the sense that the transition from having no rainbow stackings with
high probability to having rainbow stackings with high probability occurs within an interval of
length roughly (2m — 1)/3. It is natural to ask if the transition is even sharper; in particular, we
pose the following problem.

Problem 3.1. Determine whether or not there exists a function ro: N — R such that the following
holds. For eachn > 1, let x1,...,Xm: ([g]) — C, be independent uniformly random r-edge-colorings.
If r = r(n) satisfies r(n) < ro(n), then with high probability, there does not exist a rainbow stacking
of X1y-+Xm- If r =r(n) satisfies r(n) > ro(n), then with high probability, there exists a rainbow
stacking of X1, Xm-
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In the past, the second-moment method has often been effective for obtaining analogous sharp
results. A well-known example is the proof of the 2-point concentration of the independence number
of the Erdés—Rényi random graph G(n,1/2) (see, e.g., ). Since, however, the expected value of
this quantity is only O(logn), such a sharp concentration is less dramatic than the sharp transition
for rainbow stackings, where the critical value of r is on the order of n/logn.

3.3. Rainbow stackings of deterministic edge-colorings. It seems interesting to find sufficient
(deterministic) conditions for the existence of rainbow stackings, even when m = 2. Proper edge-
colorings provide a natural starting point. We note that not every pair of proper edge-colorings
has a rainbow stacking.

Proposition 3.2. Ifn = 25 —2 for some integer k > 2, then there is a pair of proper edge-colorings
of K,, with no rainbow stackings.

Proof. We provide an explicit construction of such a pair of colorings, based on a construction
described in (in the context of transversals in Latin squares). Let F5 denote the elementary
abelian 2-group of rank k. Let w1, vy, ug, v € IE"Q“ be such that uy # v1, us # vo, and uy+v1 = us+vs.
For each i € {1,2}, let us identify the set F§ \ {u;,v;} with [n] arbitrarily and define the coloring
Xi: (Fg\{gi’“i}) — F% by xi({z,y}) == 2 +y. It is clear that x1, x2 are proper edge-colorings.

We will show that the colorings x1, x2 do not admit a rainbow stacking. Consider a bijection
o: FE\ {ur,v1} — F5\ {u2,v9}. We claim that there are distinct elements x,y € F5 \ {u1,v1}
such that  + o(z) = y + o(y). Indeed, if this were not the case, then the quantities z 4+ o(z) for
z € FE\ {u1, v1} would all be distinct. Then, since ZzeIF’; z = 0, the quantity Zzemé\{m’m}(z—i-a(z))

would be the sum of two distinct elements of F§, so it would be nonzero. At the same time, our
choice of uq,v1, u9, v9 ensures that

Y (z40(2) = —(ur +v1) — (ug + v3) = 0.

z€FE\ {u1,v1}

This contradiction establishes the claim.
Take z,y as in the claim. The fact that x1({z,y}) =z +y =o(z)+o(y) = x2(c({z,y})) shows
that o is not a rainbow stacking. O

We remark that the Cayley sum-graph construction in the proof of Proposition 3.2 does not work
when n is sufficiently large and n # 2¥ — 2. Indeed, in this case, Miiyesser and Pokrovskiy showed
that for any n-element subsets A and B of F%, there exists a bijection o: A — B
such that the sums of the form a + o(a) for a € A are all distinct.
Motivated by these observations and by a conjecture of Ryser about the existence of transversals
in Latin squares of odd order (see ), we ask the following question.

Question 3.3. Is it true that when n is odd, every pair of proper edge-colorings of K, admits a
rainbow stacking?

We remark that the answer to Question 3.3 is “yes” when n = 3 (by inspection) and when
n =5 (by computer search). It seems that a general affirmative resolution of this question would
be difficult; it may be easier to start with proper edge-colorings in which no color appears a large
number of times.

3.4. Hypergraphs. It could be interesting to extend our work to random edge-colorings of com-
plete d-uniform hypergraphs for d > 2.
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