
RAINBOW STACKINGS OF RANDOM EDGE-COLORINGS

NOGA ALON, COLIN DEFANT, AND NOAH KRAVITZ

Abstract. A rainbow stacking of r-edge-colorings χ1, . . . , χm of the complete graph on n vertices
is a way of superimposing χ1, . . . , χm so that no edges of the same color are superimposed on each
other. We determine a sharp threshold for r (as a function of m and n) governing the existence
and nonexistence of rainbow stackings of random r-edge-colorings χ1, . . . , χm.

1. Introduction

Let Sn denote the symmetric group of permutations of the set [n] := {1, . . . , n}. Let Kn denote

the complete graph with vertex set [n] and edge set
(
[n]
2

)
. Consider a set Cr of r colors, and

let χ1, . . . , χm :
(
[n]
2

)
→ Cr be edge-colorings of Kn. A rainbow stacking of χ1, . . . , χm is a tuple

σ = (σ1, . . . , σm) ∈ Sm
n such that for each edge e ∈

(
[n]
2

)
, the colors

χ1(σ
−1
1 (e)), . . . , χm(σ−1

m (e))

are all distinct (where σ−1
k ({i, j}) := {σ−1

k (i), σ−1
k (j)}). Less formally, a rainbow stacking is a way

of stacking copies of Kn with the colorings χ1, . . . , χm on top of each other so that no edge is
stacked above another edge of the same color (see Figure 1).

We are interested in the existence of rainbow stackings, especially when χ1, . . . , χm :
(
[n]
2

)
→ Cr

are independent uniformly random colorings. When m is fixed and n is growing, we wish to
determine which values of r (in terms of n) guarantee the existence or nonexistence of rainbow
stackings. In what follows, the phrase with high probability always means with probability tending

Figure 1. A rainbow stacking π ∈ S3
4 of 3 edge-colorings of K4, where there are

r = 3 total colors. The permutations in the tuple π are (in one-line notation)
π1 = 1234, π2 = 2431, and π3 = 1243.
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to 1 as n → ∞. Our main theorem determines a sharp threshold that governs whether rainbow
stackings exist with high probability or do not exist with high probability.

Using the first-moment method, one can quickly find a upper bound on r that guarantees the

nonexistence of a rainbow stacking with high probability, as follows. Let χ1, . . . , χm :
(
[n]
2

)
→ Cr be

independent uniformly random edge-colorings. For each σ ∈ Sm
n , let Zσ be the indicator function

for the event that σ is a rainbow stacking of χ1, . . . , χm, and let Z :=
∑

σ Zσ be the total number
of rainbow stackings of χ1, . . . , χm. Note that Z is always a multiple of n!; indeed, if (σ1, . . . , σm)
is a rainbow stacking of χ1, . . . , χm, then so is each tuple of the form (τσ1, . . . , τσm) for τ ∈ Sn.
For each σ ∈ Sm

n , the expectation of Zσ is exactly

En,m,r :=
m−1∏
i=1

(
1− i

r

)(n2)
.

Consequently,

(1) E[Z] = n!mEn,m,r ≤ n!m

(
m−1∏
i=1

e−i/r

)(n2)
= n! exp

(
(m− 1) log(n!)−

(
m

2

)(
n

2

)
· 1
r

)
.

If there is a function ω : N → R such that limn→∞ ω(n) = ∞ and

r ≤
m
(
n
2

)
2 log(n!)

− ω(n)

(log n)2
,

then

m

(
n

2

)
· 1
r
− 2 log(n!) → ∞,

so E[Z] = om(n!) as n → ∞. In this case, since the value of Z is always a nonnegative integer
multiple of n!, Markov’s Inequality implies that

P[Z > 0] = P[Z ≥ n!] ≤ E[Z]/n! = om(1),

so with high probability, there are no rainbow stackings of χ1, . . . , χm. This establishes the first
half of the following theorem; the proof of the second half is the main work of this paper.

Theorem 1.1. Fix an integer m ≥ 2 and a function ω : N → R such that limn→∞ ω(n) = ∞.

For each n ≥ 1, let χ1, . . . , χm :
(
[n]
2

)
→ Cr be independent uniformly random r-edge-colorings. If

r = r(n) ≥ 1 satisfies

(2) r ≤
m
(
n
2

)
2 log(n!)

− ω(n)

(log n)2
,

then with high probability, there does not exist a rainbow stacking of χ1, . . . , χm. If

(3) r ≥
m
(
n
2

)
2 log(n!)

+
2m− 1

3
+

m

2 log n
+

ω(n)

(log n)2
,

then with high probability, there exists a rainbow stacking of χ1, . . . , χm.

2. Existence of Rainbow Stackings

We will use the second-moment method to prove the second statement of Theorem 1.1. We
already computed the first moment of Z in Section 1. The second moment of Z is

E[Z2] = E

 ∑
σ∈Sm

n

Zσ

2 =
∑

σ,τ∈Sm
n

E[ZσZτ ].



3

For each k ∈ [m], define the new coloring χ′
k :
(
[n]
2

)
→ Cr by χ′

k(e) := χk(σ
−1
k (e)). Now, ZσZτ is

the indicator function of the event that for each e ∈
(
[n]
2

)
, the colors

χ′
1(e), . . . , χ

′
m(e)

are all distinct and the colors

χ′
1(σ1τ

−1
1 (e)), . . . , χ′

m(σmτ−1
m (e))

are all distinct. Hence, ZσZτ has the same distribution as ZidZ(σ1τ
−1
1 ,...,σmτ−1

m ), where we write

id = (id, . . . , id) for the tuple in Sm
n whose components are all equal to the identity permutation

id ∈ Sn. Consequently,

E[Z2] = n!m
∑

π∈Sm
n

E[ZidZπ].

We derive an explicit formula for each [ZidZπ] as follows.

For each e ∈
(
[n]
2

)
, let β1(e), . . . , βm(e) be m copies of e. Consider the m-partite graph Gπ with

vertex set V (Gπ) = {βk(e) : e ∈
(
[n]
2

)
, k ∈ [m]} in which βk(e) is adjacent to βk′(e

′) if and only
if k ̸= k′ and either e = e′ or πk(e) = πk′(e

′). The edge-colorings χ1, . . . , χm naturally induce a
vertex-coloring of Gπ, where βk(e) is assigned the color χk(e). Observe that id and π are both
rainbow stackings of χ1, . . . , χm if and only if the induced vertex-coloring of Gπ is proper. For
example, if π and χ1, χ2, χ3 are as depicted in Figure 1, then Gπ and its induced coloring are
shown in Figure 2. Although π is a rainbow stacking of χ1, χ2, χ3, the identity tuple id is not; this
is why there are pink edges in Figure 2 whose endpoints have the same color.

The quantity E[ZidZπ] is equal to r
−m(n2)Nπ, whereNπ is the number of proper r-vertex-colorings

of Gπ. Hence, we will study how Nπ depends on π.
The graph Gπ has m

(
n
2

)
vertices and

2

(
m

2

)(
n

2

)
−
∣∣∣∣{(k, k′, e) ∈ [m]× [m]×

(
[n]

2

)
: k < k′ and πk(e) = πk′(e)

}∣∣∣∣
edges. For each k < k′, we have∣∣∣∣{e ∈ ([n]2

)
: πk(e) = πk′(e)

}∣∣∣∣ = (fk,k′(π)2

)
+ tk,k′(π),

where fk,k′(π) and tk,k′(π) denote the number of fixed points and the number of 2-cycles (respec-

tively) of π−1
k πk′ (viewed as a permutation of [n]). Define the weight

wt(π) :=
∑

1≤k<k′≤m

wtk,k′(π),

where

wtk,k′(π) :=

(
fk,k′(π)

2

)
+ tk,k′(π).

Then the number of edges of Gπ is

2

(
m

2

)(
n

2

)
− wt(π).

The following lemma provides an upper bound on Nπ in terms of the weight wt(π).

Lemma 2.1. Let m ≥ 2 be an integer. If π ∈ Sm
n and r = r(n) satisfies n2/r3 = o(1), then

Nπ ≤ (1 + om(1))rm(
n
2)E2

n,m,re
wt(π)/(r−(2m−1)/3).
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Figure 2. The graph Gπ, where π = (1234, 2431, 1243) is as depicted in Figure 1.
Edges of Gπ of the form {βk(e), βk′(e)} are drawn in thin pink, while those of the
form {βk(e), βk′(e′)} with πk(e) = πk′(e

′) are drawn in thick navy. Edges of the
form {βk(e), βk′(e)} with πk(e) = πk′(e) are drawn with . The vertex-
coloring of Gπ is induced by the edge-colorings χ1, χ2, χ3 in Figure 1.

Proof. We use the entropy method. Let χ : V (Gπ) → Cr be a uniformly random proper r-coloring.
Then the entropy of χ is

H(χ) = log(Nπ),

where H(·) denotes the base-e entropy function. Let σ ∈ Sm be a permutation. We will reveal the
values of χ on the vertices βσ(1)(e), then the vertices βσ(2)(e), and so on until the vertices βσ(m)(e).

For each stage, let χσ
<k denote the partial coloring on the vertices βσ(k′)(e) for k

′ < k and e ∈
(
[n]
2

)
.

Then the chain rule and the subadditivity of entropy give that

H(χ) ≤
m∑
k=1

∑
e∈([n]

2 )

H(χ(βσ(k)(e)) | χσ
<k).

We will estimate the summands appearing on the right-hand side of this inequality individually.
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For each color c ∈ Cr, each vertex βℓ(e), and each partial proper coloring χ′ of the other vertices
of Gπ, we have

(4) P[χ(βℓ(e)) = c | χ and χ′ agree wherever χ′ is defined] ≤ 1/(r − 2m+ 2).

Indeed, because βℓ(e) has at most 2m − 2 neighbors, there are at most 2m − 2 forbidden values
of χ(βℓ(e)); since the remaining colors are equally likely, each one occurs with probability at most
1/(r − 2m+ 2).

Now, consider a single permutation σ and a single vertex βσ(k)(e). Let y = yσk (e) be such that
2(k− 1)− y is the number of distinct colors already assigned by χ to the neighbors of βσ(k)(e) that
are of the form βσ(k′)(e

′) with k′ < k. Then there are at most r − 2(k − 1) + y possibilities for
χ(βσ(k)(e)), and the entropy of χ(βσ(k)(e)) conditioned on this partial coloring is at most

log(r−2(k−1)+y) = log(r−2(k−1))+log

(
1 +

y

r − 2(k − 1)

)
≤ log(r−2(k−1))+

y

r − 2(k − 1)
.

Summing over all of the possibilities for the partial coloring χσ
<k, we find that

(5) H(χ(βσ(k)(e)) | χσ
<k) ≤ log(r − 2(k − 1)) + E[y]

1

r − 2(k − 1)
.

The next task is estimating E[y].
For each triple (ℓ, ℓ′, e) with ℓ < ℓ′ and e ∈

(
[n]
2

)
, let

x(ℓ, ℓ′, e) =

{
1 if πℓ(e) = πℓ′(e);

0 otherwise.

We record for future reference the identity

(6)
∑
ℓ<ℓ′

∑
e∈([n]

2 )

x(ℓ, ℓ′, e) = wt(π).

The neighbors of βσ(k)(e) already colored by χσ
<k are the vertices βσ(k′)(e) and βσ(k′)(π

−1
σ(k′)πσ(k)(e))

for k′ < k. Counting collisions, we find that the number of such vertices is

2(k − 1)−
∑
k′<k

x(σ(k), σ(k′), e).

The vertices βσ(k′)(e) for k′ < k form a clique in Gπ; likewise, the vertices βσ(k′)(π
−1
σ(k′)πσ(k)(e))

for k′ < k form a clique in Gπ. So the pairs of such vertices receiving the same color form
a matching, and the number of such pairs is at least y −

∑
k′<k x(σ(k), σ(k

′), e). Each pair of

vertices βσ(k′′)(e), βσ(k′)(π
−1
σ(k′)πσ(k)(e)), for k′, k′′ < k, receives the same color with probability at

most 1/(r − 2m+ 2) by (4), so

E[y] ≤
(k − 1−

∑
k′<k x(σ(k), σ(k

′), e))2

r − 2m+ 2
+
∑
k′<k

x(σ(k), σ(k′), e)

≤
(k − 1)(k − 1−

∑
k′<k x(σ(k), σ(k

′), e))

r − 2m+ 2
+
∑
k′<k

x(σ(k), σ(k′), e)

=
(k − 1)2

r − 2m+ 2
+

(
1− k − 1

r − 2m+ 2

)∑
k′<k

x(σ(k), σ(k′), e)

=
(k − 1)2

r − 2m+ 2
+

(
r − 2(k − 1)

r − k + 1
+Om(1/r2)

)∑
k′<k

x(σ(k), σ(k′), e).
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Substituting this into (5), summing over k and e, and averaging over σ ∈ Sm gives that

(7) H(χ) ≤ E
σ∈Sm

m∑
k=1

∑
e∈([n]

2 )

(
Ωk +Ψσ

k,e +Om(1/r3)
)
,

where

Ωk = log(r − 2(k − 1)) +
(k − 1)2

(r − 2m+ 2)(r − 2(k − 1))
and Ψσ

k,e =

∑
k′<k x(σ(k), σ(k

′), e)

r − k + 1
.

We compute that

Ωk = log(r − 2(k − 1)) +
(k − 1)2/r

r − 2(k − 1)
+Om(1/r3)

= log(r − 2(k − 1)) + log

(
1 +

(k − 1)2/r

r − 2(k − 1)

)
+Om(1/r3)

= log(r − 2(k − 1) + (k − 1)2/r) +Om(1/r3)

= log r + 2 log(1− (k − 1)/r) +Om(1/r3);

the crucial point is the identity r − 2(k − 1) + (k − 1)2/r = r(1− (k − 1)/r)2. Consequently,

E
σ∈Sm

m∑
k=1

∑
e∈([n]

2 )

Ωk = m

(
n

2

)
log r + 2

(
n

2

) m∑
k=1

log(1− (k − 1)/r) +Om(n2/r3)

= m

(
n

2

)
log r + 2 log(En,m,r) + om(1).

Next, using (6), the formula for the sum of the first m − 1 squares, and the hypothesis that
n2/r3 = o(1), we find that

E
σ∈Sm

m∑
k=1

∑
e∈([n]

2 )

Ψσ
k,e =

∑
ℓ<ℓ′

∑
e

x(ℓ, ℓ′, e) E
σ∈Sm

1

r −max{σ−1(ℓ), σ−1(ℓ′)}+ 1

= wt(π) E
σ∈Sm

1

r −max{σ−1(1), σ−1(2)}+ 1

= wt(π)
m∑
j=2

(j − 1)/
(
m
2

)
r − j + 1

= wt(π)

1

r
+

m∑
j=2

(j − 1)2/
(
m
2

)
r2

+Om(1/r3)


= wt(π)

(
1

r
+

2m− 1

3r2

)
+Om(n2/r3)

=
wt(π)

r − (2m− 1)/3
+ om(1).

Substituting these bounds back into (7), we conclude that

Nπ ≤ (1 + om(1))rm(
n
2)E2

n,m,re
wt(π)/(r−(2m−1)/3),

as desired. □
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For convenience, let

r̂ = r − (2m− 1)/3.

If r satisfies (3), then it follows immediately from Lemma 2.1 that

(8) E[ZidZπ] ≤ (1 + om(1))E2
n,m,re

wt(π)/r̂

for each π ∈ Sm
n , so

(9) E[Z2] ≤ (1 + om(1))E2
n,m,rn!

m
∑

π∈Sm
n

ewt(π)/r̂.

Our goal is to obtain an upper bound on the sum on the right-hand side of (9). The following
proposition captures the central estimate of the proof.

Proposition 2.2. If r satisfies (3), then∑
π∈Sm

n

ewt(π)/r̂ = n!m(1 + o(1)).

Proposition 2.2 tells us that if r satisfies (3), then

E[Z2] = (1 + om(1))(En,m,rn!
m)2 = (1 + om(1))E[Z]2

(using (1) for the second equality), so Var(Z) = om(E[Z]). Then Chebyshev’s Inequality gives that

P[Z = 0] = om(1),

which proves the second part of Theorem 1.1. Thus, the remainder of this section will be devoted
to proving Proposition 2.2. Assume in what follows that r satisfies (3) or, equivalently, that

(10) r̂ ≥
m
(
n
2

)
2 log(n!)

+
m

2 log n
+

ω(n)

(log n)2
.

Each of the n!m summands on the left-hand side of the equation in Proposition 2.2 is at least 1, so
we must show that very few summands can be significantly larger than 1. To accomplish this, we
will split the sum according to the values of fk,k′(π) and tk,k′(π).

Let L(π) be the sequence obtained by listing the pairs (k, k′) ∈ [m] × [m] with k < k′ in
decreasing order of wtk,k′(π) (breaking ties arbitrarily). Now, let us construct a subsequence
p⃗(π) = (p1(π), . . . , pm−1(π)) of L(π) recursively as follows. Let p1(π) be the first pair in L(π).
For 2 ≤ i ≤ m − 1, let pi(π) be the first pair in L(π) such that pi(π) ̸∈ {p1(π), . . . , pi−1(π)} and
the (undirected) graph on the vertex set [m] with the edge set {p1(π), . . . , pi(π)} is acyclic (where
we are identifying the ordered pair (k, k′) with the unordered pair {k, k′}). In other words, p⃗(π) is
the lexicographically first subsequence of L(π) whose entries form the edges of a spanning tree of
the complete graph on [m]. Notice that p⃗(π) is uniquely determined by L(π).

Writing pℓ(π) = (kℓ, k
′
ℓ), we can use standard rearrangement inequalities to find that

wt(π) ≤
m−1∑
ℓ=1

ℓ

[(
fℓ(π)

2

)
+ tℓ(π)

]
,

where fℓ(π) := fkℓ,k′ℓ(π) and tℓ(π) := tkℓ,k′ℓ(π). Note that the number of permutations in Sn with

f fixed points and t 2-cycles is at most(
n

f

)(
n− f

2t

)
(2t− 1)!!(n− f − 2t)! =

n!

f !2tt!
.
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Given a sequence L and tuples (f1, . . . , fm−1) and (t1, . . . , tm−1), the number of tuples π ∈ Sm
n

satisfying L(π) = L and fℓ(π) = fℓ and tℓ(π) = tℓ for all 1 ≤ ℓ ≤ m− 1 is at most

n!m
m−1∏
ℓ=1

1

fℓ!2tℓtℓ!
;

here, we are crucially using the fact that the entries of p⃗(π) form the edge set of an acyclic graph.
Let Υ denote the set of tuples (f1, . . . , fm−1, t1, . . . , tm−1) of integers satisfying the following

conditions:

• 0 ≤ f1, . . . , fm−1 ≤ n;
• 0 ≤ t1, . . . , tm−1 ≤ n/2;

•
(
f1
2

)
+ t1 ≥ · · · ≥

(
fm−1

2

)
+ tm−1.

Let

Υ≤ := {(f1, . . . , fm−1, t1, . . . , tm−1) ∈ Υ :
(
f1
2

)
+ t1 ≤

(
logn
2

)
}

and

Υ≥ := {(f1, . . . , fm−1, t1, . . . , tm−1) ∈ Υ :
(
f1
2

)
+ t1 ≥

(
logn
2

)
}.

(We remark that in these definitions, the particular choice of
(
logn
2

)
for the cutoff is not important.)

For each π ∈ Sm
n , the tuple (f1(π), . . . , fm−1(π), t1(π), . . . , tm−1(π)) belongs to Υ≤ or Υ≥. The

tuples π with (f1(π), . . . , fm−1(π), t1(π), . . . , tm−1(π)) ∈ Υ≤ will end up contributing the main
term of n!m(1 + o(1)) in Proposition 2.2, while the other tuples will end up contributing only to
the o(n!m) error term.

Let us begin with Υ≤. If π ∈ Sm
n is such that (f1(π), . . . , fm−1(π), t1(π), . . . , tm−1(π)) ∈ Υ≤,

then

wt(π) ≤
(
m

2

)(
log n

2

)
.

Since there are at most n!m such tuples π, the sum of ewt(π)/r̂ over these tuples is at most

n!m exp

((
m

2

)(
log n

2

)
1

r̂

)
≤ n!m exp

(
Om((log n)3/n)

)
= n!m(1 + o(1)),

where we have used (3).
We now turn to Υ≥. Since there are at most

(
m
2

)
! possibilities for the sequence L(π), the sum of

ewt(π)/r̂ over all tuples π ∈ Sm
n corresponding to a given tuple T = (f1, . . . , fm−1, t1, . . . , tm−1) ∈ Υ≥

is at most
(
m
2

)
!n!mX(T ), where

(11) X(T ) :=
m−1∏
ℓ=1

(
1

fℓ!2tℓtℓ!
exp

([(
fℓ
2

)
+ tℓ

]
ℓ

r̂

))
.

We wish to find a uniform upper bound on X(T ) as T ranges over the elements of Υ≥.

We first require a technical lemma. Define g, h : R≥1 → R≥0 by g(x) = x(x−1)
2 and h(x) = 1+

√
1+8x
2

so that g(h(x)) = x. Let Γ denote the gamma function.

Lemma 2.3. If t and K are integers such that 0 ≤ t ≤ K, then

Γ(h(K − t) + 1)2tt! ≥ Γ(h(K) + 1).

Proof. It suffices to prove that Γ(h(K − (t − 1)) + 1)2t−1(t − 1)! ≤ Γ(h(K − t) + 1)2tt! whenever
1 ≤ t ≤ K. The identity g(h(x)) = x implies that h′(x) = 1

g′(h(x)) = 2
2h(x)−1 . Because h′′(x) < 0

for all x > 1, we have

(12) h(x+ 1) ≤ h(x) + h′(x) = h(x) +
2

2h(x)− 1
.
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It is routine to verify that

(13)
Γ(z)

Γ(z + 2
2z−1)

≥ 1

2

for every real number z ≥ 2. Assume 1 ≤ t ≤ K. Since h(K − t) + 1 ≥ h(0) + 1 = 2, we can set
x = K − t in (12) and set z = h(K − t) + 1 in (13) to find that

Γ(h(K − t) + 1)

Γ(h(K − t+ 1) + 1)
≥ Γ(h(K − t) + 1)

Γ(h(K − t) + 1 + 2
2h(K−t)−1)

≥ 1

2
.

Therefore,

Γ(h(K − t) + 1)2tt!

Γ(h(K − (t− 1)) + 1)2t−1(t− 1)!
= 2t

Γ(h(K − t) + 1)

Γ(h(K − t+ 1) + 1)
≥ t ≥ 1,

as desired. □

An immediate consequence of Lemma 2.3 is that for each integer K ≥ 0, the maximum value of

1

f !2tt!
exp

([(
f

2

)
+ t

]
ℓ

r̂

)
,

over all f, t ∈ Z≥0 satisfying
(
f
2

)
+ t = K, is at most

1

Γ(h(K) + 1)
exp

((
h(K)

2

)
ℓ

r̂

)
.

Applying this estimate to each multiplicand in the definition of X(T ), we find that

max
T∈Υ≥

X(T ) ≤ max
n≥f1≥···≥fm−1≥0,

f1≥logn

m−1∏
ℓ=1

1

Γ(fℓ + 1)
exp

((
fℓ
2

)
· ℓ
r̂

)
= max

f1∈[logn,n]
exp(φ1/r̂(f1)) max

f2∈[0,f1]
exp(φ2/r̂(f2)) · · · max

fm−1∈[0,fm−2]
exp(φ(m−1)/r̂(fm−1)),(14)

where the fℓ’s run over intervals of real numbers and we have set

φq(f) := − log Γ(f + 1) + q

(
f

2

)
.

We will now study the behavior of the functions φq.
Since the logarithm of the gamma function is convex (by the Bohr–Mollerup Theorem; see, e.g.,

[3]) and the function f 7→
(
f
2

)
is concave, the function φq is also concave for all q ≥ 0. In particular,

the maximum value of φq on an interval is always assumed at one of the endpoints of the interval.
So the maximum over fm−1 is achieved when either fm−1 = 0 or fm−1 = fm−2. In the former case,
we simply remove this term (since φq(0) = 0 for all q). In the latter case, we “incorporate” the
fm−1 term into the preceding fm−2 term by noting that

φ(m−2)/r̂(fm−2) + φ(m−1)/r̂(fm−2) = 2φ(m−3/2)/r̂(fm−2).

We then obtain the same dichotomy for the maximum over fm−2, and we continue in this manner
until we reach f1, where the maximum occurs when either f1 = n or f1 = log n. Thus, there is
some 1 ≤ s ≤ m− 1 such that

max
T∈Υ≥

X(T ) ≤ max

{
exp

(
s∑

ℓ=1

φℓ/r̂(log n)

)
, exp

(
s∑

ℓ=1

φℓ/r̂(n)

)}
.
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Then the sum of ewt(π)/r̂ over all π ∈ Sm
n with (f1(π), . . . , fm−1(π), t1(π), . . . , tm−1(π)) ∈ Υ≥ is

thus at most (
m

2

)
!(n2/2)m−1n!mmax

{
exp

(
s∑

ℓ=1

φℓ/r̂(log n)

)
, exp

(
s∑

ℓ=1

φℓ/r̂(n)

)}
,

so to prove Proposition 2.2, it suffices to show that

(m− 1) log(n2/2) + max

{
s∑

ℓ=1

φℓ/r̂(log n),
s∑

ℓ=1

φℓ/r̂(n)

}
→ −∞

as n → ∞. We first check that

(m− 1) log(n2/2) +
s∑

ℓ=1

φℓ/r̂(log n) = (m− 1) log(n2/2)− s log(Γ(log n+ 1))+

(
s+ 1

2

)(
log n

2

)
· 1
r̂

= −s log n log logn+Om(log n)

tends to −∞ (with room to spare in the asymptotic condition on r̂ in (10)). We next consider

(15) (m− 1) log(n2/2) +
s∑

ℓ=1

φℓ/r̂(n) = (m− 1) log(n2/2)− s log(n!) +

(
s+ 1

2

)(
n

2

)
· 1
r̂
.

If s < m− 1, then the right-hand side of (15) is −(1+ o(1))s(1− (s+1)/m)n log n, which certainly
tends to −∞. If s = m− 1, then the right-hand side of (15) becomes

(m− 1)

[
log(n2/2)− log(n!) +

m

2

(
n

2

)
· 1
r̂

]
,

which tends to−∞ by (10). This finishes the proof of Proposition 2.2 and hence also of Theorem 1.1.

3. Further Remarks

3.1. Comments on the proof. When m = 2, our proof of Theorem 1.1 simplifies considerably
but is still nontrivial. In this case, each graph Gπ is a disjoint union of edges (corresponding to
edges fixed by π1π

−1
2 ) and even-length cycles. One can then bound Nπ using the known formulas

for the chromatic polynomials of cycles in lieu of Lemma 2.1. Moreover, the proof of Proposition 2.2
simplifies because the list L(π) consists of the single element (1, 2) and it is not necessary to extract
the subsequence p⃗(π).

An examination of our proofs shows that Theorem 1.1 continues to hold in the regime where m
grows reasonably slowly with n. To optimize this dependence (which we have not attempted), one

should tweak some of the parameters appearing in our proof (for instance, the cutoff
(
logn
2

)
in the

definitions of Υ≤,Υ≥); we leave the details to the curious reader.

3.2. Sharp thresholds. Theorem 1.1 shows that the existence problem for rainbow stackings
exhibits a sharp threshold, in the sense that the transition from having no rainbow stackings with
high probability to having rainbow stackings with high probability occurs within an interval of
length roughly (2m − 1)/3. It is natural to ask if the transition is even sharper; in particular, we
pose the following problem.

Problem 3.1. Determine whether or not there exists a function r0 : N → R such that the following

holds. For each n ≥ 1, let χ1, . . . , χm :
(
[n]
2

)
→ Cr be independent uniformly random r-edge-colorings.

If r = r(n) satisfies r(n) < r0(n), then with high probability, there does not exist a rainbow stacking
of χ1, . . . , χm. If r = r(n) satisfies r(n) > r0(n), then with high probability, there exists a rainbow
stacking of χ1, . . . , χm.
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In the past, the second-moment method has often been effective for obtaining analogous sharp
results. A well-known example is the proof of the 2-point concentration of the independence number
of the Erdős–Rényi random graphG(n, 1/2) (see, e.g., [2,4,5]). Since, however, the expected value of
this quantity is only O(log n), such a sharp concentration is less dramatic than the sharp transition
for rainbow stackings, where the critical value of r is on the order of n/ log n.

3.3. Rainbow stackings of deterministic edge-colorings. It seems interesting to find sufficient
(deterministic) conditions for the existence of rainbow stackings, even when m = 2. Proper edge-
colorings provide a natural starting point. We note that not every pair of proper edge-colorings
has a rainbow stacking.

Proposition 3.2. If n = 2k−2 for some integer k ≥ 2, then there is a pair of proper edge-colorings
of Kn with no rainbow stackings.

Proof. We provide an explicit construction of such a pair of colorings, based on a construction
described in [1] (in the context of transversals in Latin squares). Let Fk

2 denote the elementary
abelian 2-group of rank k. Let u1, v1, u2, v2 ∈ Fk

2 be such that u1 ̸= v1, u2 ̸= v2, and u1+v1 = u2+v2.
For each i ∈ {1, 2}, let us identify the set Fk

2 \ {ui, vi} with [n] arbitrarily and define the coloring

χi :
(Fk

2\{ui,vi}
2

)
→ Fk

2 by χi({x, y}) := x+ y. It is clear that χ1, χ2 are proper edge-colorings.
We will show that the colorings χ1, χ2 do not admit a rainbow stacking. Consider a bijection

σ : Fk
2 \ {u1, v1} → Fk

2 \ {u2, v2}. We claim that there are distinct elements x, y ∈ Fk
2 \ {u1, v1}

such that x + σ(x) = y + σ(y). Indeed, if this were not the case, then the quantities z + σ(z) for
z ∈ Fk

2\{u1, v1} would all be distinct. Then, since
∑

z∈Fk
2
z = 0, the quantity

∑
z∈Fk

2\{u1,v1}(z+σ(z))

would be the sum of two distinct elements of Fk
2, so it would be nonzero. At the same time, our

choice of u1, v1, u2, v2 ensures that∑
z∈Fk

2\{u1,v1}

(z + σ(z)) = −(u1 + v1)− (u2 + v2) = 0.

This contradiction establishes the claim.
Take x, y as in the claim. The fact that χ1({x, y}) = x+ y = σ(x) + σ(y) = χ2(σ({x, y})) shows

that σ is not a rainbow stacking. □

We remark that the Cayley sum-graph construction in the proof of Proposition 3.2 does not work
when n is sufficiently large and n ̸= 2k − 2. Indeed, in this case, Müyesser and Pokrovskiy showed
[7, Theorem 1.4] that for any n-element subsets A and B of Fk

2, there exists a bijection σ : A → B
such that the sums of the form a+ σ(a) for a ∈ A are all distinct.

Motivated by these observations and by a conjecture of Ryser about the existence of transversals
in Latin squares of odd order (see [6, 8]), we ask the following question.

Question 3.3. Is it true that when n is odd, every pair of proper edge-colorings of Kn admits a
rainbow stacking?

We remark that the answer to Question 3.3 is “yes” when n = 3 (by inspection) and when
n = 5 (by computer search). It seems that a general affirmative resolution of this question would
be difficult; it may be easier to start with proper edge-colorings in which no color appears a large
number of times.

3.4. Hypergraphs. It could be interesting to extend our work to random edge-colorings of com-
plete d-uniform hypergraphs for d > 2.
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