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Abstract
We consider the problem of partitioning the vertices of a graph with maximum degree

d into k classes V1, . . . , Vk of almost equal sizes in a way that minimizes the number of
pairs (i, j) such that there is an edge between Vi and Vj . We show that there is always
such a partition with O(k2−2/d) adjacent pairs and this bound is tight. This problem is
related to questions about the depth of certain graph embeddings, which have been used
in the study of the complexity of subgraph and constraint satisfaction problems.

1 Introduction

If we randomly partition the vertices of a large graph G into a small number k of classes V1,
. . . , Vk of roughly equal sizes, then we expect that every pair (Vi, Vj) of classes is adjacent
(meaning that there is at least one edge with one endpoint in Vi and the other in Vj). This is
true even if the graph G is sparse, for example, if it is a d-regular graph for any fixed positive
d. The first question we investigate is whether it is always possible to partition the vertices
in a balanced way into k classes such that the number of pairs of classes that are adjacent
is significantly less than the total number

(
k
2

)
of all pairs. Of course, no such partition is

possible if G is a clique, thus this question makes sense only for sparser classes of graphs. We
show that for graphs of maximum degree d, the answer is about k2−2/d in a fairly tight sense:
every sufficiently large graph with maximum degree d has a partition where only O(k2−2/d)
pairs are used, while there are graphs for which Ω(k2−2/d) pairs are needed. The precise
statement of the upper bound is the following:

Theorem 1.1. For d ≥ 2, there is a constant cd > 0 such that for every k > 0, d ≥ 2, and
d-regular graph F with n ≥ n0(k) vertices, the vertices of F can be partitioned into k classes
V1, . . . , Vk, each of size at most dn/ke, such that there are at most cd · k2−2/d pairs (i, j)
with i 6= j for which Vi and Vj are adjacent.
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Theorem 1.1 is somewhat surprising: it says that every d-regular graph (even a random
d-regular graph) is structured at a certain large scale. The actual statement we prove is
stronger than Theorem 1.1: for every k and d, we give an explicit set Sk,d of O(k2−2/d) pairs
such that every sufficiently large d-regular graph F has a partition with pattern Sk (meaning
that Sk,d describes which pairs of classes can be adjacent). The construction of Sk,d is similar
to the construction of universal graphs by Alon and Capalbo [1].

We prove the lower bound by showing that with high probability, a random d-regular
graph needs Ω(k2−2/d) pairs. We say that an n-vertex random graph satisfies a property
asymptotically almost surely (a.a.s for short), if the probability it satisfies it tends to 1 as n
tends to infinity.

Theorem 1.2. For every fixed d > 2 there is a constant cd > 0 such that for every k > k0(d),
and even n > n0(k), the following holds. Let F be a random d-regular graph on n vertices.
Then a.a.s, for every partition V1, . . . , Vk of the vertices of V into k classes with |Vi| ≤ 10n/k
for every 1 ≤ i ≤ k, there are at least cd · k2−2/d pairs (i, j) such that Vi and Vj are adjacent.

We also prove a variant of Theorem 1.2 where we allow at most n/k1−ε vertices in each
class instead of O(n/k), and we show that Ω(k2−2/d−3ε) pairs are required, even after remov-
ing any set of εn edges of F .

Another way of looking at the partitioning problems treated in Theorems 1.1 and 1.2 is
via homomorphisms. A homomorphism from a graph F to a graph H is a (not necessarily
injective) mapping φ : V (F ) → V (H) such that if uv ∈ E(H), then φ(u)φ(v) ∈ E(F ). The
partitions in Theorems 1.1 and 1.2 can be interpreted as a homomorphism from F to some
k-vertex graph H having a certain number of edges (and a loop at each vertex) and a balance
requirement bounding the number of vertices in F that can be mapped to a vertex of H. It
will be useful to keep this interpretation in mind, especially since we use techniques from [1]
stated in terms of homomorphisms.

Embeddings of bounded depth. Our understanding of sparse partitions can be used
to resolve problems arising in a different context. Recall that F is a minor of G if there
is a mapping φ assigning disjoint connected subsets of G to each vertex of F such that for
every edge uv of F there is an edge of G intersecting both φ(u) and φ(v). In [11], this notion
was generalized in the following way: in an embedding of depth d we do not require the sets
φ(u) to be disjoint, but we require that each vertex of G appears in the image of at most d
vertices of F . For every edge uv of F , we require that φ(u) and φ(v) touch, that is, either
they intersect or there is an edge between them. Clearly, F has an embedding of depth 1
into G if and only if F is a minor of G. The following result of [11] shows that, intuitively,
larger treewidth1 of G means that it has better embedding power:

Theorem 1.3 ([11]). There is a function m0(G) and a universal constant c such that for
every k ≥ 1, if G is a graph with treewidth at least k and H is a graph with |E(H)| =

1The exact definition of treewidth is not essential for the current paper, it is sufficient to know that
treewidth is a graph measure and many algorithmic problems become easier on graphs of small treewidth, see
e.g., [5, 4].
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m ≥ m0(G) and no isolated vertices, then H has an embedding into G with depth at most
dcm log k/ke.

Note that |V (H)|/|V (G)| is a trivial lower bound on the depth of a embedding. Since
there are graphs G where treewidth is linear in |V (G)| and if H has no isolated vertices than
m = |E(H)| ≥ |V (H)|/2, the dcm log k/ke bound in the statement of Theorem 1.3 cannot
be improved to o(m/k). Thus Theorem 1.3 is tight, up to a O(log k) factor.

Theorem 1.3 was used in [11] as an essential tool to prove complexity results for constraint
satisfaction and subgraphs problems (see later in the introduction). In the hope of making
these results tighter, it was raised as an open question whether Theorem 1.3 remains true
if the log k factor is removed from the bound on the depth. We answer this question in the
negative: the bound m log k/k in Theorem 1.3 is tight (up to constant factors).

Theorem 1.4. There is an infinite family G of graphs and a universal constant c, such that
for every G ∈ G there exist arbitrarily large graphs H (without isolated vertices) such that
if m = |E(H)| and k is the treewidth of G, then every embedding of H into G has depth at
least cm log k/k.

As the log k factor cannot be removed from Theorem 1.3 in general, we investigate families
of graphs where this is possible and Theorem 1.3 holds in the strongest possible way. Let us
say that a family G of graphs has the tight embedding property if Theorem 1.3 is true with a
dcm/|V (G)|e bound on the depth when G is restricted to the class G. It can be shown that
for such a class, the treewidth of every graph in the family has to be linear in its number
of vertices. For example, line graphs of cliques form such a class: the line graph of the
k-clique has O(k2) vertices, treewidth Θ(k2), and it is shown in [11] that this class has the
tight embedding property. Notice that the average degree of the line graph of the k-clique is
Θ(k), i.e., square root of the number of vertices. Are there classes of graphs with the tight
embedding property having significantly smaller average degree? We show that the average
degree has to be polynomial in the number of vertices, but the exponent can be arbitrary
small.

Theorem 1.5. 1. If G has the tight embedding property, then there is a δ > 0 such that
every G ∈ G has average degree Ω(|V (G)|δ).

2. For every δ > 0, there is a class Gδ having the tight embedding property such that for
every G ∈ Gδ, the average degree of G is O(|V (G)|δ).

Complexity implications. The main goal of [11] was to understand the complexity of
constraint satisfaction problems in terms of the treewidth of the primal graph. Rather than
defining constraint satisfaction problems and going through the relevant background, we can
discuss the problem in an essentially equivalent way in terms of (colored) subgraph problems.
Given two graphs G and H, the Subgraph Isomorphism problem asks if G is a subgraph of
H. In the colored (or more precisely, partitioned) version of the problem, the input contains
a (not necessarily proper) coloring of the vertices of H, where the set of colors is the same
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as the set of vertices of G, and we ask if G appears as a subgraph of H in such a way that
every vertex v of G is mapped to a vertex with color v. In other words, the vertices of H are
partitioned into |V (G)| classes and we want to find a subgraph isomorphic to G such that
the i-th vertex of G appears in the i-th class.

If G has k vertices and H has n vertices, then Colored Subgraph Isomorphism can be
solved in time nO(k) by brute force. If G has small treewidth, then a more efficient solution
is possible: for every fixed G, if G has treewidth at most w, then there is an nO(w) time
algorithm for the problem [8, 2]. The main result of [11] shows that this is essentially best
possible in the sense that there is no class of graphs where significant improvement is possible
in the exponent. The result is proved under the complexity-theoretic assumption that there
is no 2o(n) time algorithm for n-variable 3SAT, which is also known as the Exponential Time
Hypothesis (ETH), see [10].

Theorem 1.6 ([11]). If there is a class G of graphs with unbounded treewidth and an arbitrary
function f such that Colored Subgraph Isomorphism with the smaller graph G restricted to
being in G can be solved in time f(G)no(w/ logw) (where w is the treewidth of G), then ETH
fails.

It is conjectured in [11] that Theorem 1.6 holds even without the logw factor in the
exponent.

Conjecture 1.7. There is no class G of graphs with unbounded treewidth and no function
f such that Colored Subgraph Isomorphism with the smaller graph G restricted to being in G

can be solved in time f(G)no(w) (where w is the treewidth of G).

Conjecture 1.7 could be proved by showing that the log k factor in Theorem 1.3 is not
needed. Unfortunately, by Theorem 1.4, this is not true. Therefore, the techniques presented
in [11] are not sufficient to prove the conjecture. This does not invalidate the conjecture, but
shows that if it is true, then substantially different techniques are needed for its proof.

As a special case of Conjecture 1.7, we would like to find classes of graphs where Colored
Subgraph Isomorphism is “as hard as possible”: classes for which there is no significantly
better algorithm than trying all possibilities in nO(|V (G)|) time For example, it is true for
the class of cliques: [6, 7] showed that there is no f(k)no(k) time algorithm for the k-Clique
problem, unless ETH fails. Moreover, as discussed in [11], if a class G has the tight embedding
property, then Conjecture 1.7 holds for G (assuming ETH).

For the uncolored version of Subgraph Isomorphism, the hardness proof requires the
additional condition that every graph is a core. Recall that a graph G is a core if every
homomorphism from G to G is surjective, i.e., there is no homomorphism from G to a proper
induced subgraph of G.

Theorem 1.8 ([11]). Assume that ETH is true, let G be a class of graphs having the tight
embedding property, and let f be an arbitrary function.

(1) There is no f(G)no(|V (G)|) time algorithm for Colored Subgraph Isomorphism with the
smaller graph G restricted to being in G,
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(2) If every G ∈ G is a core, then the same is true for (uncolored) Subgraph Isomorphism.

Theorem 1.5(2) provide examples of relatively sparse classes that are “as hard as possible.”

Theorem 1.9. If there is a δ > 0 and a function f(G) such that (Colored) Subgraph Isomor-
phism can be solved in time f(G)no(|V (G)|) when restricted to graphs G with average degree
at most |V (G)|δ, then ETH fails.

To prove Theorem 1.9 for (uncolored) Subgraph Isomorphism problem, we need some
additional arguments: Theorem 1.8(2) applies only to graph classes that contain only cores,
i.e., graphs that have no proper endomorphisms. By slightly modifying the construction of
Theorem 1.5(2), we can ensure that the class Gδ contains only cores, and the complexity
result for (uncolored) Subgraph Isomorphism follows.

Theorem 1.9 leaves open the question whether there are really sparse (i.e., constant
maximum degree) graph classes that are “as hard as possible” to find. As proved in The-
orem 1.5(1), a graph class with constant average degree cannot have the tight embedding
property, thus this approach cannot be used to construct sparse classes that are hard to find.
Note that if a graph has a linear number of edges and treewidth is linear in the number of
vertices, then it contains a large expander (cf. [9]). Thus it seems that the main question
that lies at the heart of Conjecture 1.7 is whether it is possible to find a given k-vertex sparse
expander in an n-vertex graph in time no(k).

2 Upper Bound

In this section, we prove the existence of the partitions required by Theorem 1.1. The
construction is similar to the sparse universal graph construction of [1]. Following [1], it will
be convenient to consider the partitions as homomorphisms. We say that a homomorphism
φ from F to H is ε-balanced if (1− ε)|V (F )|/|V (H)| ≤ |φ−1(v)| ≤ (1 + ε)|V (F )|/|V (H)| for
every v ∈ V (H). Our first result proves the existence of an ε-balanced homomorphism to a
specific graph:

Theorem 2.1. Let T be an arbitrary regular connected graph and let ε > 0. Let H be the
graph whose vertex set is V (T )d and two vertices are connected if and only if in at least two
coordinates they are within distance 4 in T . Then every d-regular graph F with n ≥ n0(T, d, ε)
vertices has an ε-balanced homomorphism f into H.

Note that in particular every vertex of H is adjacent to itself, i.e., has a loop. Assuming
that d and the degree of the regular graph T are fixed constants, every vertex of T has degree
O(|V (T )|d−2). As |V (H)| = |V (T )|d, this means that H has O(|V (H)|2−2/d) edges, which is
precisely the right exponent for Theorem 1.1.

The proof of Theorem 2.1 is similar to that of the main result of [1]. In particular, we
need the following tool. Let σ : V (F ) → {1, 2, . . . , |V (F )|} be an ordering of the vertices
of F . The bandwidth of σ is the maximum length of an edge in this ordering, that is,
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maxuv∈E(F ) |σ(u)−σ(v)|. The bandwidth of a graph F is the smallest bandwidth taken over
all orderings σ of V (F ).

Theorem 2.2 ([1]). Let d ≥ 2 be an integer and let F be an arbitrary graph of maximum
degree at most d. Then there are d spanning subgraphs F1, . . . , Fd, each of bandwidth at
most 4, such that every edge of F lies in exactly two graphs Fi.

Proof (of Theorem 2.1). Let F1, . . . , Fd be a decomposition of F as in Theorem 2.2, and let
σi be an ordering of Fi having bandwidth at most 4. Independently for i = 1, . . . , d, let us
choose a random walk wi : N → V (T ) in the r-regular graph T : we fix an arbitrary start
vertex for each walk, and in each step, the probability of staying at the same vertex or moving
to a particular neighbor is 1/(r + 1). It is well known that this random walk converges to a
uniform distribution, i.e., the probability of every vertex is 1/q, where q = |V (T )|. Therefore,
we can fix a constant t0 depending on |T |, ε, and d such that no matter where we start the
random walk, every vertex has probability between (1 − ε

2)1/d/q and (1 + ε
2)1/d/q after any

number t ≥ t0 of steps.
We define the homomorphism φ by setting φ(v) = (w1(σ1(v)), . . . , wd(σd(v))). To see

that it is a homomorphism, consider an edge uv ∈ E(F ). By assumption, there are two
indices i1, i2 such that uv appears in Fi1 , Fi2 . This means that |σi1(u) − σi1(v)| ≤ 4 and
hence the distance of wi1(σi1(u)) and wi1(σi1(v)) is at most 4 in T . Similarly, the distance
of wi2(σi2(u)) and wi2(σi2(v)) is at most 4 in T . In other words, there are at least two
coordinates where the distance of φ(u) and φ(v) is at most 4 in T , implying that φ(u) and
φ(v) are adjacent in H.

Finally, we show that φ is ε-balanced with high probability: for every δ > 0, the proba-
bility that φ is not ε-balanced is at most δ, if n is sufficiently large. For every 0 ≤ i ≤ d and
a = (a1, . . . , ai) ∈ V (T )i, let Va = {(a1, . . . , ai, bi+1, . . . , bd) | bi+1, . . . , bd ∈ V (T )}. We claim
that with probability at least 1− δ, for every 0 ≤ i ≤ d and a ∈ V (T )i, we have

(1− ε)i/dn/qi ≤ |φ−1(Va)| ≤ (1 + ε)i/dn/qi.

We say that Va is bad if it does not satisfy this requirement. For i = d, the claim shows that
(1− ε)n/|V (H)| ≤ |φ−1(a)| ≤ (1 + ε)n/|V (H)| for every a ∈ V (H), i.e., φ is ε-balanced. If 0
is the empty vector with zero components, then V0 = V (T )d and |φ−1(V0)| = n, hence V0 is
not bad.

For every a = (a1, . . . , ai), let us define a′ = (a1, . . . , ai−1) (for i = 1, vector a′ has zero
components). We show that if n is sufficiently large, then the conditional probability that Va

is bad assuming that Va′ is not bad is at most δ/qd (for i = 1, this is just the probability that
Va is bad). If some Va is bad, then there has to be an a such that Va is bad and Va′ is not
bad. The probability that Va is bad and Va′ is not bad is at most the conditional probability
that we bounded by δ/qd. Therefore, by a union bound, this shows that the probability that
at least one bad event happens is at most δ.

Observe that whether Va′ is bad depends only on the walks w1, . . . , wi−1, while whether
Va is bad depends only on the walks w1, . . . , wi. We show that fixing the walks w1, . . . , wi−1

such that Va′ is not bad, the probability that walk wi makes Va bad is at most δ/qd.
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Let us enumerate the vertices v of φ−1(Va′) by increasing value of σi(v). For 1 ≤ s ≤ t0,
let Xs = x1, x2, . . . be the subsequence of this enumeration containing every t0-th vertex
in this enumeration, starting with the s-th. As xj ∈ φ−1(Va′) for every j, we know that
wi′(σi′(xj)) = ai′ for every 1 ≤ i′ < i. Thus xj ∈ φ−1(Va) if and only if wi(σi(xj)) = ai also
holds. Since σi(xj) ≥ σi(xj−1)+t0, the definition of t0 ensures that the conditional probability
P (wi(σi(xj)) = a | wi(σi(xj−1)) = b) is between (1− ε

2)1/d/q and (1+ ε
2)1/d/q for every a, b ∈

V (T ). Let Y be an arbitrary subsequence y1, y2, . . . , y|Y | of Xs. The probability of the event
that wi(σi(y)) = ai for every y ∈ Y can be bounded from above by the product of |Y | such
conditional probabilities. Therefore, the probability that |Xs ∩ φ−1(Va)| ≥ (1 + ε)1/d|Xs|/q
holds is not larger than the probability that the binomial random variable B(|Xs|, (1 +
ε
2)1/d/q) is larger than (1 + ε)1/d|Xs|/q. From standard bounds, we know that if n (and
hence |Xs|) is sufficiently large, then this probability can be bounded by an arbitrary small
constant. Thus we can assume that this probability is at most δ/(2t0qd). Therefore, by the
union bound, the upper bound on |Xs ∩φ−1(Va)| holds for every 1 ≤ s ≤ t0 with probability
at least 1− δ/(2qd), hence we have

|φ−1(Va)| ≤ (1 + ε)1/d|φ−1(Va′)|/q ≤ (1 + ε)i/d|V (F )|/qi,

where the second inequality uses the assumption that Va′ is not bad. Similarly, we can show
that the lower bound on |φ−1(Va)| holds with probability at least 1 − δ/(2qd), hence the
conditional probability that Va is bad assuming Va′ is not bad is at most δ/qd.

To obtain the result stated in Theorem 1.1, we need to improve Theorem 2.1 in two ways.
First, Theorem 2.1 partitions the set of vertices into qd classes for some integer q, while in
Theorem 1.1 we allow an arbitrary number of classes. More importantly, we need to ensure
that the partition is not only ε-balanced, but every class contains at most dn/ke vertices.
This problem can be solved by a technique of [1]: we define a bounded-degree expander on
the classes and allow the vertices to move between neighboring classes to achieve a perfectly
balanced partition.

Theorem 2.3. For every d > 2 and k > 0, there is an integer n0(d, k) and a set Sd,k of
O(k2−2/d) pairs (i, j) (i, j ∈ [k]) such that the following holds. If F is a graph on n > n0(d, k)
vertices and maximum degree d, then the vertices of F can be partitioned into k sets V1, . . . ,
Vk, each of size at most dn/ke, such that if Vi and Vj are adjacent, then (i, j) ∈ Sd,k.

Proof. Let q = d(20k)1/de. Because of the big-O notation in the statement of the theorem,
we can assume that k is sufficiently large and hence q ≥ 3. Let T be the cycle on q vertices
and let H be defined as in Theorem 2.1. Note that qd ≥ 20k and qd < ((20k)1/d + 1)d ≤ 21k
if k is sufficiently large. Therefore, 20 ≤ qd/k ≤ 21 and the vertices of H have a partition
U1, . . . , Uk such that 20 ≤ |Ui| ≤ 21 for every 1 ≤ i ≤ k.

Let M be a bounded-degree expander on [k] with the property that for every subset X of
at most half the vertices of M , the set X has at least |X|/9 neighbors outside X. For every
X ⊆ [k], denote by NM [X] the closed neighborhood of X, i.e., the set of all vertices that are
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in X or adjacent to a vertex of X. The set Sd,k is constructed in the following way: the pair
(i, j) (i 6= j) is in Sd,k if and only if there is a pair (i′, j′) such that

• i′ ∈ NM [{i}],

• j′ ∈ NM [{j}],

• Ui′ and Uj′ are adjacent in H (i.e., there is an edge between a vertex of Ui′ and a vertex
of Uj′).

To bound the size of Sd,k, recall first that for a fixed d, each vertex of H has degree O(qd−2).
As the set Ui′ contains at most 21 vertices of H, there can be at most 21·O(qd−2) = O(k1−2/d)
values j′ such that Ui′ and Uj′ are adjacent. Therefore, if the degree of M is bounded by a
constant c, then each 1 ≤ i ≤ k can participate in at most c ·O(k1−2/d) · c = O(k1−2/d) pairs
of Sd,k. Thus the total number of pairs in Sd,k is O(k2−2/d), as required.

To show that the required partition V1, . . . , Vk of V (F ) exists, set ε = 0.01 and let
us use Theorem 2.1 to obtain an ε-balanced homomorphism φ : V (F ) → V (H). This
homomorphism φ defines a partition V ′1 , . . . , V ′k by setting V ′i = {v ∈ V (F ) | φ(v) ∈ Ui}.
Note that

|V ′i | ≤ 21 · 1.01n/qd ≤ 21/20 · 1.01(n/k) ≤ 1.1(n/k)

and
|V ′i | ≥ 20 · 0.99n/qd ≥ 20/21 · 0.99(n/k) ≥ 0.9(n/k).

We make the partition more balanced by allowing each vertex to move to a class that is
adjacent in M . Let us build a bipartite graph B where the first class is the set of vertices
in F and the second class contains dn/ke vertices representing each class Vi (i.e., the second
class contains kdn/ke vertices). The edges of B are defined as follows: v ∈ V (F ) and a vertex
representing class Vi are adjacent if v ∈ V ′i′ for some i′ such that i and i′ are adjacent in M .
We show that this bipartite graph has a matching covering V (F ). If this is true, then we
obtain the partition V1, . . . , Vk by putting vertex v to the class represented by its mate. It
is clear that each class Vi contains at most dn/ke vertices and a vertex of Vi and vertex of
Vj can be adjacent only if (i, j) ∈ Sd,k.

We use Hall’s Theorem to show that the bipartite graph B has a matching covering V (F ).
For S ⊆ V (F ), let NB(S) be the neighbors of S in B. Note that the vertices in V ′i have the
same neighborhood in B, thus it is sufficient to check the Hall condition for every subset of
S ⊆ V (F ) that is the union of some classes V ′i . Let S =

⋃
i∈X V

′
i be such a set for some

X ⊆ [k]. If |X| ≤ k/2, then |NM [X]| ≥ 10
9 |X|, hence

|NB(S)| ≥ 10
9
|X|dn/ke > 1.1(n/k)|X| ≥ |S|.

On the other hand, if |X| > k/2, then let Y = [k] \ NM [X]; clearly |Y | < k/2. Therefore,
NM [Y ] ≥ 10

9 |Y | and ∣∣∣∣∣∣
⋃

i∈NM [Y ]

V ′i

∣∣∣∣∣∣ ≥ 10
9
|Y |0.9(n/k) = |Y |(n/k).
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If i ∈ NM [Y ], then V ′i is not in S, thus we can bound the size of S by

|S| ≤ n− |Y |(n/k) = (k − |Y |)(n/k) = |NM [X]|(n/k) ≤ |NM [X]|dn/ke = |NB(S)|.

Thus the Hall condition holds in this case as well.

3 Lower bound

For the proof of Theorem 1.2 stated in the introduction, we need a lower bound on the number
of labeled d-regular graphs on n vertices. The asymptotic number of such graph is known [3],
but a lower bound of the form (n/αd)nd/2 (for some constant αd > 0 depending only on d) will
be sufficient for our purposes. We sketch how such a bound can be obtained by considering
only the bipartite d-regular graphs having two fixed bipartite classes of size exactly n/2. Each
such bipartite graph can be obtained as the union of d matchings between the two bipartite
classes; the number of possibilities for selecting d matchings is ((n/2)!)d ≥ (n/(2e))nd/2.
However, this formula might overcount the number of bipartite graphs for two reasons: the
matchings might not be disjoint (hence the union is not 3-regular) and the same bipartite
graph might be obtained multiple times. It is known that the probability of d permutations
being disjoint is at least some constant c′d > 0, and each d-regular bipartite graph can
be obtained at most dnd/2 times (as each of the nd/2 edges can belong to one of the d
matchings). Therefore, by setting αd appropriately large, it is true that there are at least
(n/αd)nd/2 different d-regular bipartite graphs.

Proof (of Theorem 1.2). Let us fix a sufficiently small positive cd. Let us call a d-regular
graph F = (V,E) on n vertices bad if there is a partition V1, . . . , Vk such that each Vi is
of size at most 10n/k, and if S is defined as the set that contains the pair {i, j} (i 6= j)
if and only if Vi and Vj are adjacent, then |S| ≤ cdk

2− 2
d . We estimate the number of bad

graphs as follows. The number of allowed partitions can be bounded by the number kn of
all partitions, and the number of possibilities for the set S can be generously bounded by
2k

2
. For a fixed partition and set S, we bound the number of bad graphs by considering all

possibilities for the edges. Each edge is either fully contained in some Vi, or the endpoints
are in Vi and Vj for some {i, j} ∈ S. Since each Vi has size at most 10n/k, there are at
most (|S|+ k) · 100n2/k2 ≤ 100cdn2/k

2
d + 100n2/k ≤ 200cdn2/k

2
d such edges (where the last

inequality holds if k is sufficiently large compared to cd). Thus we can bound the number of
bad graphs by

kn·2k2 ·
(

200cdn2/k
2
d

dn/2

)
≤ kn·2k2 ·

(
400cden

dk
2
d

)dn/2
= ndn/2·2k2 ·

(
400cde
d

)dn/2
�
(

n

2αd

)dn/2
.

We used
(
a
b

)
≤ (ae/b)b in the first inequality and in the last inequality we assume that cd

is sufficiently small and n is sufficiently large. As the number of d-regular graphs is at least
(n/αd)nd/2, this shows that the probability of a random d-regular graph being bad goes to
zero.
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The following version of Theorem 1.2 is stronger in the sense that we allow larger color
classes and a set of at most εn exceptional edges that do not respect the pairs S, but it gives
a slightly weaker bound of k2− 2

d
−3ε on the size of S. To give a different perspective, we state

it in terms of colors, where there is a bound on the color classes and on the pairs of colors
that can appear on the edges.

Theorem 3.1. For every fixed integer d > 2, real ε < 1/4, integer k > k0(ε, d) and for every
even n > n0(k) the following holds. Let F be a random d-regular graph on n vertices. Then
a.a.s., for every (not necessarily proper) coloring of the vertices of F by k colors, so that
each color appears at most n/(k1−ε) times, and for any choice of a set S of at most k2− 2

d
−3ε

pairs of colors, there are at least εn edges of F whose endpoints have colors x, y with x 6= y
and {x, y} 6∈ S.

Proof (of Theorem 3.1). Let us call a d-regular graph F = (V,E) on n vertices bad if there
is a coloring, a set S, and a subset E′ of at most εn edges such that each color appears on
at most n/(k1−ε) vertices, |S| ≤ k2− 2

d
−3ε, and for every edge in E \ E′, the two endpoints

either have the same color or colored by a pair from S. We estimate the number of bad
graphs as follows. The number of allowed colorings can be bounded by the number kn of
total colorings, and the number of possibilities for the set S can be generously bounded by
2k

2
. For a fixed coloring and set S, we bound the number of bad graphs by considering all

possibilities for the set E′ and for the set E \ E′. An edge of E′ can be any of the
(
n
2

)
< n2

possible edges, while the colors of the endpoints of each edge of E \ E′ have to be in S or
have to be the same. Since each color appears on at most n/k1−ε vertices, there are at most
k2− 2

d
−3ε · (n/k1−ε)2 = n2/k

2
d
+ε such edges. Thus we can bound the number of bad graphs by

kn · 2k2 ·
(
n2

εn

)
·
(
n2/k

2
d
+ε

dn/2− εn

)
≤ kn · 2k2 ·

(en
ε

)εn
·

(
en

(d/2− ε)k
2
d
+ε

)(d/2−ε)n

≤ ndn/2 · 2k2 · g(d)n · kn(1−( 2
d
+ε)( d

2
−ε)) = ndn/2 · 2k2 · g(d)n · k−(( d

2
− 2

d
−ε)εn)

≤ ndn/2 · 2k2 · g(d)n · k−(( d
2
− 2

d
− 1

4
)εn) � (n/αd)nd/2.

for some function g(d) depending only on d. In the first inequality, we used
(
a
b

)
≤ (ae/b)b;

in the second inequality, we used the fact that (1/x)x can be bounded by a constant. For
the last inequality, let us observe that for every d ≥ 3, δ := d

2 −
2
d −

1
4 is positive. Thus if

k is sufficiently large compared to d and 1/ε, and n is sufficiently large compared to k and
ε, then kδεn dominates 2k

2
, g(d)n, and α

nd/2
d . As the number of d-regular graphs is at least

(n/αd)nd/2, this shows that the probability of a random d-regular graph being bad goes to
zero.

4 Bounded depth embeddings

We can use the lower bound of Section 3 to obtain lower bounds on the depths of certain
embeddings. Our first result shows that Theorem 1.3 of [11] is tight.
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Theorem 4.1. Let H be a 3-regular graph with k vertices. Then, for all even n > n0(k),
there exists a 3-regular graph F on n vertices so that any embedding of F into H is of depth
at least Ω(n log k

k ).

Proof. Let d = 3 and ε = 1/100, and let F be a random cubic graph on n vertices satisfying
the requirements of Theorem 3.1. Suppose for contradiction that there is an embedding φ

of F into H having depth less than ε2n log k
3k . Let V ′ be the set of all vertices of F that are

mapped to sets of size at least ε log k; clearly, |V ′| < εn/3. Let E′ contain all edges of F that
touch V ′, we have |E′| < εn.

For each vertex v of F , choose an arbitrary vertex f(v) of φ(v) and consider it as a
coloring of F with k colors (corresponding to the vertices of H) having the property that no
color is used more than ε2n log k

3k < n/k1−ε times (we can assume that k is sufficiently large
since otherwise the theorem automatically holds due to the Ω notation). Let S be the set of
all pairs of colors x, y (i.e., pairs of vertices of H) such that the distance of x and y in H is
at most 2ε log k = 0.02 log k. Since H is 3-regular, |S| ≤ O(k · 22ε log k) ≤ O(k1.02) < k4/3−3ε.
Therefore, by Theorem 3.1, there must be at least εn edges of F whose endpoints are colored
by a pair of (two different) colors such that this pair does not appear in S. As |E′| < εn,
there is such an edge uv ∈ E \ E′, that is, u, v 6∈ V ′. Therefore, both φ(u) and φ(v) have
size at most ε log k and {f(u), f(v)} 6∈ S implies that the distance of f(u) and f(v) is more
than 2ε log k. This means that φ(u) and φ(v) cannot touch, contradicting the definition of
embedding.

To obtain Theorem 1.4, it is sufficient to take G to be a class of 3-regular expanders. It
is well known that the treewidth of an expander is linear in the number of vertices (cf. [9]),
and Theorem 1.4 follows.

Theorem 4.1 shows that a very sparse (3-regular) class of graphs cannot have the tight
embedding property. How dense should a class be to have this property? The lower bound
on the depth in Theorem 4.1 is a logarithmic factor larger than the trivial lower bound
Ω(n/k) and it is matched by the embedding result of Theorem 1.3. Therefore, it might be
a reasonable educated guess to expect that an extra logarithmic factor appears here as well
and an average degree of log |V (G)| is sufficient for the tight embedding property. However,
our second negative result shows that the number of edges has to be polynomially larger
than linear, i.e., the average degree has to be |V (G)|δ for some δ > 0.

Theorem 4.2. For every δ > 0 and k > k0(δ) the following holds. Let H be a graph with k
vertices and at most k1+δ edges. Then, for all even n > n0(k), there exists a 3-regular graph
F on n vertices so that any embedding of F into H is of depth at least Ω( nkδ ).

Proof. Let d = 3 and ε = 1/100, and let F be a random cubic graph on n vertices satisfying
the requirements of Theorem 3.1. Assume that k is sufficiently large to ensure that kδ > 1/δ
holds. Let D be the set of those vertices of H that have degree at least kδ/δ, we have
|D| ≤ 2δk.

Suppose for contradiction that there is an embedding φ of F into H having depth less
than ε2n

6kδ . Let V ′ be the set of all vertices of F that are mapped to sets of size at least ε/δ;
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clearly, |V ′| < εn/6. Let V ′′ contain those vertices of V \ V ′ whose images intersect D, we
have |V ′′| ≤ ε2n

6kδ |D| ≤ ε2n/3 < εn/6. Let E′ contain all edges of F that touch V ′ ∪ V ′′;
clearly, we have |E′| < εn.

For each vertex v of F , choose an arbitrary vertex f(v) of φ(v) and consider it as a
coloring of F with k colors having the property that no color is used more than ε2n

6kδ < n/k1−ε

times (assuming that k is sufficiently large compared to 1/δ). Let S be the set of all pairs of
colors x, y (i.e., pairs of vertices of H) such that the distance of x and y in H \D is at most
2ε/δ = 0.02/δ. Since every vertex of H \D has degree at most kδ/δ < k2δ (using kδ > 1/δ),
|S| ≤ O(k ·k2δ·0.02/δ) = O(k1.04) < k4/3−3ε. Therefore, by Theorem 3.1, there must be at least
εn edges of F whose endpoints are colored by a pair of (two different) colors not appearing in
S. As |E′| < εn, there is such an edge uv ∈ E\E′, that is, u, v 6∈ V ′∪V ′′. Therefore, both φ(u)
and φ(v) have size at most ε/δ and they are disjoint from D. Furthermore, {f(u), f(v)} 6∈ S
implies that the distance between f(u) and f(v) is more than 2ε/δ in H \ D. This means
that φ(u) and φ(v) cannot touch, contradicting the definition of embedding.

Theorem 4.2 shows that if for every δ > 0, the class G contains infinitely many graphs
G with average degree at most |V (G)|δ, then there is no constant c such that it is true that
every graph F has an embedding into every G ∈ G with depth c|E(F )|/|V (G)|, or in other
words, G does not have the tight embedding property. Thus if G has the tight embedding
property, then there is a δ > 0 such that there are only finitely many graphs G ∈ G with
average degree at most |V (G)|δ. Therefore, we can say that every graph G ∈ G has average
degree Ω(|V (G)|δ) (by choosing the constant hidden in the Ω notation appropriately), proving
Theorem 1.5(1).

To prove Theorem 1.5(2), we construct a family of graphs having the tight embedding
property. This family is based on a product construction similar to the one appearing in the
proof of Theorem 2.1. This class in some sense generalizes line graphs of cliques, and we
prove the tight embedding property similarly to the way it is proved for line graphs of cliques
in [11].

Let G[k, d] be the graph whose vertex set is [k]d and two vertices (a1, . . . , ad), (b1, . . . , bd) ∈
[k]d are adjacent if there is exactly one value 1 ≤ i ≤ d such that ai 6= bi. Note that G[k, d]
has kd vertices and is d(k − 1)-regular.

Theorem 4.3. For integers k, d > 0 and every graph F with m > m0(k, d) edges and no
isolated vertices, there is an embedding of depth O(dm/kd) from F into G[k, d].

Proof. First we argue that it is sufficient to prove the theorem for graphs F having maximum
degree at most 3. Otherwise, let us construct F ′ by replacing every vertex v of F having
degree d(v) with a path v1, . . . , vd(v) of d(v) vertices and let every edge incident to v use
a different copy of v on the path. Clearly, F ′ has maximum degree at most 3 and has at
most 3m edges. If there is an embedding φ′ from F ′ into H, then it can be turned into an
embedding φ from F into H by setting φ(v) =

⋃d
i=1 φ

′(vi). It is clear that the depth of φ
is not larger than the depth of φ′. Thus in the following, we assume that F has maximum
degree at most 3.
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Let us partition the vertices of F into kd classes Va (a ∈ [k]d), each of size at most
d|V |/kde, in an arbitrary way. Let us orient the edges of F arbitrarily and let Ea,b be the
set of edges going from Va to Vb. For every a,b ∈ [k]d, let us partition Ea,b into classes Ec

a,b

(c ∈ [k]d), each of size at most d|Ea,b|/kde, in an arbitrary way. Let Ec
a,∗ =

⋃
b∈[k]d E

c
a,b and

Ec
∗,b =

⋃
a∈[k]d E

c
a,b. Note that

|Ec
a,∗| =

∑
b∈[k]d

|Ec
a,b| ≤

∑
b∈[k]d

d|Ea,b|/kde ≤
∑

b∈[k]d

|Ea,b|/kd + kd ≤ 3|Va|/kd + kd

≤ 3d|V |/kde/kd + kd ≤ 4|V |/k2d,

where the third inequality uses the fact every vertex in Va has degree at most 3 and the last
inequality uses that |V | is sufficiently large. A similar bound holds for |Ec

∗,b|.
For a = (a1, . . . , ad) and b = (b1, . . . , bd), we denote by Wa,b the walk whose i-th vertex

(0 ≤ i ≤ d) is (b1, . . . , bi, ai+1, . . . , ad). Note that if ai = bi, then the (i − 1)-st and the i-th
vertices are the same. Clearly, Wa,b is connected and contains a and b.

We define the embedding φ in the following way. First, if v ∈ Va, then let φ(v) contain
vertex a. If an edge of Ec

a,b leaves v, then we add Wa,c to φ(v); if an edge of Ec
b,a enters v,

then we add Wc,a to φ(v). Observe that this gives a correct embedding: φ(v) is connected
and if an edge of Ec

a,b connects x and y, then φ(x) contains Wa,c and φ(y) contains Wc,b,
hence φ(x) and φ(y) intersect in vertex c.

To bound the depth of the embedding φ, let us estimate the number of vertices of F
whose images contain a particular vertex g = (g1, . . . , gd). Vertex g is in φ(v) if a walk Wx,y

containing g was added to φ(v). For every 0 ≤ i ≤ d, there are exactly kd pairs (x,y) such
that the i-th vertex of Wx,y is g: namely, the pairs (x,y) with x = (x1, . . . , xi, gi+1, . . . , gd),
y = (g1, . . . , gi, yi+1, . . . , yd) for arbitrary x1, . . . , xi, yi+1, . . . , yd. Therefore, there are at
most (d+ 1)kd pairs (x,y) such that Wx,y contains g. The path Wx,y is added to φ(v) only
if an edge of Ey

x,∗ or an edge of Ex
∗,y is incident to v. Therefore, the path Wx,y is used at

most |Ey
x,∗|+ |Ex

∗,y| times. This means that the depth of vertex g is at most

(d+ 1)kd(|Ey
x,∗|+ |Ex

∗,y|) ≤ 2(d+ 1)kd · 4|V |/k2d = O(dm/kd),

if m is sufficiently large.

Consider the graph class G[d] containing G[k, d] for every k ≥ 1. By Theorem 4.3, the
class G[d] has the tight embedding property. A graph G[k, d] ∈ G[d] has kd vertices and
its average degree is d(k − 1) = O(k). Thus Gδ = G[d1/δe] satisfies the requirements of
Theorem 1.5(2).

By Theorem 1.8(1), if a graph class G has the tight embedding property, then there is
no f(G)no(|V (G)|) time algorithm for the special case of Colored Subgraph Isomorphism with
the smaller graph G restricted to G. Therefore, Theorem 1.9 follows for Colored Subgraph
Isomorphism.

In order to prove Theorem 1.9 for (uncolored) Subgraph Isomorphism, we have to use
Theorem 1.8(2). Therefore, we need classes Gδ that contain only cores (recall that a graph is
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a core if it has no endomorphism to any of its proper induced subgraphs). Notice that G[k, d]
is not a core: it is k-colorable (let the color of a vertex be the sum of the coordinates modulo
k) and contains a k-clique. However, by attaching a “rigid” graph to G[k, d], we can make it
a core and this modification can be done in such a way that the size of the graph does not
increase by too much, thus the class retains the tight embedding property. Therefore, the
following theorem proves Theorem 1.9 for (uncolored) Subgraph Isomorphism.

Theorem 4.4. For every d ≥ 2, there is a class G[d] of graphs having the tight embedding
property such that every G ∈ G[d] is a core and has maximum degree O(|V (G)|1/d).

Proof. For every k ≥ 1, the class G[d] contains a graph G′[k, d], which is a supergraph of
G[k, d]. Let D be a triangle-free graph with chromatic number 4 such that any proper induced
subgraph of D is 3-colorable; for example, the Grötzsch graph is such a graph. Let v1, . . . ,
vn be the vertices of G[k, d]. The graph G′[k, d] is obtained by extending G[k, d] with the
following vertices and edges:

• a clique K1 of size k + 4,

• a clique K2 of size k + 1,

• a copy of D, with every vertex adjacent with every vertex of K2,

• a path u1, . . . , u6n+1 where u1 is a vertex of K1 and u6n+1 is a vertex of K2,

• for every 1 ≤ i ≤ 6n, a vertex wi that is adjacent with ui and ui+1,

• for every 1 ≤ i ≤ n, a vertex zi that is adjacent with vi and u6i.

The maximum degree of G′[k, d] is max{d(k− 1) + 1, k+ |D|+ 1} and the number of vertices
increases only by a constant factor. Therefore, the only thing we have to show is that G′[k, d]
is a core. Consider a homomorphism φ from G′[k, d] to itself. K1 is the only clique of size
k + 4 in the graph: the maximum clique size of G[k, d] is k, and clique K2 can be extended
by at most 2 vertices of D to a larger clique. Therefore, φ is a permutation on K1. Similarly,
φ must map K2 to a clique of size k + 1, which is either a subset of K1 or a subset of
K2 ∪D. However, since K2 ∪D is not (k + 4)-colorable (as D is not 3-colorable), the closed
neighborhood of every vertex in K2 is not (k + 4)-colorable. The closed neighborhood of
every vertex in K1 is (k + 4)-colorable, thus φ cannot map a vertex of K2 to a vertex of K1.
Therefore, φ must map every vertex of K2 to K2 ∪D. As every vertex of D is adjacent to
every vertex of K2, this also means that φ maps every vertex of D to K2 ∪D. Since every
proper subset of K2 ∪D is (k + 4)-colorable, φ is a permutation of K2 ∪D.

If a vertex is in a triangle, then φ must map this vertex to a vertex that is also in a
triangle. Therefore, φ must map the path u1, . . . , u6n+1 into a walk on 6n+ 1 vertices from
φ(u1) ∈ K1 to φ(u2) ∈ K2 ∪ D such that each vertex is in a triangle. This means that
the walk cannot use the vertices zi, hence the only possibility is that φ(ui) = ui for every
1 ≤ i ≤ 6n+ 1. It also follows that φ(wi) = wi for every 1 ≤ i ≤ 6n.
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We show that φ(vi) = vi and φ(zi) = zi for every 1 ≤ i ≤ n. Let vj be a neighbor of vi.
There is a path u6i, zi, vi, vj , zj , u6j of length 5 between u6i and u6j . Homomorphism φ
must map this path to a walk. Removing zi or zj makes the distance of u6i and u6j at least
6, thus the walk has to use both zi and zj . Now the only possibility is that the walk is the
same as the path. This shows that φ is a permutation on G′[k, d].

5 Conclusions

As an important ingredient in the hardness results of [11], an appropriate notion of embedding
was defined and it was proved that embeddings with certain properties exist. The more
efficient embedding we are able to find, the tighter the hardness results are. Thus obtaining
tighter complexity results was the motivation for the purely combinatorial question of whether
the logarithmic factor in Theorem 1.3 can be removed. It turned out that understanding a
different kind of combinatorial question (sparse balanced partitions) allows us to resolve this
question. We proved both positive and negative results on the existence of sparse balanced
partitions. The positive results use techniques and ideas related to yet another combinatorial
problem: the construction of sparse universal graphs.

The combinatorial results of the paper do not answer Conjecture 1.7, the main complexity
question left open in [11]. However, the negative result in Theorem 1.4 shows the limitations
of the techniques of [11] and implies that simple combinatorial embeddings are not sufficient
to prove Conjecture 1.7. Therefore, substantially different methods would be required to
prove the conjecture in the positive. It seems that the critical question that has to be
understood first is the exact complexity of finding sparse expanders: Is there an no(k) time
algorithm that decides if a given k-vertex bounded-degree expander appears as subgraph?
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