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Abstract

Let C denote the complex field. A vector v in the tensor product ⊗mi=1C
ki is called a pure product

vector if it is a vector of the form v1 ⊗ v2 · · · ⊗ vm, with vi ∈ Cki . A set F of pure product vectors
is called an unextendible product basis if F consists of orthogonal nonzero vectors, and there is no
nonzero pure product vector in ⊗mi=1C

ki which is orthogonal to all members of F . The construction
of such sets of small cardinality is motivated by a problem in quantum information theory. Here it is
shown that the minimum possible cardinality of such a set F is precisely 1 +

∑m
i=1(ki − 1) for every

sequence of integers k1, k2, . . . , km ≥ 2 unless either (i) m = 2 and 2 ∈ {k1, k2} or (ii)1+
∑m
i=1(ki−1)

is odd and at least one ki is even. In each of these two cases, the minimum cardinality of the
corresponding F is strictly bigger than 1 +

∑m
i=1(ki − 1).

1 Introduction

Let C denote the complex field. A vector v in the tensor product ⊗mi=1C
ki is called a pure product vector

if it is a vector of the form v1 ⊗ v2 · · · ⊗ vm, with vi ∈ Cki . A set F of pure product vectors is called an
unextendible product basis (UPB) if F consists of orthogonal nonzero vectors, and there is no nonzero
pure product vector in ⊗mi=1C

ki which is orthogonal to all members of F . Note that the inner product
of two pure product vectors is easy to express:

(u1 ⊗ · · · ⊗ um) · (v1 ⊗ · · · ⊗ vm) = (u1 · v1) · · · (um · vm).

Clearly there are trivial sets as above consisting of
∏m
i=1 ki vectors. Motivated by a question in

quantum information theory concerning properties of entangled quantum states, the authors of [1], [5]
were interested in smaller families. Let fm(k1, k2, . . . , km) denote the minimum possible cardinality of
such a family. It is easy to see that fm(k1, . . . , km) ≥ 1 +

∑m
i=1(ki − 1). Indeed, if

vj = v
(1)
j ⊗ v

(2)
j ⊗ · · · ⊗ v

(m)
j , 1 ≤ j ≤

m∑
i=1

(ki − 1)
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are pairwise orthogonal vectors, split the set of indices I = {1, 2, . . . ,
∑m
i=1(ki − 1)} into m pairwise

disjoint sets I1, I2, . . . , Im, where |Is| = ks − 1 for all s. Let us ∈ Cks be a nonzero vector orthogonal to
v

(s)
j for all j ∈ Is, and note that the vector u1 ⊗ u2 ⊗ . . .⊗ um is a pure product nonzero vector which

is orthogonal to all vectors vj, implying that, indeed, fm(k1, . . . , km) >
∑m
i=1(ki − 1), as claimed.

The authors of ([1], [5]) constructed several examples showing that sometimes this inequality is tight.
More precisely, they showed that f2(k, k) = 2k−1 for k = 3, 7 and 9, and conjectured that this holds for
all k = (p+ 1)/2, with p being a prime congruent to 1 modulo 4. They also proved that f3(3, 3, 3) = 7.

Here we observe that constructions of small maximal orthogonal families can be obtained by appro-
priate orthogonal representations of graphs, a notion introduced by the second author [6] in his study of
the Shannon capacity of graphs. Applying this observation to appropriate representations of the Paley
graphs we prove the above mentioned conjecture (using an explicit construction, suggested in [5]). More
generally, combining the observation with the main result of [7] and certain known results in additive
number theory we obtain a much stronger result. Note that in the study of fm(k1, . . . , km) we may
always assume that ki ≥ 2 for all i. Our main result is the following.

Theorem 1.1 For every m ≥ 2 and every sequence of integers k1, k2, . . . , km ≥ 2, fm(k1, . . . , km) =
1 +

∑m
i=1(ki − 1) unless either

(i) m = 2 and 2 ∈ {k1, k2} or
(ii)1 +

∑m
i=1(ki − 1) is odd and at least one ki is even.

In each of these two cases, fm(k1, . . . , km) is strictly bigger than 1 +
∑m
i=1(ki − 1).

The rest of this paper is organized as follows. In Section 2 we prove, without any reference to
orthogonal representations, that f2(k, k) = 2k − 1 for all k = (p + 1)/2 where p is a prime congruent
to 1 modulo 4. This is done by an explicit, simple construction (which appears in [5]), and the desired
properties are derived from some simple properties of Gauss sums and a known result of Čebotarev, thus
proving conjecture 3 in [5]. Section 3 contains the connection between unextendible product bases and
orthogonal representations of graphs, and provides a graph theoretic characterization of all m-tuples
(k1, . . . , km) for which fm(k1, . . . , km) = 1 +

∑m
i=1(ki− 1). In Section 4 we combine this characterization

with certain constructions and known results in additive number theory to prove Theorem 1.1. The
final Section 5 contains some concluding remarks.

2 A construction for k = (p+ 1)/2, p ≡ 1 (mod 4) prime

Let p be a prime, p ≡ 1 ( mod 4), and let w = e
2πi
p be a primitive p-th root of unity. It is well known

(see, e.g., [4], Chapter 2) that ∑
j∈Zp

wj
2

=
√
p. (1)

Let P denote the set of all nonzero quadratic residues in the finite field Zp, and put P = {α2, α3, . . . , αk},
where k = (p+ 1)/2. Let N = Zp − ({0} ∪ P ) be the set of all quadratic nonresidues. By (1)

∑
α∈P

wα =
√
p− 1
2

,
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and hence ∑
β∈N

wβ =
−√p− 1

2
.

Define a = (
√
p+1
2 )1/2. For each j ∈ Zp define a vector uj ∈ Ck by uj = (a,wjα2 , wjα3 , . . . , wjαk). Notice

that the product of uj and us is
(uj , us) = a2 +

∑
α∈P

w(j−s)α,

which is zero if (and only if) j − s ∈ N (since in this case the set {(j − s)α : α ∈ P} is simply N .)
Fix some β ∈ N and define, for each j ∈ Zp, vj = ujβ . Then (vj , vs) = (ujβ , usβ) is zero if (and only
if) (j − s)β ∈ N , namely, iff j − s ∈ P . It follows that the p vectors uj ⊗ vj , (j ∈ Zp), are pairwise
orthogonal. We claim that they form an UPB, that is, there is no nonzero pure product vector in
Ck⊗Ck orthogonal to all of them. Indeed, suppose u⊗ v ∈ Ck⊗Ck is orthogonal to all of them. Then
either u is orthogonal to at least k of the vectors uj , or v is orthogonal to at least k of the vectors vj
(which form a permutation of the vectors uj). We need the following fact:
Claim: Every set of k of the vectors uj is linearly independent.
Proof: By a result of Čebotarev (c.f., e.g., [10] for a proof and several references and [11], page 505 for
another proof) every square submatrix of the p by p matrix W = (wij : i, j ∈ Zp) is nonsingular. Since
every matrix whose rows are k of the vectors uj is obtained from a k by k square submatrix of W by
multiplying the first column by a, the desired claim follows.
By the last claim it thus follows that only the zero vector can be orthogonal to k of the vectors uj ,
implying that either u = 0 or v = 0, and completing the proof that the constructed set is an UPB, as
needed. 2

3 Orthogonal representations of graphs

An orthogonal representation of an undirected graph G = (V,E) is an assignment of a nonzero (real)
vector to any vertex of the graph so that vectors assigned to non-adjacent vertices are orthogonal. This
notion was introduced by the second author [6], who considered such representations (over the real field)
in the study of the Shannon capacity of graphs. We next note that such representations are relevant to
our question here. Let Kn = (V,E) denote the complete graph on the set of vertices V = {1, 2, . . . , n}.
Given an edge coloring c : E 7→ {1, . . .m} of Kn by m colors, let Gi denote the graph on V in which
for 1 ≤ s < t ≤ n the vertices s and t are not adjacent iff the color of the edge st is i. The coloring c
is called (d1, d2, . . . , dm)-connected if for every i the graph Gi is di-connected. The main result of this
section is the following.

Theorem 3.1 Let m, k1, . . . , km be positive integers. Then fm(k1, . . . , km) = 1 +
∑m
i=1(ki − 1) if and

only if for n = 1 +
∑m
i=1(ki − 1) there is an (n− k1, n− k2, . . . , n− km)-connected edge coloring of Kn.

The main tool in the proof of the above theorem is the following result of Lovász, Saks and Schrijver
(a correction of an error in the proof of this result was recently given in [8]).
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Theorem 3.2 ([7, 8]) Let G be a graph on n vertices. Then G is k-connected if and only if there is
an orthogonal representation (over the reals) of G, assigning to each vertex a vector in Rn−k so that
every set of n− k vectors is linearly independent.

Proof of Theorem 3.1: Suppose there is an (n− k1, n− k2, . . . , n− km)-connected coloring c : E 7→
{1, 2, . . . ,m} of Kn = (V,E), where n = 1 +

∑m
i=1(ki− 1). Let Gi be the graph on V in which each pair

of distinct vertices s, t are non-adjacent iff the color of st is i. By assumption Gi is (n− ki)-connected.
Therefore, by Theorem 3.2, there are vectors v(i)

1 , v
(i)
2 , . . . , v

(i)
n ∈ Rki ( ⊂ Cki) such that every set of ki

of them is linearly independent, and if the color of st is i, then the vectors v(i)
s and v(i)

t are orthogonal.
It follows that the pure product vectors

vj = v
(1)
j ⊗ v

(2)
j ⊗ · · · ⊗ v

(m)
j , 1 ≤ j ≤ n, (2)

are pairwise orthogonal. Moreover, if u1 ⊗ u2 ⊗ · · · ⊗ um is orthogonal to all of them then, by the
pigeonhole principle, there is an index i such that ui is orthogonal to at least ki of the vectors v(i)

j ,
and as these vectors are linearly independent it follows that ui is the zero vector. This shows that the
above collection is indeed an UPB, proving that fm(k1, . . . , km) ≤ 1 +

∑m
i=1(ki − 1). Since the converse

inequality always holds, it follows that in this case

fm(k1, . . . , km) = 1 +
m∑
i=1

(ki − 1), (3)

as needed.
Conversely, suppose that (3) holds, put n = 1 +

∑m
i=1(ki − 1) and let the vectors in (2) be an UPB

in Ck1 ⊗ · · · ⊗ Ckm . Define an edge coloring c of Kn by m colors, by letting the color of the edge st be
the first index i such that v(i)

s and v
(i)
t are orthogonal. To complete the proof, we show that the graph

Gi consisting of all edges whose color is not i is (n− ki)-connected.
Suppose it is not, then one can separate two nonempty subsets S and T of vertices of Gi by removing

n − ki − 1 vertices. Therefore |S| + |T | = ki + 1 and the two sets of vectors VS = {v(i)
s , s ∈ S} and

VT = {v(i)
t , s ∈ T} are orthogonal (since all edges connecting S and T are colored i.) It follows that

dim(VS) + dim(VT ) ≤ ki < |VS | + |VT | and hence we may assume, without loss of generality, that
dim(VS) < |VS |. By adding an arbitrary set of ki − |S| additional indices to the set S we obtain a set
Ji of ki indices such that the vectors v(i)

j , j ∈ Ji do not span Cki . We can now split arbitrarily all the
remaining indices to sets of cardinalities kh−1 to obtain a partition V = J1∪J2∪ . . .∪Jm, with |Ji| = ki

and |Js| = ks − 1 for all s 6= i, such that for all 1 ≤ s ≤ m, the set of vectors v(s)
j , j ∈ Js does not span

Cks . Therefore, there is a pure product nonzero vector

u1 ⊗ u2 ⊗ · · · ⊗ um ∈ ⊗ms=1C
ks ,

where each us is orthogonal to all vectors v(s)
j , j ∈ Js, showing that the vectors vj do not form an UPB,

and contradicting the hypothesis. Therefore, Gi is (n− ki)-connected, completing the proof. 2
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4 Connected edge colorings

The following is an easy consequence of Theorem 3.1.

Corollary 4.1 Let m, k1, . . . , km ≥ 2 be integers, and put n = 1 +
∑m
i=1(ki − 1).

(i) If at least one of the integers ki is even and n = 1 +
∑m
i=1(ki − 1) is odd, then fm(k1, . . . , km) > n.

(ii) If m = 2 and 2 ∈ {k1, k2} then f2(k1, k2) > n (= k1 + k2 − 1).

Proof: Suppose fm(k1, . . . , km) = n. By Theorem 3.1 there is an (n− k1, . . . , n− km)-connected edge
coloring of Kn = (V,E). Let Gi denote the graph on V whose edges are all edges of Kn whose color
is not i. As Gi is (n − ki)-connected, it follows that its minimum degree is at least n − ki. Therefore,
there are at most ki − 1 edges of color i incident with each vertex of Kn. Since n − 1 =

∑m
i=1(ki − 1)

this implies that there are precisely ki−1 edges of color i incident with each vertex. Consider, now, the
two cases (i) and (ii) separately.
(i) Without loss of generality assume k1 is even. Then, the complement of G1 is a regular graph with an
odd degree of regularity and an odd number of vertices, and this is impossible. Thus fm(k1, . . . , km) > n,
as needed.
(ii) Without loss of generality assume k1 = 2. Then the complement of G1 is a connected 1-regular
graph on n ≥ 3 vertices, and this is impossible showing that indeed f2(k1, k2) > n. 2

In order to apply Theorem 3.1 to prove that fm(k1, . . . , km) = 1 +
∑m
i=1(ki− 1) in all other cases we

need a method for constructing connected edge colorings of Kn. The most convenient way to generate
such colorings is by using Cayley graphs. Recall that the Cayley graph of an abelian finite group C

with respect to the set S ⊂ C that satisfies S = −S, 0 6∈ S is the graph whose vertices are all members
of C where a, b ∈ C are connected iff a− b ∈ S. This is an |S|-regular graph. In certain cases it can be
shown that it is |S|-connected. This can be done either by combinatorial techniques or by using tools
from additive number theory; here we use both approaches.

Lemma 4.2 Let n be a positive integer, suppose 2t ≤ n− 3 and let

S = Zn − {−t,−(t− 1), . . . , 0, 1, . . . (t− 1), t}.

Then, the Cayley graph of Zn with respect to the set S is |S|-connected.

Proof: Suppose this is false. Then the complement of the graph contains a complete bipartite graph
H with 2t+ 2 vertices. Call the two color-classes ”red” and ”blue”.

Consider a red vertex u and a blue vertex v closest in the cyclic order. Suppose there are p uncolored
vertices between them. Let u′ be the vertex at distance t from u, measured away from v; let v′ be defined
analogously.

Since every colored vertex must be connected to either u or v, they are on the two arcs [u, u′] and
[v, v′] which are of length t + 1 each. The total number of vertices on these arcs is at most 2t + 2 and
hence

all vertices on these two arcs are colored. (4)
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These two arcs cannot overlap or touch at u′ and v′. Indeed, if they do, then all vertices of H are on
an arc, implying that p = 0, and hence that n ≤ 2t+ 2, which contradicts the assumption 2t ≤ n− 3.

If the arc [u, u′] is all-red, and the arc [v, v′] is all-blue, then it is trivial to see that we have a red
vertex and a blue vertex farther than t apart, which is impossible.

If one of these arcs is not monochromatic, then, by the minimality in the choice of u, v, p = 0. Let
u′′ and v′′ be a pair of consecutive red and blue vertices on this arc. Replacing u and v by u′′ and v′′,
we get a contradiction with (4) above. 2

The following theorem characterizes all pairs of integers k, r for which f2(k, r) = k + r − 1.

Theorem 4.3 For every two integers k, r ≥ 2,

f2(k, r) = k + r − 1

if and only if k > 2, r > 2 and at least one of the two numbers is odd.

Proof: Put n = k + r − 1. By Corollary 4.1, if f2(k, r) = k + r − 1 then both k and r exceed 2 and at
least one of them is odd. To prove the converse, suppose k, r > 2 and assume, without loss of generality,
that k is odd. Define k − 1 = 2t, T = {−t,−(t − 1), . . . ,−1, 1, . . . (t − 1), t} and S = Zn − ({0} ∪ T ).
Then the Cayley graph of Zn with respect to S is |S| = (n− k)-connected, by Lemma 4.2, whereas the
Cayley graph of Zn with respect to T is |T | = (n − r)-connected, by a simple, well known result (c.f.,
e.g., [2], pp. 47-49.) It thus follows, by Theorem 3.1, that indeed f2(k, r) = k + r − 1. 2

The following well known theorem of Kneser (c.f., e.g., [9]) has numerous applications in additive
number theory.

Theorem 4.4 (Kneser) Let A, B be subsets of an abelian group G. Let H = {x : x+A+B = A+B}.
Then |A+B| ≥ |A+H|+ |B +H| − |H|.

Lemma 4.5 For any sequence of odd integers k1, . . . , km ≥ 2,

fm(k1, k2, . . . , km) = 1 +
m∑
i=1

(ki − 1).

Proof: By renumbering, if needed, the integers ki, we may assume that km ≥ k1 ≥ k2 ≥ . . . ≥ km−1.
Put n = 1 +

∑m
i=1(ki − 1) and ki − 1 = 2ti for all 1 ≤ i ≤ m. Note that n is odd. Split the integers

1, 2, . . . , (n − 1)/2 into disjoint intervals of consecutive elements of sizes t1, t2, . . . , tm, that is, define
z0 = 0, zi =

∑i
j=1 tj and Ii = {zi−1 + 1, zi−1 + 2, . . . , zi−1 + ti = zi}. Put, also, Ti = Ii ∪ (−Ii), and

Si = Zn− ({0}∪Ti). To complete the proof it suffices, in view of Theorem 3.1, to prove that the Cayley
graph Gi of Zn with respect to Si is |Si|-connected for all i. This holds for i = m, by the result in [2],
pp. 47-49 mentioned in the previous proof. It also holds for i = 1, by Lemma 4.2. For any other value of
i, note that since n is odd and 2ti ≤ (n− 1)/3, it follows that Si ∪{0} contains at least n/3 consecutive
elements and hence intersects every coset of every nontrivial subgroup of Zn. Let A ⊂ Zn be an arbitrary
set of vertices of Gi and put B = Si ∪ {0}. Note that (A + B) \ A is the set of all neighbors of A in
Gi that lie outside A and hence if A+B = Zn then A cannot be separated from any nonempty subset
of the graph (by deleting vertices outside A). Otherwise, define H = {x ∈ Zn : x + A + B = A + B}
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and note that H is a subgroup of Zn. Since B intersects every coset of every nontrivial subgroup of Zn,
and as A+B +H = A+B is a union of cosets of H and A+B is not the whole group, it follows that
H = {0} is the trivial subgroup. Thus, by Kneser’s Theorem,

|(A+B) \A| ≥ |A+H|+ |B +H| − |H| − |A| = |A|+ |B| − 1− |A| = |Si|.

It follows that A cannot be separated from any nonempty subset of vertices by deleting less than |Si|
vertices, implying that Gi is |Si| connected, and completing the proof. 2

The final ingredients in the proof of Theorem 1.1 are the following.

Lemma 4.6 Let V = Z2q−1 ∪ {v} be a set of 2q vertices. For each i ∈ Z2q−1, let Mi denote the perfect
matching consisting of all edges ab where a, b ∈ Z2q−1 are distinct and a + b = i (with addition taken
modulo 2q − 1) and one additional edge connecting v to i/2 (division computed in Z2q−1.) Suppose
k ≥ 2, and let Gk denote the graph on V whose edges are all edges of M0 ∪M1 ∪ . . . ∪Mk−1. Then Gk

is k-connected.

Proof: Note that the neighbors of v in Z2q−1 consist of two arcs: 0, 1, . . . , b(k − 1)/2c and q, q +
1, . . . , q + b(k − 2)/2c.

Suppose that a set T of k − 1 vertices separates Gk into two parts with classes of vertices S′ and
S′′. Obviously, T cannot separate v from the rest of the vertices (since v has degree k). Hence there
exist vertices i ∈ S′, i + 1, . . . , i + t − 1 ∈ T , and i + t ∈ S′′ (t ≥ 1). Obviously, i and i + t cannot be
adjacent, hence

i+ (i+ t) = 2i+ t 6≡ 0, 1, . . . , k − 1 (mod 2q − 1). (5)

The vertices i and i+ t have k − t common neighbors: the vertices −i,−i+ 1, . . . ,−i+ k − t− 1, and
clearly these must be in T . Moreover, these vertices are different from i, i + 1, . . . , i + t. Indeed, if
−i+s = i+r for some 0 ≤ s ≤ k− t−1, 0 ≤ r ≤ t, then 2i+ t = s−r+ t ∈ {0, . . . , k−1}, contradicting
(5).

Thus T contains i+1, . . . , i+t−1 as well as−i,−i+1, . . . ,−i+k−t−1. These are (t−1)+(k−t) = k−1
vertices, and so T cannot contain any other ones. Since every pair of consecutive non-adjacent vertices
j, j + 1 have k − 1 common neighbors −j,−j + 1, . . . ,−j + k − 2, it follows that if j, j + 1 are not
in T , then either both of them are in S′ or both are in S′′. Therefore, the vertices in V − (T ∪ {v})
form two arcs along the cycle Z2q−1, the sets A′ = {−i + k − t,−i + k − t + 1, . . . , i} ⊆ S′ and
A′′ = {i+ t, i+ t+ 1, . . . ,−i− 1} ⊆ S′′.

To conclude, it suffices to show that the set of neighbors of v contains a member of S′ as well as a
member of S′′, contradicting the assumption that T separates S′ and S′′. Interchanging the roles of −i
and i+ 1 if necessary, we may assume that 0 ≤ i ≤ q − 1.

First, consider the set A′. Vertex 0 is a neighbor of v and it is in A′ unless −i + k − t > 0; in this
latter case −i + k − t ∈ A′ is a neighbor of v unless −i + k − t > b(k − 1)/2c. But this last inequality
implies that 0 ≤ 2i+ t ≤ 2bk/2c − t ≤ k − 1, contradicting (5).

Second, consider A′′. Vertex q is a neighbor of v and it is in A′′ unless i+ t > q; in this latter case
i+t ∈ A′′ is a neighbor of v unless i+t > q+b(k−2)/2c, which implies that 2i+t ≥ 2q+2bk/2c−t ≥ 2q−1.
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On the other hand, we have 2i+t ≤ 2(q−1)+k = (2q−1)+(k−1). This contradicts (5), and completes
the proof. 2

Corollary 4.7 For every m > 2 and every sequence of integers k1, k2, . . . , km ≥ 2 such that n =
1 +

∑m
i=1(ki − 1) is even,

fm(k1, . . . , km) = n.

Proof : Define z0 = 0, zi =
∑i
j=1(ki−1) and consider the coloring of the complete graph on Z2q−1∪{v}

in which color class number i consists of all edges in the matchings ∪zij=zi−1
Mj . Since each of the graphs

consisting of all edges except those of a fixed color is a union of consecutive matchings, its connectivity
equals its degree of regularity, by the last lemma. The result thus follows from Theorem 3.1. 2

Proof of Theorem 1.1: The fact that for all k1, . . . , km that satisfy (i) or (ii), fm(k1, . . . , km) >
1 +

∑m
i=1(ki − 1) follows from Corollary 4.1. The main part of the theorem follows from Theorem 4.3,

Lemma 4.5 and Corollary 4.7. 2

5 Concluding remarks

• The construction described in Section 2 provides the value of f2(k, k) = 2k − 1 for k = (p+ 1)/2,
where p ≡ 1(mod 4) is a prime. This follows from Theorem 1.1 as well as from Theorem 4.3
or Lemma 4.5, and in fact the graphs corresponding to this construction are the Paley graphs,
which are Cayley graphs of Zp with respect to all quadratic non-residues. These graphs are self
complementary.

• Lemma 4.5, for the special case in which p =
∑m
i=1(ki−1) is a prime, can be proved in a simpler way

by a general construction, as it is easy to show, using the Cauchy-Davenport Theorem (see [3]),
that the Cayley graph of Zp with respect to any symmetric set S of generators, is |S|-connected.

• By the proof of Theorem 3.1 whenever fm(k1, . . . , km) = 1 +
∑m
i=1(ki − 1) then this can be

demonstrated by real vectors, and there is no need to use the complex field.

• Our main result here characterizes all cases in which fm(k1, . . . , km) = 1 +
∑m
i=1(ki − 1). The

problem of determining the precise value of fm(k1, . . . , km) for all admissible values ofm, k1, . . . , km

seems difficult and remains open, and so does the more general problem of characterizing all
sequences of integers k1, k2, . . . , km, n such that there is an UPB of size n in Ck1 ⊗ . . .⊗ Ckm .
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