MAXIMUM SHATTERING

NOGA ALON, VARUN SIVASHANKAR, AND DANIEL G. ZHU

ABSTRACT. A family F of subsets of $[n] = \{1, 2, \ldots, n\}$ shatters a set $A \subseteq [n]$ if for every $A' \subseteq A$ there is an $F \in \mathcal{F}$ such that $F \cap A = A'$. We develop a framework to analyze $f(n, k, d)$, the maximum possible number of subsets of [*n*] of size *d* that can be shattered by a family of size *k*. Among other results, we determine $f(n, k, d)$ exactly for $d \leq 2$ and show that if *d* and *n* grow, with both *d* and $n - d$ tending to infinity, then, for any *k* satisfying $2^d \le k \le (1 + o(1))2^d$, we have $f(n, k, d) = (1 + o(1))c{n \choose d}$, where *c*, roughly 0.289, is the probability that a large square matrix over \mathbb{F}_2 is invertible. This latter result extends work of Das and Mészáros. As an application, we improve bounds for the existence of covering arrays for certain alphabet sizes.

1. INTRODUCTION

Let $\mathcal{F} \subseteq 2^{[n]}$ be a family of subsets of $[n] = \{1, 2, \ldots, n\}$. A set $A \subseteq [n]$ is *shattered* by \mathcal{F} if ${A \cap S : S \in \mathcal{F}} = 2^A$, that is, if for every subset $A' \subseteq A$ there exists some $F \in \mathcal{F}$ such that *F*∩*A* = *A'*. The well-known Sauer-Perles-Shelah lemma [\[Sau72;](#page-13-0) [She72\]](#page-14-0) states that if $|\mathcal{F}|$ > $\sum_{i=0}^{d-1} {n \choose i}$ $\binom{n}{i}$ then $\mathcal F$ shatters at least one set of size at least d . A slightly stronger result, first proved by Pajor [\[Paj85\]](#page-13-1) (see also [\[ARS02\]](#page-13-2)), asserts that any family $\mathcal F$ shatters at least $|\mathcal F|$ distinct subsets. This implies the previous statement since if more than $\sum_{i=0}^{d-1} \binom{n}{i}$ $\binom{n}{i}$ subsets are shattered, then at least one of these subsets has size greater than *d* − 1. Combining this result with the Kruskal-Katona Theorem [\[Kru63;](#page-13-3) [Kat68\]](#page-13-4), it is possible to determine, for all *n*, *k*, and *d*, the minimum possible number of subsets of size *d* of [*n*] that are shattered by any family of *k* distinct subsets of [*n*] (see [Section 6.1](#page-11-0) of this paper for more details).

Our objective in the present paper is to study the opposite question: given positive integers *n*, k, and *d*, what is the *largest* number of subsets of size *d* that a family of sets $\mathcal{F} \subseteq 2^{[n]}$ of size at most *k* can shatter?^{[1](#page-0-0)} Denote this number by $f(n, k, d)$. It is clear that this number is 0 if $k < 2^d$ or *n < d* and that for every fixed *d* it is weakly increasing in *n* and in *k*. Moreover,

$$
f(n,k,1) = \begin{cases} 0 & k=1\\ n & k \ge 2 \end{cases}
$$

by placing both \emptyset and $[n]$ in F. Thus, the interesting cases are those where $d \geq 2$, $k \geq 2^d$, and $n \geq d$.

In this paper, we first demonstrate that the exact values of $f(n, k, 2)$ follow from work of Kleitman and Spencer [\[KS73\]](#page-13-5) on pairwise independent sets. In the case where $k = 2^d$, Das and Mészáros [\[DM18\]](#page-13-6) obtained the following bound:

Department of Mathematics, Princeton University, Princeton, NJ 08544, USA

E-mail addresses: nalon@math.princeton.edu, varunsiva@princeton.edu, zhd@princeton.edu.

The first author was supported by NSF grant DMS-2154082. The third author was supported by the NSF Graduate Research Fellowships Program (NSF grant DGE-2039656).

¹The sole purpose of specifying $|\mathcal{F}| \leq k$ instead of $|\mathcal{F}| = k$ is to prevent $f(n, k, d)$ from being undefined when $k > 2^n$.

Theorem 1.1 ([\[DM18\]](#page-13-6)). For any $n \geq d \geq 1$, we have

$$
c_d \binom{n}{d} \le f(n, 2^d, d) \le \frac{c_d n^d}{d!},
$$

where

$$
c_d = \frac{(2^d - 2)(2^d - 4) \cdots (2^d - 2^{d-1})}{(2^d - 1)^{d-1}}
$$

is the probability that d independent uniformly random vectors in $\mathbb{F}_2^d \setminus \{0\}$ *are linearly independent. Moreover, if n is a multiple of* $2^d - 1$ *, equality holds in the upper bound.*

Whenever $n \gg d^2$, the quantities $\binom{n}{d}$ $\binom{n}{d}$ and $\frac{n^d}{d!}$ $\frac{a^{\alpha}}{d!}$ are quite close, so [Theorem 1.1](#page-0-1) gives tight bounds. In particular, it implies that for fixed *d*,

$$
f(n, 2^d, d) = (1 + o(1)) \frac{c_d n^d}{d!}.
$$

For smaller values of *n* compared to *d*, we can still get tight bounds at the expense of requiring that d and $n - d$ grow.

Theorem 1.2. If *d* and *n* grow, with both *d* and $n - d$ *tending to infinity, then* $f(n, 2^d, d) =$ $(1 + o(1))c^n$ *d*), where $c = \lim_{d \to \infty} c_d = \prod_{i=1}^{\infty} (1 - 2^{-i}) \approx 0.289$.

To prove [Theorem 1.2,](#page-1-0) we develop a more general theory of the function $f(n, k, d)$ based on determining the Lagrangians of relevant hypergraphs, which also reproduces [Theorem 1.1.](#page-0-1) Although we do not have matching upper and lower bounds when $k > 2^d$, we are nonetheless able to prove structural results concerning continuity and the types of asymptotic growth encountered in various regimes. One particular consequence is the following strengthening of [Theorem 1.2:](#page-1-0)

Theorem 1.3. If $d \geq 1$, $k \geq 2^d$, and $n \geq d$ are growing positive integers such that d and $n - d$ tend *to infinity and* $k = (1 + o(1))2^d$, then $f(n, k, d) = (1 + o(1))c\binom{n}{d}$ $\binom{n}{d}$.

Finally, we connect the results of this paper to the theory of covering arrays. In addition to reproducing many results in the literature, we are able to improve the best-known bounds for the existence of covering arrays for certain alphabet sizes, the smallest of which are 35, 40, and 45.

Outline. [Section 2](#page-1-1) develops a framework for analyzing the asymptotics of $f(n, k, d)$. In [Section 3](#page-4-0) we derive the precise value of $f(n, k, 2)$ for all n and k by combining a result of Kleitman and Spencer with Turán's Theorem. [Section 4](#page-5-0) deals with the case $k = 2^d$, and quickly derives [Theorems 1.1](#page-0-1) to [1.3](#page-1-2) from more general results. Several bounds for the case $k > 2^d$ are discussed in [Section 5,](#page-7-0) and the final [Section 6](#page-11-1) contains some concluding remarks, including the application to covering arrays.

2. THE ASYMPTOTIC STRUCTURE OF $f(n, k, d)$

2.1. **Shattering hypergraphs and Lagrangians.** A family of sets $\mathcal{F} \subseteq 2^{[n]}$ of size at most *k* can be represented by a $k \times n$ binary matrix, where the rows are the indicator vectors of the sets $S \in \mathcal{F}$. Say a $k \times d$ binary matrix is *shattered* if each of the 2^d possible rows appears among its *k* rows. Then, $f(n, k, d)$ is the maximum possible number of shattered $k \times d$ submatrices of a binary $k \times n$ matrix.

With this interpretation in mind, we make the following definition, generalizating a construction in [\[DM18\]](#page-13-6):

Definition 2.1. For integers $d \geq 1$ and $k \geq 2^d$, we define $H(k, d)$ to be the *d*-uniform hypergraph with vertex set $\{0,1\}^k$, i.e. the set of binary vectors of length *k*. A collection of *d* such vectors forms an edge if and only if the $k \times d$ matrix with these vectors as columns is shattered.

We also recall the definition of the Lagrangian of a hypergraph, first considered by Frankl and Füredi [\[FF88\]](#page-13-7) and by Sidorenko [\[Sid87\]](#page-14-1), extending the application of this notion for graphs, initiated by Motzkin and Straus [\[MS65\]](#page-13-8).

Definition 2.2. The *Lagrangian polynomial* of a *d*-uniform hypergraph *H* is the polynomial

$$
P_H((x_v)_{v \in H}) = \sum_{e \in E(H)} \prod_{v \in e} x_j.
$$

The *Lagrangian* $\lambda(H)$ of *H* is the maximum value of P_H over the simplex $\{(x_v)_{v \in H} : x_v \ge 0, \sum_v x_v =$ 1}, which necessarily exists as the simplex is compact.

We now relate $f(n, k, d)$ to the above definitions.

Lemma 2.3. For integers $n \geq d \geq 1$ and $k \geq 2^d$,

$$
d!\lambda(H(k,d))\binom{n}{d} \le f(n,k,d) \le \lambda(H(k,d))n^d.
$$

Equality holds in the upper bound if and only if P^H is maximized at a point where all coordinates are in $\frac{1}{n}\mathbb{Z}$.

Proof. For the upper bound, suppose M is a $k \times n$ binary matrix with $f(n, k, d)$ shattered $k \times d$ submatrices. For each $v \in \{0,1\}^k$, let m_v denote the number of columns of *M* which are equal to *v* and define a weight $x_v = m_v/n$. These weights are clearly nonnegative and their sum is 1. We claim that

$$
P_{H(k,d)}((x_v)_{v \in \{0,1\}^k}) = f(n,k,d)/n^d,
$$

which will show the bound and the equality case by the definition of the Lagrangian. Indeed, every edge $\{v_1, v_2, \ldots, v_d\}$ of $H(k, d)$ contributes to the left-hand side exactly $m_{v_1}m_{v_2}\cdots m_{v_d}/n^d$, which is precisely the number of (shattered) $k \times d$ submatrices of *M* with columns v_1, v_2, \ldots, v_d (in any order), divided by n^d . Summing over all edges of $H(k, d)$ yields the desired upper bound.

For the lower bound, suppose $\mathbf{x} = (x_v)_{v \in \{0,1\}^k}$ is such that $P_{H(k,d)}(\mathbf{x}) = \lambda(H(k,d))$. Let M be a $k \times n$ random binary matrix obtained by independently picking each column to be $v \in \{0,1\}^k$ with probability x_v . Given any $k \times d$ submatrix of M, the probability that it is shattered is $d! \lambda(H(k, d))$, since for every $\{v_1, v_2, \ldots, v_d\} \in E(H(k, d))$ the probability that the matrix has columns v_1, v_2, \ldots, v_d in some order is exactly $d!x_{v_1}x_{v_2}\cdots x_{v_d}$. Thus, by linearity of expectation, the expected number of shattered $d \times k$ submatrices of *M* is $d! \lambda(H(k, d))\binom{n}{d}$ $\binom{n}{d}$. □

By fixing *k* and *d*, and letting *n* grow to infinity, we obtain the following:

Corollary 2.4. For integers $d \geq 1$ and $k \geq 2^d$, we have $f(n, k, d) = (1 + o(1))\lambda(H(k, d))n^d$.

In what follows, we let $c(k, d) = d! \lambda(H(k, d)).$

2.2. **Relating different choices of** (k, d) **.** We start by remarking that since $f(n, k, d)$ is weakly increasing in k , the quantity $c(k, d)$ must also be weakly increasing in k . Another relation comes from the following simple property of the function $f(n, k, d)$:

Lemma 2.5. For integers $d \geq 1$, $k \geq 2^{d+1}$, and $n \geq d+1$, we have

$$
f(n, k, d+1) \le \frac{n}{d+1} f(n-1, \lfloor k/2 \rfloor, d).
$$

Proof. Let *M* be a $k \times n$ binary matrix with $f(n, k, d+1)$ shattered $k \times (d+1)$ submatrices. Let *v* be a fixed column of M ; without loss of generality assume that the number of zeros it contains, k' , is at most $\lfloor k/2 \rfloor$. Let M' be the submatrix of M consisting of all k' rows of M in which v has a zero, and all columns besides *v*. Note that for every $k \times (d+1)$ shattered submatrix of *M* that

FIGURE 1. An illustration of the relationship between γ_1 , γ_2 , γ_3 , and γ_∞ . Aside from γ_1 , which is easily seen to be constant at 1, all values are for illustrative purposes only.

contains *v*, the corresponding $k' \times d$ submatrix of M' must be shattered. Therefore, the number of shattered $k \times (d+1)$ submatrices of *M* that contain *v* is at most $f(n-1, \lfloor k/2 \rfloor, d)$. Summing over all columns *v* of *M*, each shattered $k \times (d+1)$ submatrix is counted $d+1$ times, implying the desired result. □

Applying [Corollary 2.4](#page-2-0) implies the following:

Corollary 2.6. For integers $d \geq 1$ and $k \geq 2^{d+1}$, we have $c(k, d+1) \leq c(|k/2|, d)$.

One helpful way to conceptualize this bound is to define, for every positive integer *d*, the weakly increasing step function γ_d : $[1,\infty) \to \mathbb{R}$ given by $\gamma_d(b) = c(\lfloor 2^d b \rfloor, d)$. Then, [Corollary 2.6](#page-3-0) rewrites as $\gamma_{d+1}(b) \leq \gamma_d(b)$. In particular, by the monotone convergence theorem, the limit $\gamma_{\infty}(b) := \lim_{d \to \infty} \gamma_d(b)$ exists. An illustration of this situation is shown in [Figure 1.](#page-3-1)

Proposition 2.7. *γ*[∞] *is right-continuous.*

Proof. Take some $b \ge 1$ and $\varepsilon > 0$. There must exist some *d* where $\gamma_d(b) < \gamma_\infty(b) + \varepsilon$. Since γ_d is a step function, there exists some $\delta > 0$ such that $\gamma_d(b + \delta) = \gamma_d(b)$. Then for all $b < b' < b + \delta$, we have

$$
\gamma_{\infty}(b') \le \gamma_d(b') = \gamma_d(b) < \gamma_{\infty}(b) + \varepsilon.
$$

Since ε was arbitrary, γ_{∞} is right-continuous, as desired. □

The following lemma is now the appropriate generalization of [Theorem 1.3.](#page-1-2)

Lemma 2.8. Let $b \geq 1$ be a real number. If *d*, *k*, and *n* are growing positive integers such that *d* and $n-d$ tend to infinity, $k = (b+o(1))2^d$, and $k \geq b2^d$ always, then $f(n, k, d) = (\gamma_\infty(b) + o(1))\binom{n}{d}$ $\binom{n}{d}$.

Proof. To show the lower bound, note that by [Lemma 2.3,](#page-2-1) we have

$$
f(n,k,d) > c(k,d) \binom{n}{d} \ge c(\lfloor b2^d \rfloor,d) \binom{n}{d} = \gamma_d(b) \binom{n}{d} \ge \gamma_\infty(b) \binom{n}{d}.
$$

To show the upper bound, we choose an integer $0 \leq r < d$ so that $1 \ll (d-r)^2 \ll n-d$. Applying Lemma $2.5 r$ times and then Lemma 2.3 , we get

$$
f(n,k,d) \le \frac{n(n-1)\cdots(n-r+1)}{d(d-1)\cdots(d-r+1)} f(n-r, \lfloor k/2^r \rfloor, d-r)
$$

\$\le c(\lfloor k/2^r \rfloor, d-r) \frac{n(n-1)\cdots(n-r+1)(n-r)^{d-r}}{d!}\$.

Since $(d - r)^2 \ll n - d \leq n - r$, we find that

$$
\binom{n}{d} / \frac{n(n-1)\cdots(n-r+1)(n-r)^{d-r}}{d!} = \frac{(n-r)(n-r-1)\cdots(n-d+1)}{(n-r)^{d-r}} \n= \left(1 - \frac{1}{n-r}\right)\left(1 - \frac{2}{n-r}\right)\cdots\left(1 - \frac{d-r-1}{n-r}\right) \n= 1 + o(1),
$$

so it suffices to show that $c(\lfloor k/2^r \rfloor, d-r) = \gamma_{d-r}(k/2^d)$ is bounded above by $\gamma_\infty(b) + o(1)$. Indeed, for every $\varepsilon > 0$, since $k/2^d$ is eventually less than $b + \varepsilon$, we eventually have $\gamma_{d-r}(k/2^d) \leq \gamma_{d-r}(b+\varepsilon)$ $\gamma_{\infty}(b+\varepsilon) + o(1)$. The result follows from [Proposition 2.7.](#page-3-2)

Remark 2.9. The assumption that *n*−*d* tends to infinity is necessary for [Lemma 2.8](#page-3-3) to hold. Indeed, we trivially have $f(n, 2^n, n) = 1$ (= $\binom{n}{n}$ (n, n) , and it is also easy to see that $f(n, 2^{n-1}, n-1) = n$ (= $\binom{n}{n-1}$ $\binom{n}{n-1}$ by taking the collection of all even-sized subsets of [*n*]. On the other hand, $\gamma_{\infty}(1) < 1$.^{[2](#page-4-1)} In fact, for any fixed *s* it can be shown that $f(n, 2^{n-s}, n-s) \geq C_s {n \choose n-s}$ $\binom{n}{n-s}$ for some constant $C_s > \gamma_\infty(1)$.

3. SHATTERING PAIRS

To begin, we recall a result of Kleitman and Spencer [\[KS73\]](#page-13-5). For a positive integer $k \geq 4$, call a collection $\mathcal{K} \subseteq 2^{[k]}$ *(qualitatively) pairwise independent* if for every two distinct $A, B \in \mathcal{K}$, all four intersections $A \cap B$, $A \cap \overline{B}$, $\overline{A} \cap B$, and $\overline{A} \cap \overline{B}$ are nonempty, where $\overline{A} = [k] \setminus A$ and $\overline{B} = [k] \setminus B$. We then have the following:

Lemma 3.1 ([\[KS73\]](#page-13-5))**.** *The maximum possible size of a pairwise independent collection of subsets of* $|k|$ *is*

$$
\binom{k-1}{\lfloor k/2 \rfloor - 1}.
$$

Given this result, the exact value of $f(n, k, 2)$ follows quite quickly:

Proposition 3.2. *For* $k \geq 4$ *,*

$$
f(n,k,2) = t\left(n, \binom{k-1}{\lfloor k/2 \rfloor - 1}\right),
$$

where

$$
t(n,r) = \sum_{0 \le i < j \le r-1} \left\lfloor \frac{n+i}{r} \right\rfloor \left\lfloor \frac{n+j}{r} \right\rfloor
$$

is the number of edges of the Turán graph $T(n,r)$ *, defined to be the complete r-partite graph with n vertices and r vertex classes with cardinalities that are as close as possible. In particular,*

$$
c(k,2) = 1 - \frac{1}{\binom{k-1}{\lfloor k/2 \rfloor - 1}}.
$$

²We will determine the exact value of $\gamma_{\infty}(1)$ later, but an easy way to see this now is to use the fact that *every d*-uniform hypergraph with $d \geq 2$ has a Lagrangian strictly less than $1/d!$.

Proof. We use the binary matrix interpretation developed in [Section 2.](#page-1-1) Given a $k \times n$ binary matrix *M*, construct a graph *G* on the columns of *M* by placing an edge between any two columns such that the corresponding $k \times 2$ submatrix is shattered. Thus, the number of shattered pairs is precisely the number of edges of *G*.

By associating subsets of [*k*] with their indicator vectors, [Lemma 3.1](#page-4-2) implies that the clique number of *G* is at most $w := \binom{k-1}{k/2}$ $\binom{k-1}{k/2}$. Therefore, *G* above is K_{w+1} -free, and so has at most $t(n, w)$ edges by Turán's Theorem. On the other hand, we can make equality hold by taking some pairwise independent $\mathcal{K} \in 2^{[k]}$ with $|\mathcal{K}| = w$, considering the indicator vectors of the elements of \mathcal{K} , and constructing a $k \times n$ matrix in which each of these *w* vectors appears either $|n/w|$ or $\lceil n/w \rceil$ times. \Box

4. THE CASE $k = 2^d$

We now state the key lemma for understanding the case $k = 2^d$, which was first proven in [\[DM18\]](#page-13-6):

Lemma 4.1 ([\[DM18\]](#page-13-6))**.** *For d a positive integer, we have*

$$
c(2^d, d) = \frac{(2^d - 2)(2^d - 4) \cdots (2^d - 2^{d-1})}{(2^d - 1)^{d-1}} =: c_d.
$$

Moreover, the Lagrangian polynomial of $H(2^d, d)$ *attains its maximal value at a point with all coordinates in* $\frac{1}{2^d-1}\mathbb{Z}$.

Given this result, [Theorem 1.1](#page-0-1) follows by applying [Lemma 2.3.](#page-2-1) It also implies that $\gamma_{\infty}(1)$ = $\lim_{d\to\infty} c_d = c$, so [Theorem 1.3](#page-1-2) follows from [Lemma 2.8.](#page-3-3) [Theorem 1.2](#page-1-0) is a special case of [Theorem 1.3.](#page-1-2)

For completeness, in this section we give two related proofs of the upper bound $c(2^d, d) \leq c_d$, the first of which works directly with the Lagrangian and is essentially the same as [\[DM18\]](#page-13-6), and the second of which uses a result of Erdős concerning degree majorization. The lower bound and its associated equality case will also be shown in [Section 5.1,](#page-7-1) where it will follow easily from some more general techniques.

In both proofs of the upper bound, we will need the following useful lemma, which appears in both $[DM18]$ and $[Alo24+]$.

Lemma 4.2. Let $d \geq 2$ and let $(p_i : 1 \leq i \leq 2^d - 1)$ be an arbitrary probability distribution on a set *of size* 2 *^d* − 1*. Then*

$$
\sum_{i} p_i (1-p_i)^{d-1} \le \left(\frac{2^d-2}{2^d-1}\right)^{d-1}.
$$

4.1. **Proof of upper bound using Lagrangians.** We apply induction on *d*. For $d = 1$, $H(2, 1)$ is a 1-uniform hypergraph with two edges (singletons) corresponding to the vectors 01 and 10. It is clear that $\lambda(H(2,1)) = 1 = c_1/1!$, as needed.

Assuming the result holds for $d-1$, we prove it for *d*, where $d \geq 2$. Let $D = 2^d$ and let *P* be the Lagrangian polynomial of $H(2^d, d) = H(D, d)$. Suppose it attains its maximum at the point $x = (x_v)_{v \in \{0,1\}^D}$, where the vector *x* has a support *S* of minimum possible size among all vectors maximizing *P*. By a well-known property of Lagrangians, every pair *u, v* of distinct vertices in *S* is contained in an edge of $H(D, d)$. Indeed, if not, then when fixing the values of all x_w where $w \neq u, v$, the function $P(x)$ is a linear function of x_u and x_v , so its maximum subject to the constraints $x_u, x_v \geq 0$ and $x_u + x_v = a$ for some *a* is attained at a point where either $x_u = 0$ or $x_v = 0$, which must have a smaller support. We may thus assume that every pair of vectors u, v with $x_u, x_v > 0$ is contained in an edge of *H*(*D, d*).

$$
\{((-1)^{v_1}, (-1)^{v_2}, \ldots, (-1)^{v_D}) : (v_1, v_2, \ldots, v_D) \in S\}
$$

are mutually orthogonal and are additionally orthogonal to the all-1s vector, we find that $|S| \leq D-1$.

Fix some $v \in S$ and let *I* denote the set of indices of its 2^{d-1} 0-coordinates. Then the link of *v* in $H(D, d)$ is a $(d-1)$ -uniform hypergraph in which every edge is a set of $d-1$ vectors whose *I*-coordinates form a $2^{d-1} \times (d-1)$ shattered matrix; in other words, after identifying vertices that have the same *I*-coordinates, this hypergraph becomes $H(2^{d-1}, d-1)$. By adding weights of identified vertices, it follows that the contribution of all edges containing v to the sum in the expression of $P(x)$ is at most $x_v \cdot \lambda (H(2^{d-1}, d-1))(1-x_v)^{d-1}$. By the induction hypothesis, $\lambda(H(2^{d-1},d-1)) \leq \frac{c_{d-1}}{(d-1)!}$. Summing over all *v* we get every term *d* times and hence

$$
P(\boldsymbol{x}) \leq \frac{1}{d} \cdot \frac{c_{d-1}}{(d-1)!} \sum_{v} x_v (1-x_v)^{d-1} \leq \frac{c_{d-1}}{d!} \left(\frac{2^d-2}{2^d-1}\right)^{d-1},
$$

where we have used [Lemma 4.2.](#page-5-1) This last quantity can be easily checked to be $c_d/d!$. (See Equation (2) in [\[Alo24+\]](#page-13-9) for a combinatorial explanation of this fact.)

4.2. **Proof of upper bound using degree majorization.** For this proof, we will use a result of Erdős, which was originally used to provide a proof of Turán's Theorem. Suppose *G* and *H* be two graphs on *n* vertices and let $d_1 \geq d_2 \geq \ldots \geq d_n$ be the degrees of the vertices of *G* and $f_1 \geq f_2 \ldots \geq f_n$ be the degrees of the vertices of *H*. Say *G* is *degree-majorized* by *H* if $d_i \leq f_i$ for all *i*.

Lemma 4.3 ([Erd70] [Erd70] [Erd70]). If *G* is a graph on *n* vertices that contains no clique of size $w + 1$ then it is *degree-majorized by some complete w-partite graph on n vertices.*

We now prove that $f(n, 2^d, d) \leq c_d n^d/d!$ by induction on *n*. As the case $d = 1$ is trivial, assume that the result holds for $d-1$ with $d \geq 2$; we will prove it for *d*.

Let *M* be a $2^d \times n$ binary matrix with the maximum possible number $f(n, 2^d, d)$ of shattered $2^d \times d$ submatrices. We may assume that every column of *M* contains exactly 2^{d-1} zeros and exactly 2^{d−1} ones. Construct the graph *G* on the columns of *M*, where two columns are joined by an edge if there are exactly 2^{d-2} coordinates in which both are 0 (which forces exactly 2^{d-2} coordinates in which one column is *a* and the other is *a'* for all $a, a' \in \{0, 1\}$. Note that for any fixed column *v*, the other columns in any shattered $2^d \times d$ submatrix of *M* that contains *v* must be connected to *v* in the graph *G*. Moreover, after deleting *v* and restricting to the 2^{d-1} rows in which *v* has a zero, we get a shattered $2^{d-1} \times (d-1)$ matrix. By the induction hypothesis this implies that if the degree of *v* in *G* is d_v , then the number of shattered $2^d \times d$ submatrices containing it is at most $c_{d-1}d_v^{d-1}/(d-1)!$.

By the same orthogonality argument as in [Section 4.1,](#page-5-2) the largest clique of *G* is of size at most $w = 2^d - 1$. Therefore, by [Lemma 4.3,](#page-6-0) there is a complete *w*-partite graph *H* on *n* vertices so that *G* is degree majorized by *H*. If the sizes of the vertex classes of this graph are n_1, n_2, \ldots, n_w , it follows that the vertices of *G* can be partitioned into subsets of sizes n_1, n_2, \ldots, n_w , where each of the n_i vertices in the *i*th subset has degree at most $n - n_i$. Summing over all columns v we conclude

$$
f(n, 2^d, d) \le \frac{1}{d} \sum_{i} n_i \frac{c_{d-1}}{(d-1)!} (n - n_i)^{d-1}
$$

=
$$
\frac{c_{d-1} n^d}{d!} \sum_{i} \frac{n_i}{n} \left(1 - \frac{n_i}{n}\right)^{d-1} \le \frac{c_{d-1} n^d}{d!} \left(\frac{2^d - 2}{2^d - 1}\right)^{d-1} n^d = \frac{c_d n^d}{d!},
$$

where the second inequality uses [Lemma 4.2](#page-5-1) on $(n_i/n)_{i \in [w]}$. This concludes the proof.

5. General *k*

As mentioned in the introduction, the behavior of $f(n, k, d)$ and $c(k, d)$ when $k > 2^d$ is less understood than the case $k = 2^d$. Although the discussion in [Section 3](#page-4-0) settles the case $d = 2$, we do not have any upper bounds better than using [Lemma 2.5](#page-2-2) to reduce to either the case $d = 2$ or the case $k = 2^d$. In this section, we detail lower bounds on $c(k, d)$ in two regimes: when $2^d \leq k \leq 2^{d+1}$ and when $k \gg 2^d$. The former case also contains the proof of the lower bound of [Lemma 4.2.](#page-5-1)

5.1. $k \leq 2^{d+1}$. All of our constructions will use the following lemma:

Lemma 5.1. Let $d \geq 1$ and $k \geq 2^d$ be integers. Let V be a d' -dimensional \mathbb{F}_2 -vector space and let *S* be a subset of *V* of size *k.* If p is the probability that a uniformly random linear map $V \to \mathbb{F}_2^d$ is *surjective when restricted to S, then there exists a* $k \times (2^{d'} - 1)$ *matrix with* $2^{dd'} p/d!$ *shattered* $k \times d$ *submatrices. In particular,*

$$
c(k,d) \ge \left(\frac{2^{d'}}{2^{d'}-1}\right)^d p.
$$

Proof. The matrix we will construct has its rows indexed by the elements of *S* and its columns indexed by the nonzero elements of the dual space V^* of *V*. Given $v \in S$ and nonzero $u \in V^*$, the corresponding entry is $\langle u, v \rangle$.

Every linear map $\varphi: V \to \mathbb{F}_2^d$ can be uniquely expressed as a tuple (u_1, u_2, \ldots, u_d) of dual vectors. If one of the u_i is zero or if $u_i = u_j$ for some $i \neq j$, then φ cannot be surjective. Otherwise, $\varphi(S) = \mathbb{F}_2^d$ if and only if the submatrix of *M* with columns given by u_1, u_2, \ldots, u_d is shattered. As a result, the $2^{dd'}p$ linear maps $V \to \mathbb{F}_2^d$ that are surjective on *S* each correspond to an ordered *d*-tuple of distinct columns of *M* that determine a shattered submatrix. As each shattered submatrix corresponds to *d*! such *d*-tuples, there are $2^{dd'}p/d!$ shattered submatrices, as desired. □

Proof of lower bound and equality case of [Lemma 4.1.](#page-5-3) We apply [Lemma 5.1](#page-7-2) with $V = S = \mathbb{F}_2^d$. In this case, *p* is the probability that a random $d \times d$ \mathbb{F}_2 -matrix is invertible, which is exactly

$$
\frac{(2^d-2^0)(2^d-2^1)\cdots(2^d-2^{d-1})}{2^{d^2}}=\frac{(2^d-1)^d c_d}{2^{d^2}}.
$$

Thus we get $c(2^d, d) \geq c_d$. The fact that a $2^d \times (2^d - 1)$ matrix exists with $c_d(2^d - 1)^d/d!$ shattered submatrices implies, by [Lemma 2.3,](#page-2-1) that the corresponding Lagrangian polynomial attains a value of $c_d/d!$ at a point on $\frac{1}{2^d-1}$ $\mathbb Z$.

Lemma 5.2. For integers $d \geq 1$ and $0 \leq r \leq d$, we have $c((2 - 2^{-r})2^d, d) \geq (2 - 2^{-r})c_{d+1}$.

Proof. We apply [Lemma 5.1](#page-7-2) with *V* a $(d+1)$ -dimensional space and $S = V \setminus W$, where *W* is a $(d - r)$ -dimensional subspace of *V*. Consider a linear map $\varphi: V \to \mathbb{F}_2^d$ and the induced map $\bar{\varphi}: V/W \to \mathbb{F}_2^d/\varphi(W)$. Since *S* is the union of translates of *W*, the map φ is surjective on *S* if and only if $\overline{\varphi}$ is surjective on the nonzero elements of V/W . If φ is not injective on W this is impossible, since $|V/W| \leq |\mathbb{F}_2^d/\varphi(W)|$. If φ is injective on *W*, then this occurs if and only if $\bar{\varphi}$ is surjective, since the fact that $\dim(V/W) = \dim(\mathbb{F}_2^d/\varphi(W)) + 1$ implies that every element in the codomain has a preimage of size exactly 2.

If φ is chosen uniformly at random, the probability that $\varphi|_W$ is injective is

$$
\frac{(2^d-2^0)(2^d-2^1)\cdots(2^d-2^{d-r-1})}{2^{d(d-r)}}.
$$

If we fix $\varphi|_W$, then $\bar{\varphi}$ is uniformly distributed, so the probability that it is surjective is the probability that a random $r \times (r+1)$ \mathbb{F}_2 -matrix has rank *r*, which is

$$
\frac{(2^{r+1}-2^0)(2^{r+1}-2^1)\cdots(2^{r+1}-2^{r-1})}{2^{r(r+1)}}.
$$

We conclude that, with *p* defined as in [Lemma 5.1,](#page-7-2)

$$
p = \frac{(2^d - 2^0)(2^d - 2^1) \cdots (2^d - 2^{d-r-1})}{2^{d(d-r)}} \cdot \frac{(2^{r+1} - 2^0)(2^{r+1} - 2^1) \cdots (2^{r+1} - 2^{r-1})}{2^{r(r+1)}} \\
= \frac{(2^d - 2^0)(2^d - 2^1) \cdots (2^d - 2^{d-r-1})}{2^{d(d-r)}} \cdot \frac{(2^d - 2^{d-r-1})(2^d - 2^{d-r-2}) \cdots (2^d - 2^{d-2})}{2^{dr}} \\
= \frac{(2^d - 2^0)(2^d - 2^1) \cdots (2^d - 2^{d-1})}{2^{d^2}} \cdot \frac{2^d - 2^{d-r-1}}{2^d - 2^{d-1}} \\
= (2 - 2^{-r}) \frac{(2^d - 2^0)(2^d - 2^1) \cdots (2^d - 2^{d-1})}{2^{d^2}} \\
= (2 - 2^{-r}) \left(\frac{2^{d+1} - 1}{2^{d+1}}\right)^d c_{d+1}.
$$
\nThe result follows.

It seems plausible to conjecture that the lower bounds in [Lemmas 4.1](#page-5-3) and [5.2](#page-7-3) are the best possible; specifically, that for every $d > 2$,

$$
c(k,d) = \begin{cases} c_d & 2^d \le k < \frac{3}{2} \cdot 2^d \\ \frac{3}{2}c_{d+1} & \frac{3}{2} \cdot 2^d \le k < \frac{7}{4} \cdot 2^d \\ \frac{7}{4}c_{d+1} & \frac{7}{4} \cdot 2^d \le k < \frac{15}{8} \cdot 2^d \\ \vdots & (2-2^{-d})c_{d+1} & k = 2^{d+1} - 1. \end{cases}
$$

A heuristic computer search was unable to disprove this conjecture in the cases $(k, d) = (9, 3), (10, 3)$. However, it should be noted that this statement for $d = 2$ is in fact false by [Proposition 3.2.](#page-4-3) A safer conjecture to make may be that these bounds are optimal in the limit $d \to \infty$, i.e. for $1 \leq b < 2$, we have $\gamma_{\infty}(b) = (2 - 2^{\lceil \log_2(2 - b) \rceil})c$. This function is plotted in [Figure 2.](#page-9-0)

5.2. **Very large** *k***.** We start with the following observation:

Lemma 5.3. *Let* $d \geq 1$, $k_1, k_2 \geq 2^d$, and $n_1, n_2 \geq d$ be integers. Then

$$
(n_1n_2)^d - d!f(n_1n_2, k_1 + k_2, d) \le (n_1^d - d!f(n_1, k_1, d))(n_2^d - d!f(n_2, k_2, d)).
$$

Proof. Given a $k \times n$ matrix *M*, let X_M be a random $k \times d$ matrix obtained by choosing *d* columns of *M* independently and uniformly at random. Note that if *M* has *m* shattered $k \times d$ submatrices, the probability that X_M is shattered is precisely $d!m/n^d$.

Suppose M_1 and M_2 are $k_1 \times n_1$ and $k_2 \times n_2$ matrices with $f(n_1, k_1, d)$ and $f(n_2, k_2, d)$ shattered $k \times d$ submatrices, respectively. Then, let *M* be the $(k_1 + k_2) \times (n_1 n_2)$ matrix whose columns are the concatenations of any column of M_1 and any column of M_2 . It is evident that X_M consists of X_{M_1} stacked on top of an independent X_{M_2} , so

 $\mathbb{P}[X_M \text{ not shattered}] \leq \mathbb{P}[X_{M_1} \text{ not shattered}] \cdot \mathbb{P}[X_{M_2} \text{ not shattered}].$

The result follows after some algebra. □

FIGURE 2. The function $b \mapsto (2 - 2^{\lceil \log_2(2 - b) \rceil})c$, which is both the best known lower bound and conjectured form for $\gamma_{\infty}(b)$ in the range [1, 2).

Taking the limit $n \to \infty$, we conclude that $(1 - c(k_1 + k_2, d)) \leq (1 - c(k_1, d))(1 - c(k_2, d))$, or equivalently, $(1 - \gamma_d(b_1 + b_2)) \leq (1 - \gamma_d(b_1))(1 - \gamma_d(b_2))$. Taking the limit $d \to \infty$ shows that $(1 - \gamma_\infty(b_1 + b_2)) \leq (1 - \gamma_\infty(b_1))(1 - \gamma_\infty(b_2))$ as well. Applying Fekete's lemma to $\log(1 - \gamma_d(-))$ for possibly infinite *d*, we find that either $1 - \gamma_d(b) = \beta_d^{-(1+o(1))b}$ $\int_{d}^{-(1+o(1))b}$ for some finite $\beta_d = \sup_{b \ge 1} (1 - \gamma_d(b))^{-1/b}$ or $1-\gamma_d(b)$ decays superexponentially. [Proposition 3.2](#page-4-3) not only tells us that $\beta_2 = 16$, but also rules out superexponential decay for all $d \geq 2$ as $1 - \gamma_d(b) \geq 1 - \gamma_2(b)$. Note that $\gamma_2(b) \geq \gamma_3(b) \geq \cdots \geq \gamma_{\infty}(b)$ implies that $\beta_2 \geq \beta_3 \geq \cdots \geq \beta_{\infty}$.

The following simple observation ends up outperforming all other lower bounds considered in this paper when *b* is larger than a constant times *d*.

Proposition 5.4. $\beta_d \geq (1 - 2^{-d})^{-2^d} = e(1 + (\frac{1}{2} + o(1))2^{-d}).$

Proof. Consider a uniformly random $k \times d$ binary matrix. The probability that a fixed element of $\{0,1\}^d$ does not appear as a row is $(1-2^{-d})^k$, so the matrix is shattered with probability at least $1-2^d(1-2^{-d})^k$. By picking uniformly random $k \times n$ binary matrices for large *n* (or, equivalently, by plugging in a constant vector to the Lagrangian polynomial), we find that $c(k, d) \geq 1 - 2^d (1 - 2^{-d})^k$. The result follows.

It is in fact possible to squeeze a bit more out of this idea by slightly optimizing the random process.

Proposition 5.5.
$$
\beta_d \ge \sup_{t \in \mathbb{R}} ((\cosh t)^d - e^{dt}/2^d)^{-2^d} = e(1 + (\frac{d+1}{2} + o(1))2^{-d}).
$$

Proof. Let $\beta'_d = \sup_{t \in \mathbb{R}} ((\cosh t)^d - e^{dt}/2^d)^{-2^d}$. Suppose *k* is even and choose a uniformly random $k \times d$ matrix subject to the condition that all columns have exactly $k/2$ zeros and $k/2$ ones (call a column *balanced* if this is true and a matrix balanced if all its columns are balanced). It suffices to show that the probability *p* that this matrix is not shattered is at most $(\beta'_d)^{-k/2^d}$ exp $(o_d(k))$, since then picking uniformly random balanced $k \times n$ matrices yields $c(k, d) \geq 1 - (\beta'_d)^{-k/2^d} \exp(o_d(k))$ for even *k*.

The number of balanced $k \times d$ matrices $\binom{k}{k}$ $\binom{k}{k/2}^d = 2^{dk + o_d(k)}$. Since toggling a column does not change whether it is balanced, to bound the number of balanced $k \times d$ matrices that are not shattered, it suffices to count balanced $k \times d$ matrices that lack an all-ones row, and then multiply by 2^d .

Treating a $k \times d$ matrix as an *k*-tuple of its rows, the number of balanced $k \times d$ matrices without an all-ones rows is exactly the coefficient of $(x_1 \cdots x_d)^{k/2}$ in the generating function $((1 + x_1) \cdots (1 + x_d) - x_1 \cdots x_d)^k$. Thus the number of such matrices is at most

$$
\frac{((1+x_1)\cdots(1+x_d)-x_1\cdots x_d)^k}{(x_1\cdots x_d)^{k/2}}
$$

for any choice of positive x_1, \ldots, x_d . Setting all the x_i to be equal to e^{2t} , this is

$$
\frac{(2^d e^{dt} (\cosh t)^d - e^{2dt})^k}{e^{dkt}} = 2^{dk} (\cosh(t)^d - e^{dt}/2^d)^k.
$$

Putting everything together, we find that

$$
p \le \frac{2^d 2^{dk} (\cosh t)^d - e^{dt} / 2^d)^k}{2^{dk + o_d(k)}} = (\cosh(t)^d - e^{dt} / 2^d)^k \exp(o_d(k)).
$$

By optimizing the choice of *t*, we get the desired bound.

We now compute the asymptotics of β'_d . Let $f(t) = (\cosh t)^d - e^{dt}/2^d$; by expanding out $(\cosh t)^d$, one can show that $f(t)$ is a positive linear combination of exponentials and is thus convex. Now, after computing

$$
f'''(t) = d(3d - 2)\sinh t(\cosh t)^{d-1} + d(d-1)(d-2)(\sinh t)^3(\cosh t)^{d-3} - d^3e^{dt}/2^d,
$$

we find that for $|t| \leq d^{-100}$, we have $|f'''(t)| \leq 1$ for large enough *d*. Therefore, by Taylor's theorem, we find that for large *d* and $|t| \le d^{-100}$, we have $|f(t) - g(t)| = O(t^3)$ and $|f'(t) - g'(t)| = O(t^2)$, where

$$
g(t) = 1 + dt^2/2 - \frac{1 - dt + d^2t^2/2}{2^d} = (1 - 2^{-d}) - d2^{-d} \cdot t + \frac{d + d^2/2^d}{2} \cdot t^2
$$

is the second-degree Taylor polynomial of $f(t)$ at $t = 0$.

Computing $g'(t) = (d + d^2/2^d)t - d2^{-d}$, we find that if we define $t_{\pm} = 2^{-d} \pm 2^{-1.5d}$, both $g'(t_{+})$ and $-g'(t_{-})$ are $\Omega(2^{-1.5d})$. Thus, $f'(t_{+})$ and $-f'(t_{-})$ are also $\Omega(2^{-1.5d})$, so by convexity *f* must be minimized in the interval $[t_-, t_+]$ for large *d*. Moreover, $g(t)$ is minimized at $t_0 = 2^{-d} + O(2^{-2d}) \in$ $[t_-, t_+]$, and $g(t_0) = 1 - 2^{-d} - (d/2 + o(1))2^{-2d}$. Therefore the minimum of *f*, which is $(\beta'_d)^{-1/2^d}$, is $g(t_0) + O(2^{-3d}) = 1 - 2^{-d} - (d/2 + o(1))2^{-2d}$. It is now straightforward to compute

$$
\log \beta_d' = -2^d \cdot \left(-2^d - \frac{d}{2} 2^{-2d} - \frac{1}{2} 2^{-2d} + o(2^{-2d}) \right) = 1 + \left(\frac{d+1}{2} + o(1) \right) 2^{-d}.
$$

The result follows. □

Remark 5.6. By the theory of large deviations in probability, this bound on β_d is in fact the best possible for this probabilistic procedure.

Remark 5.7. Although we have proved bounds on various β_d , it may not be the case that $\beta_{\infty} = \lim_{d \to \infty} \beta_d$. For instance, the functions $\min(2^{-x}, 3^{-x})$, $\min(2^{-x}, 3^{1-x})$, $\min(2^{-x}, 3^{2-x})$, ... are each individually $3^{-(1+o(1))x}$, but their pointwise limit is exactly 2^{-x} . The best bound we know for β_{∞} comes from using [Lemma 5.2](#page-7-3) to conclude $c(2^{d+1}, d) \geq (2 - 2^{-d})c_{d+1}$, which implies that $\gamma_{\infty}(2) \geq 2c$ and thus $\beta_{\infty} \geq (1 - 2c)^{-1/2} \approx 1.539$.

6. Concluding Remarks

6.1. **Minimum shattering for fixed** *d***.** As mentioned in the introduction, the problem of determining $q(n, k, d)$, which is the *minimum* possible number of subsets of size *d* of $[n]$ which are shattered by a family $\mathcal F$ of k distinct subsets of $[n]$, is much simpler than that of determining $f(n, k, d)$. An explicit formula for the value of $g(n, k, d)$ is somewhat complicated, we illustrate the way of computing it by describing the formula for some range of the parameters. Writing $\binom{n}{\leq d} = \sum_{i=0}^{d-1} \binom{n}{i}$ n_i , let $r \in [d, n]$ and suppose that *k* satisfies

$$
\binom{n}{

$$
\le \binom{n}{
$$
$$

We claim that in this range $g(n, k, d) = \binom{r}{d}$ *d* . To prove the upper bound it suffices to to establish it for the upper limit of this range, since $g(n, k, d)$ is clearly weakly increasing in k. Let F be the family of all subsets of size at most $d-1$ of $[n]$ together with all subsets of $[r]$. Then $|\mathcal{F}| = k$ and the *d*-subsets of $[n]$ it shatters are exactly all *d*-subsets of $[r]$. To prove the lower bound it suffices to prove that any family $\mathcal{F} \subseteq 2^{[n]}$ of size

$$
\binom{n}{
$$

shatters at least $\binom{r}{d}$ $_d^r$) subsets of size *d* of [*n*]. By the result of Pajor mentioned in the introduction, \mathcal{F} shatters at least $|\mathcal{F}|$ subsets of $[n]$. Note that the family of all shattered subsets forms a simplicial complex, namely, it is closed under taking subsets. This complex contains at most $\binom{n}{\leq d}$ subsets of size at most $d-1$. If it contains a subset of size r' for some $r' \geq r$, then it contains at least $\binom{r'}{d}$ $\binom{r'}{d} \geq \binom{r}{d}$ $\binom{r}{d}$ subsets of size *d*, as needed. Similarly, if it contains at least $\binom{r}{i}$ $\binom{r}{i}$ subsets of size *i* for some $i \geq d$, then by the Kruskal-Katona Theorem it contains at least $\binom{r}{d}$ $\binom{r}{d}$ subsets of size *d*, as required. If none of these conditions holds, then

$$
|\mathcal{F}| \leq {n \choose < d} + \left[{r \choose d} - 1 \right] + \left[{r \choose d+1} - 1 \right] + \left[{r \choose d+2} - 1 \right] + \dots + \left[{r \choose r-1} - 1 \right].
$$

which is smaller than the assumed size. This completes the proof of the claim providing an explicit formula for $g(n, k, d)$ in this range.

In general, the optimal construction comes from first putting all subsets of [*n*] with size less than *d* in F, and then adding the remaining subsets in lexicographic order, without regard to their size.

6.2. **Larger alphabets.** This problem, in the binary matrix formulation, naturally generalizes to an alphabet of size *v*. Most of the arguments in this paper generalize, with two main exceptions. First of all, we do not have an exact analogue of [Lemma 3.1,](#page-4-2) so the *d* = 2 case is significantly more mysterious. We note, however, that an asymptotic version of the analogue of [Lemma 3.1](#page-4-2) has been obtained by Gargano, Körner, and Vaccaro [\[GKV92\]](#page-13-11) using an elegant construction motivated by techniques from information theory.

Second, unless *v* is a prime or a prime power, constructions involving finite field linear algebra stop working. Nonetheless, it is still possible to salvage something. Letting *fv*(*n, k, d*) be the natural generalization of $f(n, k, d)$ to an alphabet of size v , we have the following:

 ${\bf Proposition 6.1.}$ $f_{v_1v_2}(n_1n_2, k_1k_2, d) \geq d! f_{v_1}(n_1, k_1, d) f_{v_2}(n_2, k_2, d)$

Proof. Consider matrices $M_1 \in [v_1]^{k_1 \times n_1}$ and $M_2 \in [v_2]^{k_2 \times n_2}$ with $f_{v_1}(n_1, k_1, d)$ and $f_{v_2}(n_2, k_2, d)$ shattered submatrices, respectively. Let $M \in ([v_1] \times [v_2])^{k_1 k_2 \times n_1 n_2}$ be such that for $i_1 \in [k_1], i_2 \in [k_2],$ *j*₁ ∈ [*n*₁], and *j*₂ ∈ [*n*₂], we have

$$
M_{(i_1,i_2),(j_1,j_2)} = ((M_1)_{i_1,j_1}, (M_2)_{i_2,j_2}).
$$

One can check that if the $k_1 \times d$ submatrix of M_1 given by columns j_1, \ldots, j_d and the $k_2 \times d$ submatrix of M_2 given by columns j'_1, \ldots, j'_d are both shattered, the $k_1 k_2 \times d$ submatrix of *M* given by columns $(j_1, j'_1), \ldots, (j_d, j'_d)$ is shattered. This proves the desired bound, as there are *d*! ways to combine a pair of shattered submatrices of M_1 and M_2 . \Box

As a corollary, we find that, after defining $c_v(k, d)$ and $\gamma_{v,d}(s)$ to be the natural generalizations of $c(k, d)$ and $\gamma_d(s)$, we have $c_{v_1v_2}(k_1k_2, d) \ge c_{v_1}(k_1, d)c_{v_2}(k_2, d)$ and $\gamma_{v_1v_2, d}(s_1s_2) \ge \gamma_{v_1, d}(s_1)\gamma_{v_2, d}(s_2)$. In particular, $\gamma_{v,\infty}(1) > 0$ for all *v*, since we can write every *v* as a product of prime powers.

An interesting phenomenon which occurs for $v \geq 2$ is that the best known bounds for $\lim_{d\to\infty} \beta_{v,d}$ and $\beta_{v,\infty}$ depend on the factorization of *v*. Completely random constructions (see [Proposition 5.4\)](#page-9-1) yield $\lim_{d\to\infty} \beta_{v,d} \geq e$ unconditionally, while combining linear-algebraic constructions and [Proposi](#page-11-2)[tion 6.1](#page-11-2) yields

$$
\lim_{d \to \infty} \beta_{v,d} \ge \beta_{v,\infty} \ge \frac{1}{1 - \gamma_{v,\infty}(1)} \ge \frac{1}{1 - \prod_{q} \prod_{i=1}^{\infty} (1 - q^{-i})},
$$

where the product is over maximal prime powers *q* that divide *v*. This is $v - 1 + o(1)$ for large prime power *v*, and is larger than *e* for all prime powers $v \geq 4$, as well as for some *v* that are not prime powers but products of large prime powers, the smallest of which is $v = 35$. Moreover, if $q \equiv 2$ (mod 4), using the fact that $\gamma_{2,\infty}(2) \geq 2c$ yields

$$
\beta_{v,\infty} \ge \frac{1}{\sqrt{1 - \gamma_{v,\infty}(2)}} \ge \frac{1}{\sqrt{1 - 2\prod_{q} \prod_{i=1}^{\infty}(1 - q^{-i})}},
$$

which is always better as $\sqrt{1-2a} < 1-a$ for $a \in (0,1/2)$. However, in this case, since $(1-2c)^{-1/2} < e$, this bound is always less than *e* and thus does not improve on the random construction for $\lim_{d\to\infty}\beta_{v,d}$.

6.[3](#page-12-0). **Application to covering arrays.** An $(k; d, n, v)$ -covering array³ is a matrix in $[v]^{k \times n}$ such that every $k \times d$ submatrix is shattered. It is easy to see that if $M \in [v]^{k \times n}$ has $m < n$ submatrices that are $k \times d$ and not shattered, then a $(k; d, n - m, v)$ -covering array exists, since we can just delete one column from every submatrix that is not shattered. This observation is enough to prove the following:

Proposition 6.2. For fixed $d, v \geq 2$, a $(k; d, n, v)$ -covering array exists whenever

$$
k \le (1 + o(1)) \frac{(d-1)v^d}{\log_2 \beta_{v,d}} \log_2 n.
$$

Proof. By [Lemma 2.3](#page-2-1) and the above observation, a $(k; d, n, v)$ -covering array exists if $n \leq n'$ $(1 - c_v(k, d))\binom{n'}{d}$ a' for some positive integer *n'*. Choosing $n' = \lfloor (1 - c_v(k, d))^{-1/(d-1)} \rfloor$ yields $n =$ $\Omega((1 - c_v(k, d))^{-1/(d-1)})$. Together with monotonicity (we can freely add rows and delete columns), we get the desired after some manipulation. \Box

³Our usage of the parameters *n* and *k* is unfortunately swapped from the standard literature.

[Proposition 6.2,](#page-12-1) together with bounds on the *βv,d*, reproduce a number of results from the literature. [Proposition 5.4](#page-9-1) recovers a result of Goldbole, Skipper, and Sunley [\[GSS96\]](#page-13-12) originally proved using the Lovász local lemma. Moreover, [Proposition 5.5,](#page-9-2) which generalizes to

$$
\beta_{v,d} \ge \sup_{t \in \mathbb{R}} \left(\frac{(e^{(v-1)t} + (v-1)e^{-t})^d - e^{(v-1)dt}}{v^d} \right)^{-v^d} = e \left(1 + \left(\frac{(v-1)d+1}{2} + o_v(1) \right) v^{-d} \right),
$$

recovers, in the case $(v, d) = (2, 3)$, results proved independently by Roux [\[Rou87\]](#page-13-13) and Graham, Harary, Livingston, and Stout [\[GHLS93\]](#page-13-14). In the general case, we reproduce a result of Francetić and Stevens [\[FS17\]](#page-13-15). Despite being numerically the same, our result is expressed in a much simpler form, and as a result we are able to provide an asymptotic which is absent in [\[FS17\]](#page-13-15).

Finally, Das and Mészáros [\[DM18\]](#page-13-6) use the fact that $\gamma_{v,\infty}(1) = \prod_{i=1}^{\infty} (1 - v^{-i})$ for prime power *v* to construct covering arrays. However, they do not use [Proposition 6.1,](#page-11-2) which, as previously mentioned, allows one to improve on the random construction when v is a product of large prime powers.

ACKNOWLEDGMENTS

We thank Shagnik Das and Tamás Mészáros for informing us about their paper [\[DM18\]](#page-13-6) after we posted the original version of the present paper in the arXiv. [Theorem 1.1](#page-0-1) and one of its two proofs in this original version, as well as the connection to covering arrays, appeared earlier in [\[DM18\]](#page-13-6). Our second proof, [Theorems 1.2](#page-1-0) and [1.3,](#page-1-2) and some improved bounds for covering arrays for certain alphabet sizes are new.

REFERENCES

- [Alo24+] N. Alon. Erasure codes and Turán hypercube problems. *Finite Fields Appl.* Forthcoming. arXiv: [2403.16319](https://arxiv.org/abs/2403.16319).
- [ARS02] R. P. Anstee, L. Rónyai, and A. Sali. [Shattering news.](https://doi.org/10.1007/s003730200003) *Graphs Combin.* **18**, 59–73. 2002.
- [DM18] S. Das and T. Mészáros. [Small arrays of maximum coverage.](https://doi.org/10.1002/jcd.21609) *J. Combin. Des.* **26**, 487–504. 2018.
- [Erd70] P. Erdős. On the graph theorem of Turán. Hungarian. *Mat. Lapok* **21**, 249–251. 1970.
- [FF88] P. Frankl and Z. Füredi. [Extremal problems and the Lagrange function for hypergraphs.](https://www.math.sinica.edu.tw/bulletin/journals/531) *Bull. Inst. Math. Acad. Sinica* **16**, 305–313. 1988.
- [FS17] N. Francetić and B. Stevens. [Asymptotic size of covering arrays: an application of entropy](https://doi.org/10.1002/jcd.21553) [compression.](https://doi.org/10.1002/jcd.21553) *J. Combin. Des.* **25**, 243–257. 2017.
- [GHLS93] N. Graham, F. Harary, M. Livingston, and Q. F. Stout. [Subcube fault-tolerance in hypercubes.](https://doi.org/10.1006/inco.1993.1010) *Inform. and Comput.* **102**, 280–314. 1993.
- [GKV92] L. Gargano, J. Körner, and U. Vaccaro. [Qualitative independence and Sperner problems for](https://doi.org/10.1016/0097-3165(92)90016-N) [directed graphs.](https://doi.org/10.1016/0097-3165(92)90016-N) *J. Combin. Theory Ser. A* **61**, 173–192. 1992.
- [GSS96] A. P. Godbole, D. E. Skipper, and R. A. Sunley. *t*[-covering arrays: upper bounds and Poisson](https://doi.org/10.1017/S0963548300001905) [approximations.](https://doi.org/10.1017/S0963548300001905) *Combin. Probab. Comput.* **5**, 105–117. 1996.
- [Kat68] G. Katona. A theorem of finite sets. *Theory of Graphs* (Tihany Colloquium, 1966), 187–207. Academic Press, 1968.
- [Kru63] J. B. Kruskal. [The number of simplices in a complex.](https://doi.org/10.1525/9780520319875-014) In *Mathematical Optimization Techniques*, 251–278. Univ. California Press, 1963.
- [KS73] D. J. Kleitman and J. Spencer. Families of *k*[-independent sets.](https://doi.org/10.1016/0012-365X(73)90098-8) *Discrete Math.* **6**, 255–262. 1973.
- [MS65] T. S. Motzkin and E. G. Straus. [Maxima for graphs and a new proof of a theorem of Turán.](https://doi.org/10.4153/CJM-1965-053-6) *Canadian J. Math.* **17**, 533–540. 1965.
- [Paj85] A. Pajor. *Sous-espaces ℓ n* ¹ *des espaces de Banach*. Hermann, 1985.
- [Rou87] G. Roux. *k*-propriétés dans les tableaux de *n* colonnes: cas particulier de la *k*-surjectivité etde la *k*-permutivité. PhD thesis. Universite de Paris, 1987.
- [Sau72] N. Sauer. [On the density of families of sets.](https://doi.org/10.1016/0097-3165(72)90019-2) *J. Combinatorial Theory Ser. A* **13**, 145–147. 1972.

$\begin{minipage}{0.9\linewidth} \textbf{MAXIMUM SHATTERING} \end{minipage} \begin{minipage}{0.9\linewidth} \textbf{MAXIMUM SHATTERING} \end{minipage} \begin{minipage}{0.9\linewidth} \textbf{15} \end{minip$

- [She72] S. Shelah. [A combinatorial problem; stability and order for models and theories in infinitary](http://projecteuclid.org/euclid.pjm/1102968432) [languages.](http://projecteuclid.org/euclid.pjm/1102968432) *Pacific J. Math.* **41**, 247–261. 1972.
- [Sid87] A. F. Sidorenko. On the maximal number of edges in a homogeneous hypergraph that does not contain prohibited subgraphs. Russian. *Mat. Zametki* **41**, 433–455. 1987.