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Abstract. A family F of subsets of [n] = {1, 2, . . . , n} shatters a set A ⊆ [n] if for every A′ ⊆ A
there is an F ∈ F such that F ∩ A = A′. We develop a framework to analyze f(n, k, d), the
maximum possible number of subsets of [n] of size d that can be shattered by a family of size k.
Among other results, we determine f(n, k, d) exactly for d ≤ 2 and show that if d and n grow, with
both d and n − d tending to infinity, then, for any k satisfying 2d ≤ k ≤ (1 + o(1))2d, we have
f(n, k, d) = (1 + o(1))c

(
n
d

)
, where c, roughly 0.289, is the probability that a large square matrix over

F2 is invertible. This latter result extends work of Das and Mészáros. As an application, we improve
bounds for the existence of covering arrays for certain alphabet sizes.

1. Introduction

Let F ⊆ 2[n] be a family of subsets of [n] = {1, 2, . . . , n}. A set A ⊆ [n] is shattered by F if
{A ∩ S : S ∈ F} = 2A, that is, if for every subset A′ ⊆ A there exists some F ∈ F such that
F ∩A = A′. The well-known Sauer-Perles-Shelah lemma [Sau72; She72] states that if |F| >

∑d−1
i=0

(
n
i

)
then F shatters at least one set of size at least d. A slightly stronger result, first proved by Pajor
[Paj85] (see also [ARS02]), asserts that any family F shatters at least |F| distinct subsets. This
implies the previous statement since if more than

∑d−1
i=0

(
n
i

)
subsets are shattered, then at least

one of these subsets has size greater than d − 1. Combining this result with the Kruskal-Katona
Theorem [Kru63; Kat68], it is possible to determine, for all n, k, and d, the minimum possible
number of subsets of size d of [n] that are shattered by any family of k distinct subsets of [n] (see
Section 6.1 of this paper for more details).

Our objective in the present paper is to study the opposite question: given positive integers n,
k, and d, what is the largest number of subsets of size d that a family of sets F ⊆ 2[n] of size at
most k can shatter?1 Denote this number by f(n, k, d). It is clear that this number is 0 if k < 2d or
n < d and that for every fixed d it is weakly increasing in n and in k. Moreover,

f(n, k, 1) =
{

0 k = 1
n k ≥ 2

by placing both ∅ and [n] in F . Thus, the interesting cases are those where d ≥ 2, k ≥ 2d, and
n ≥ d.

In this paper, we first demonstrate that the exact values of f(n, k, 2) follow from work of
Kleitman and Spencer [KS73] on pairwise independent sets. In the case where k = 2d, Das and
Mészáros [DM18] obtained the following bound:
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Theorem 1.1 ([DM18]). For any n ≥ d ≥ 1, we have

cd

(
n

d

)
≤ f(n, 2d, d) ≤ cdnd

d! ,

where
cd = (2d − 2)(2d − 4) · · · (2d − 2d−1)

(2d − 1)d−1

is the probability that d independent uniformly random vectors in F d
2 \ {0} are linearly independent.

Moreover, if n is a multiple of 2d − 1, equality holds in the upper bound.

Whenever n ≫ d2, the quantities
(

n
d

)
and nd

d! are quite close, so Theorem 1.1 gives tight bounds.
In particular, it implies that for fixed d,

f(n, 2d, d) = (1 + o(1))cdnd

d! .

For smaller values of n compared to d, we can still get tight bounds at the expense of requiring
that d and n − d grow.

Theorem 1.2. If d and n grow, with both d and n − d tending to infinity, then f(n, 2d, d) =
(1 + o(1))c

(
n
d

)
, where c = limd→∞ cd =

∏∞
i=1(1 − 2−i) ≈ 0.289.

To prove Theorem 1.2, we develop a more general theory of the function f(n, k, d) based on
determining the Lagrangians of relevant hypergraphs, which also reproduces Theorem 1.1. Although
we do not have matching upper and lower bounds when k > 2d, we are nonetheless able to prove
structural results concerning continuity and the types of asymptotic growth encountered in various
regimes. One particular consequence is the following strengthening of Theorem 1.2:

Theorem 1.3. If d ≥ 1, k ≥ 2d, and n ≥ d are growing positive integers such that d and n − d tend
to infinity and k = (1 + o(1))2d, then f(n, k, d) = (1 + o(1))c

(
n
d

)
.

Finally, we connect the results of this paper to the theory of covering arrays. In addition to
reproducing many results in the literature, we are able to improve the best-known bounds for the
existence of covering arrays for certain alphabet sizes, the smallest of which are 35, 40, and 45.

Outline. Section 2 develops a framework for analyzing the asymptotics of f(n, k, d). In Section 3
we derive the precise value of f(n, k, 2) for all n and k by combining a result of Kleitman and Spencer
with Turán’s Theorem. Section 4 deals with the case k = 2d, and quickly derives Theorems 1.1
to 1.3 from more general results. Several bounds for the case k > 2d are discussed in Section 5, and
the final Section 6 contains some concluding remarks, including the application to covering arrays.

2. The Asymptotic Structure of f(n, k, d)

2.1. Shattering hypergraphs and Lagrangians. A family of sets F ⊆ 2[n] of size at most k
can be represented by a k × n binary matrix, where the rows are the indicator vectors of the sets
S ∈ F . Say a k × d binary matrix is shattered if each of the 2d possible rows appears among its k
rows. Then, f(n, k, d) is the maximum possible number of shattered k × d submatrices of a binary
k × n matrix.

With this interpretation in mind, we make the following definition, generalizating a construction
in [DM18]:

Definition 2.1. For integers d ≥ 1 and k ≥ 2d, we define H(k, d) to be the d-uniform hypergraph
with vertex set {0, 1}k, i.e. the set of binary vectors of length k. A collection of d such vectors forms
an edge if and only if the k × d matrix with these vectors as columns is shattered.
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We also recall the definition of the Lagrangian of a hypergraph, first considered by Frankl and
Füredi [FF88] and by Sidorenko [Sid87], extending the application of this notion for graphs, initiated
by Motzkin and Straus [MS65].

Definition 2.2. The Lagrangian polynomial of a d-uniform hypergraph H is the polynomial

PH((xv)v∈H) =
∑

e∈E(H)

∏
v∈e

xj .

The Lagrangian λ(H) of H is the maximum value of PH over the simplex {(xv)v∈H : xv ≥ 0,
∑

v xv =
1}, which necessarily exists as the simplex is compact.

We now relate f(n, k, d) to the above definitions.

Lemma 2.3. For integers n ≥ d ≥ 1 and k ≥ 2d,

d!λ(H(k, d))
(

n

d

)
≤ f(n, k, d) ≤ λ(H(k, d))nd.

Equality holds in the upper bound if and only if PH is maximized at a point where all coordinates
are in 1

nZ.

Proof. For the upper bound, suppose M is a k × n binary matrix with f(n, k, d) shattered k × d
submatrices. For each v ∈ {0, 1}k, let mv denote the number of columns of M which are equal to
v and define a weight xv = mv/n. These weights are clearly nonnegative and their sum is 1. We
claim that

PH(k,d)((xv)v∈{0,1}k) = f(n, k, d)/nd,

which will show the bound and the equality case by the definition of the Lagrangian. Indeed, every
edge {v1, v2, . . . , vd} of H(k, d) contributes to the left-hand side exactly mv1mv2 · · · mvd

/nd, which
is precisely the number of (shattered) k × d submatrices of M with columns v1, v2, . . . , vd (in any
order), divided by nd. Summing over all edges of H(k, d) yields the desired upper bound.

For the lower bound, suppose x = (xv)v∈{0,1}k is such that PH(k,d)(x) = λ(H(k, d)). Let M be
a k × n random binary matrix obtained by independently picking each column to be v ∈ {0, 1}k

with probability xv. Given any k × d submatrix of M , the probability that it is shattered is
d!λ(H(k, d)), since for every {v1, v2, . . . , vd} ∈ E(H(k, d)) the probability that the matrix has
columns v1, v2, . . . , vd in some order is exactly d!xv1xv2 · · · xvd

. Thus, by linearity of expectation,
the expected number of shattered d × k submatrices of M is d!λ(H(k, d))

(
n
d

)
. □

By fixing k and d, and letting n grow to infinity, we obtain the following:

Corollary 2.4. For integers d ≥ 1 and k ≥ 2d, we have f(n, k, d) = (1 + o(1))λ(H(k, d))nd.

In what follows, we let c(k, d) = d!λ(H(k, d)).

2.2. Relating different choices of (k, d). We start by remarking that since f(n, k, d) is weakly
increasing in k, the quantity c(k, d) must also be weakly increasing in k. Another relation comes
from the following simple property of the function f(n, k, d):

Lemma 2.5. For integers d ≥ 1, k ≥ 2d+1, and n ≥ d + 1, we have

f(n, k, d + 1) ≤ n

d + 1f(n − 1, ⌊k/2⌋, d).

Proof. Let M be a k × n binary matrix with f(n, k, d + 1) shattered k × (d + 1) submatrices. Let v
be a fixed column of M ; without loss of generality assume that the number of zeros it contains, k′,
is at most ⌊k/2⌋. Let M ′ be the submatrix of M consisting of all k′ rows of M in which v has a
zero, and all columns besides v. Note that for every k × (d + 1) shattered submatrix of M that
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Figure 1. An illustration of the relationship between γ1, γ2, γ3, and γ∞. Aside from
γ1, which is easily seen to be constant at 1, all values are for illustrative purposes
only.

contains v, the corresponding k′ × d submatrix of M ′ must be shattered. Therefore, the number
of shattered k × (d + 1) submatrices of M that contain v is at most f(n − 1, ⌊k/2⌋, d). Summing
over all columns v of M , each shattered k × (d + 1) submatrix is counted d + 1 times, implying the
desired result. □

Applying Corollary 2.4 implies the following:

Corollary 2.6. For integers d ≥ 1 and k ≥ 2d+1, we have c(k, d + 1) ≤ c(⌊k/2⌋, d).

One helpful way to conceptualize this bound is to define, for every positive integer d, the
weakly increasing step function γd : [1, ∞) → R given by γd(b) = c(⌊2db⌋, d). Then, Corollary 2.6
rewrites as γd+1(b) ≤ γd(b). In particular, by the monotone convergence theorem, the limit
γ∞(b) := limd→∞ γd(b) exists. An illustration of this situation is shown in Figure 1.

Proposition 2.7. γ∞ is right-continuous.

Proof. Take some b ≥ 1 and ε > 0. There must exist some d where γd(b) < γ∞(b) + ε. Since γd is a
step function, there exists some δ > 0 such that γd(b + δ) = γd(b). Then for all b < b′ < b + δ, we
have

γ∞(b′) ≤ γd(b′) = γd(b) < γ∞(b) + ε.

Since ε was arbitrary, γ∞ is right-continuous, as desired. □

The following lemma is now the appropriate generalization of Theorem 1.3.

Lemma 2.8. Let b ≥ 1 be a real number. If d, k, and n are growing positive integers such that d
and n − d tend to infinity, k = (b + o(1))2d, and k ≥ b2d always, then f(n, k, d) = (γ∞(b) + o(1))

(
n
d

)
.

Proof. To show the lower bound, note that by Lemma 2.3, we have

f(n, k, d) > c(k, d)
(

n

d

)
≥ c(⌊b2d⌋, d)

(
n

d

)
= γd(b)

(
n

d

)
≥ γ∞(b)

(
n

d

)
.
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To show the upper bound, we choose an integer 0 ≤ r < d so that 1 ≪ (d − r)2 ≪ n − d. Applying
Lemma 2.5 r times and then Lemma 2.3, we get

f(n, k, d) ≤ n(n − 1) · · · (n − r + 1)
d(d − 1) · · · (d − r + 1) f(n − r, ⌊k/2r⌋, d − r)

≤ c(⌊k/2r⌋, d − r)n(n − 1) · · · (n − r + 1)(n − r)d−r

d! .

Since (d − r)2 ≪ n − d ≤ n − r, we find that(
n

d

)/
n(n − 1) · · · (n − r + 1)(n − r)d−r

d! = (n − r)(n − r − 1) · · · (n − d + 1)
(n − r)d−r

=
(

1 − 1
n − r

)(
1 − 2

n − r

)
· · ·
(

1 − d − r − 1
n − r

)
= 1 + o(1),

so it suffices to show that c(⌊k/2r⌋, d−r) = γd−r(k/2d) is bounded above by γ∞(b)+o(1). Indeed, for
every ε > 0, since k/2d is eventually less than b + ε, we eventually have γd−r(k/2d) ≤ γd−r(b + ε) =
γ∞(b + ε) + o(1). The result follows from Proposition 2.7. □

Remark 2.9. The assumption that n−d tends to infinity is necessary for Lemma 2.8 to hold. Indeed,
we trivially have f(n, 2n, n) = 1 (=

(
n
n

)
), and it is also easy to see that f(n, 2n−1, n−1) = n (=

(
n

n−1
)
)

by taking the collection of all even-sized subsets of [n]. On the other hand, γ∞(1) < 1.2 In fact, for
any fixed s it can be shown that f(n, 2n−s, n − s) ≥ Cs

(
n

n−s

)
for some constant Cs > γ∞(1).

3. Shattering Pairs

To begin, we recall a result of Kleitman and Spencer [KS73]. For a positive integer k ≥ 4, call a
collection K ⊆ 2[k] (qualitatively) pairwise independent if for every two distinct A, B ∈ K, all four
intersections A ∩ B, A ∩ B̄, Ā ∩ B, and Ā ∩ B̄ are nonempty, where Ā = [k] \ A and B̄ = [k] \ B.
We then have the following:

Lemma 3.1 ([KS73]). The maximum possible size of a pairwise independent collection of subsets
of [k] is (

k − 1
⌊k/2⌋ − 1

)
.

Given this result, the exact value of f(n, k, 2) follows quite quickly:

Proposition 3.2. For k ≥ 4,

f(n, k, 2) = t

(
n,

(
k − 1

⌊k/2⌋ − 1

))
,

where
t(n, r) =

∑
0≤i<j≤r−1

⌊
n + i

r

⌋⌊
n + j

r

⌋
is the number of edges of the Turán graph T (n, r), defined to be the complete r-partite graph with n
vertices and r vertex classes with cardinalities that are as close as possible. In particular,

c(k, 2) = 1 − 1(
k−1

⌊k/2⌋−1
) .

2We will determine the exact value of γ∞(1) later, but an easy way to see this now is to use the fact that every
d-uniform hypergraph with d ≥ 2 has a Lagrangian strictly less than 1/d!.
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Proof. We use the binary matrix interpretation developed in Section 2. Given a k × n binary matrix
M , construct a graph G on the columns of M by placing an edge between any two columns such
that the corresponding k × 2 submatrix is shattered. Thus, the number of shattered pairs is precisely
the number of edges of G.

By associating subsets of [k] with their indicator vectors, Lemma 3.1 implies that the clique
number of G is at most w :=

(
k−1

⌊k/2⌋−1
)
. Therefore, G above is Kw+1-free, and so has at most

t(n, w) edges by Turán’s Theorem. On the other hand, we can make equality hold by taking some
pairwise independent K ∈ 2[k] with |K| = w, considering the indicator vectors of the elements of K,
and constructing a k × n matrix in which each of these w vectors appears either ⌊n/w⌋ or ⌈n/w⌉
times. □

4. The Case k = 2d

We now state the key lemma for understanding the case k = 2d, which was first proven in [DM18]:

Lemma 4.1 ([DM18]). For d a positive integer, we have

c(2d, d) = (2d − 2)(2d − 4) · · · (2d − 2d−1)
(2d − 1)d−1 =: cd.

Moreover, the Lagrangian polynomial of H(2d, d) attains its maximal value at a point with all
coordinates in 1

2d−1Z.

Given this result, Theorem 1.1 follows by applying Lemma 2.3. It also implies that γ∞(1) =
limd→∞ cd = c, so Theorem 1.3 follows from Lemma 2.8. Theorem 1.2 is a special case of Theorem 1.3.

For completeness, in this section we give two related proofs of the upper bound c(2d, d) ≤ cd, the
first of which works directly with the Lagrangian and is essentially the same as [DM18], and the
second of which uses a result of Erdős concerning degree majorization. The lower bound and its
associated equality case will also be shown in Section 5.1, where it will follow easily from some more
general techniques.

In both proofs of the upper bound, we will need the following useful lemma, which appears in
both [DM18] and [Alo24+].

Lemma 4.2. Let d ≥ 2 and let (pi : 1 ≤ i ≤ 2d − 1) be an arbitrary probability distribution on a set
of size 2d − 1. Then ∑

i

pi(1 − pi)d−1 ≤
(

2d − 2
2d − 1

)d−1
.

4.1. Proof of upper bound using Lagrangians. We apply induction on d. For d = 1, H(2, 1) is
a 1-uniform hypergraph with two edges (singletons) corresponding to the vectors 01 and 10. It is
clear that λ(H(2, 1)) = 1 = c1/1!, as needed.

Assuming the result holds for d − 1, we prove it for d, where d ≥ 2. Let D = 2d and let P be
the Lagrangian polynomial of H(2d, d) = H(D, d). Suppose it attains its maximum at the point
x = (xv)v∈{0,1}D , where the vector x has a support S of minimum possible size among all vectors
maximizing P . By a well-known property of Lagrangians, every pair u, v of distinct vertices in S is
contained in an edge of H(D, d). Indeed, if not, then when fixing the values of all xw where w ̸= u, v,
the function P (x) is a linear function of xu and xv, so its maximum subject to the constraints
xu, xv ≥ 0 and xu + xv = a for some a is attained at a point where either xu = 0 or xv = 0, which
must have a smaller support. We may thus assume that every pair of vectors u, v with xu, xv > 0 is
contained in an edge of H(D, d).
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One easy consequence of this is that every v ∈ S contains exactly D/2 zeros and D/2 ones.
Moreover, since the vectors

{((−1)v1 , (−1)v2 , . . . , (−1)vD ) : (v1, v2, . . . , vD) ∈ S}
are mutually orthogonal and are additionally orthogonal to the all-1s vector, we find that |S| ≤ D−1.

Fix some v ∈ S and let I denote the set of indices of its 2d−1 0-coordinates. Then the link of
v in H(D, d) is a (d − 1)-uniform hypergraph in which every edge is a set of d − 1 vectors whose
I-coordinates form a 2d−1 × (d − 1) shattered matrix; in other words, after identifying vertices
that have the same I-coordinates, this hypergraph becomes H(2d−1, d − 1). By adding weights
of identified vertices, it follows that the contribution of all edges containing v to the sum in the
expression of P (x) is at most xv · λ(H(2d−1, d − 1))(1 − xv)d−1. By the induction hypothesis,
λ(H(2d−1, d − 1)) ≤ cd−1

(d−1)! . Summing over all v we get every term d times and hence

P (x) ≤ 1
d

· cd−1
(d − 1)!

∑
v

xv(1 − xv)d−1 ≤ cd−1
d!

(
2d − 2
2d − 1

)d−1
,

where we have used Lemma 4.2. This last quantity can be easily checked to be cd/d!. (See Equation
(2) in [Alo24+] for a combinatorial explanation of this fact.)

4.2. Proof of upper bound using degree majorization. For this proof, we will use a result
of Erdős, which was originally used to provide a proof of Turán’s Theorem. Suppose G and H
be two graphs on n vertices and let d1 ≥ d2 ≥ . . . ≥ dn be the degrees of the vertices of G and
f1 ≥ f2 . . . ≥ fn be the degrees of the vertices of H. Say G is degree-majorized by H if di ≤ fi for
all i.
Lemma 4.3 ([Erd70]). If G is a graph on n vertices that contains no clique of size w + 1 then it is
degree-majorized by some complete w-partite graph on n vertices.

We now prove that f(n, 2d, d) ≤ cdnd/d! by induction on n. As the case d = 1 is trivial, assume
that the result holds for d − 1 with d ≥ 2; we will prove it for d.

Let M be a 2d × n binary matrix with the maximum possible number f(n, 2d, d) of shattered
2d × d submatrices. We may assume that every column of M contains exactly 2d−1 zeros and exactly
2d−1 ones. Construct the graph G on the columns of M , where two columns are joined by an edge
if there are exactly 2d−2 coordinates in which both are 0 (which forces exactly 2d−2 coordinates
in which one column is a and the other is a′ for all a, a′ ∈ {0, 1}). Note that for any fixed column
v, the other columns in any shattered 2d × d submatrix of M that contains v must be connected
to v in the graph G. Moreover, after deleting v and restricting to the 2d−1 rows in which v has a
zero, we get a shattered 2d−1 × (d − 1) matrix. By the induction hypothesis this implies that if the
degree of v in G is dv, then the number of shattered 2d × d submatrices containing it is at most
cd−1dd−1

v /(d − 1)!.
By the same orthogonality argument as in Section 4.1, the largest clique of G is of size at most

w = 2d − 1. Therefore, by Lemma 4.3, there is a complete w-partite graph H on n vertices so that
G is degree majorized by H. If the sizes of the vertex classes of this graph are n1, n2, . . . , nw, it
follows that the vertices of G can be partitioned into subsets of sizes n1, n2, . . . , nw, where each of
the ni vertices in the ith subset has degree at most n − ni. Summing over all columns v we conclude

f(n, 2d, d) ≤ 1
d

∑
i

ni
cd−1

(d − 1)!(n − ni)d−1

= cd−1nd

d!
∑

i

ni

n

(
1 − ni

n

)d−1
≤ cd−1nd

d!

(
2d − 2
2d − 1

)d−1
nd = cdnd

d! ,
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where the second inequality uses Lemma 4.2 on (ni/n)i∈[w]. This concludes the proof.

5. General k

As mentioned in the introduction, the behavior of f(n, k, d) and c(k, d) when k > 2d is less
understood than the case k = 2d. Although the discussion in Section 3 settles the case d = 2, we do
not have any upper bounds better than using Lemma 2.5 to reduce to either the case d = 2 or the
case k = 2d. In this section, we detail lower bounds on c(k, d) in two regimes: when 2d ≤ k ≤ 2d+1

and when k ≫ 2d. The former case also contains the proof of the lower bound of Lemma 4.2.

5.1. k ≤ 2d+1. All of our constructions will use the following lemma:

Lemma 5.1. Let d ≥ 1 and k ≥ 2d be integers. Let V be a d′-dimensional F2-vector space and let
S be a subset of V of size k. If p is the probability that a uniformly random linear map V → F d

2 is
surjective when restricted to S, then there exists a k × (2d′ − 1) matrix with 2dd′

p/d! shattered k × d
submatrices. In particular,

c(k, d) ≥

(
2d′

2d′ − 1

)d

p.

Proof. The matrix we will construct has its rows indexed by the elements of S and its columns
indexed by the nonzero elements of the dual space V ∗ of V . Given v ∈ S and nonzero u ∈ V ∗, the
corresponding entry is ⟨u, v⟩.

Every linear map φ : V → F d
2 can be uniquely expressed as a tuple (u1, u2, . . . , ud) of dual vectors.

If one of the ui is zero or if ui = uj for some i ̸= j, then φ cannot be surjective. Otherwise,
φ(S) = F d

2 if and only if the submatrix of M with columns given by u1, u2, . . . , ud is shattered. As
a result, the 2dd′

p linear maps V → F d
2 that are surjective on S each correspond to an ordered

d-tuple of distinct columns of M that determine a shattered submatrix. As each shattered submatrix
corresponds to d! such d-tuples, there are 2dd′

p/d! shattered submatrices, as desired. □

Proof of lower bound and equality case of Lemma 4.1. We apply Lemma 5.1 with V = S = F d
2 . In

this case, p is the probability that a random d × d F2-matrix is invertible, which is exactly
(2d − 20)(2d − 21) · · · (2d − 2d−1)

2d2 = (2d − 1)dcd

2d2 .

Thus we get c(2d, d) ≥ cd. The fact that a 2d × (2d − 1) matrix exists with cd(2d − 1)d/d! shattered
submatrices implies, by Lemma 2.3, that the corresponding Lagrangian polynomial attains a value
of cd/d! at a point on 1

2d−1Z. □

Lemma 5.2. For integers d ≥ 1 and 0 ≤ r ≤ d, we have c((2 − 2−r)2d, d) ≥ (2 − 2−r)cd+1.

Proof. We apply Lemma 5.1 with V a (d + 1)-dimensional space and S = V \ W , where W is
a (d − r)-dimensional subspace of V . Consider a linear map φ : V → F d

2 and the induced map
φ̄ : V/W → F d

2 /φ(W ). Since S is the union of translates of W , the map φ is surjective on S if and
only if φ̄ is surjective on the nonzero elements of V/W . If φ is not injective on W this is impossible,
since |V/W | ≤ |F d

2 /φ(W )|. If φ is injective on W , then this occurs if and only if φ̄ is surjective,
since the fact that dim(V/W ) = dim(F d

2 /φ(W )) + 1 implies that every element in the codomain has
a preimage of size exactly 2.

If φ is chosen uniformly at random, the probability that φ|W is injective is

(2d − 20)(2d − 21) · · · (2d − 2d−r−1)
2d(d−r) .
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If we fix φ|W , then φ̄ is uniformly distributed, so the probability that it is surjective is the probability
that a random r × (r + 1) F2-matrix has rank r, which is

(2r+1 − 20)(2r+1 − 21) · · · (2r+1 − 2r−1)
2r(r+1) .

We conclude that, with p defined as in Lemma 5.1,

p = (2d − 20)(2d − 21) · · · (2d − 2d−r−1)
2d(d−r) · (2r+1 − 20)(2r+1 − 21) · · · (2r+1 − 2r−1)

2r(r+1)

= (2d − 20)(2d − 21) · · · (2d − 2d−r−1)
2d(d−r) · (2d − 2d−r−1)(2d − 2d−r−2) · · · (2d − 2d−2)

2dr

= (2d − 20)(2d − 21) · · · (2d − 2d−1)
2d2 · 2d − 2d−r−1

2d − 2d−1

= (2 − 2−r)(2d − 20)(2d − 21) · · · (2d − 2d−1)
2d2

= (2 − 2−r)
(

2d+1 − 1
2d+1

)d

cd+1.

The result follows. □

It seems plausible to conjecture that the lower bounds in Lemmas 4.1 and 5.2 are the best possible;
specifically, that for every d > 2,

c(k, d) =



cd 2d ≤ k < 3
2 · 2d

3
2cd+1

3
2 · 2d ≤ k < 7

4 · 2d

7
4cd+1

7
4 · 2d ≤ k < 15

8 · 2d

...

(2 − 2−d)cd+1 k = 2d+1 − 1.

A heuristic computer search was unable to disprove this conjecture in the cases (k, d) = (9, 3), (10, 3).
However, it should be noted that this statement for d = 2 is in fact false by Proposition 3.2. A safer
conjecture to make may be that these bounds are optimal in the limit d → ∞, i.e. for 1 ≤ b < 2, we
have γ∞(b) = (2 − 2⌈log2(2−b)⌉)c. This function is plotted in Figure 2.

5.2. Very large k. We start with the following observation:

Lemma 5.3. Let d ≥ 1, k1, k2 ≥ 2d, and n1, n2 ≥ d be integers. Then

(n1n2)d − d!f(n1n2, k1 + k2, d) ≤ (nd
1 − d!f(n1, k1, d))(nd

2 − d!f(n2, k2, d)).

Proof. Given a k × n matrix M , let XM be a random k × d matrix obtained by choosing d columns
of M independently and uniformly at random. Note that if M has m shattered k × d submatrices,
the probability that XM is shattered is precisely d!m/nd.

Suppose M1 and M2 are k1 × n1 and k2 × n2 matrices with f(n1, k1, d) and f(n2, k2, d) shattered
k × d submatrices, respectively. Then, let M be the (k1 + k2) × (n1n2) matrix whose columns are
the concatenations of any column of M1 and any column of M2. It is evident that XM consists of
XM1 stacked on top of an independent XM2 , so

P[XM not shattered] ≤ P[XM1 not shattered] · P[XM2 not shattered].

The result follows after some algebra. □
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b

c

3
2c

7
4c

15
8 c

2c

1 3
2

7
4

15
8

2

Figure 2. The function b 7→ (2 − 2⌈log2(2−b)⌉)c, which is both the best known lower
bound and conjectured form for γ∞(b) in the range [1, 2).

Taking the limit n → ∞, we conclude that (1 − c(k1 + k2, d)) ≤ (1 − c(k1, d))(1 − c(k2, d)), or
equivalently, (1 − γd(b1 + b2)) ≤ (1 − γd(b1))(1 − γd(b2)). Taking the limit d → ∞ shows that
(1 − γ∞(b1 + b2)) ≤ (1 − γ∞(b1))(1 − γ∞(b2)) as well. Applying Fekete’s lemma to log(1 − γd(−)) for
possibly infinite d, we find that either 1−γd(b) = β

−(1+o(1))b
d for some finite βd = supb≥1(1−γd(b))−1/b

or 1−γd(b) decays superexponentially. Proposition 3.2 not only tells us that β2 = 16, but also rules out
superexponential decay for all d ≥ 2 as 1 − γd(b) ≥ 1 − γ2(b). Note that γ2(b) ≥ γ3(b) ≥ · · · ≥ γ∞(b)
implies that β2 ≥ β3 ≥ · · · ≥ β∞.

The following simple observation ends up outperforming all other lower bounds considered in this
paper when b is larger than a constant times d.

Proposition 5.4. βd ≥ (1 − 2−d)−2d = e(1 + (1
2 + o(1))2−d).

Proof. Consider a uniformly random k × d binary matrix. The probability that a fixed element of
{0, 1}d does not appear as a row is (1 − 2−d)k, so the matrix is shattered with probability at least
1 − 2d(1 − 2−d)k. By picking uniformly random k × n binary matrices for large n (or, equivalently, by
plugging in a constant vector to the Lagrangian polynomial), we find that c(k, d) ≥ 1 − 2d(1 − 2−d)k.
The result follows. □

It is in fact possible to squeeze a bit more out of this idea by slightly optimizing the random
process.

Proposition 5.5. βd ≥ supt∈R ((cosh t)d − edt/2d)−2d = e(1 + (d+1
2 + o(1))2−d).

Proof. Let β′
d = supt∈R((cosh t)d − edt/2d)−2d . Suppose k is even and choose a uniformly random

k × d matrix subject to the condition that all columns have exactly k/2 zeros and k/2 ones (call a
column balanced if this is true and a matrix balanced if all its columns are balanced). It suffices to
show that the probability p that this matrix is not shattered is at most (β′

d)−k/2d exp(od(k)), since
then picking uniformly random balanced k × n matrices yields c(k, d) ≥ 1 − (β′

d)−k/2d exp(od(k)) for
even k.
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The number of balanced k × d matrices
(

k
k/2
)d = 2dk+od(k). Since toggling a column does not

change whether it is balanced, to bound the number of balanced k×d matrices that are not shattered,
it suffices to count balanced k × d matrices that lack an all-ones row, and then multiply by 2d.

Treating a k × d matrix as an k-tuple of its rows, the number of balanced k × d matrices
without an all-ones rows is exactly the coefficient of (x1 · · · xd)k/2 in the generating function
((1 + x1) · · · (1 + xd) − x1 · · · xd)k. Thus the number of such matrices is at most

((1 + x1) · · · (1 + xd) − x1 · · · xd)k

(x1 · · · xd)k/2

for any choice of positive x1, . . . , xd. Setting all the xi to be equal to e2t, this is

(2dedt(cosh t)d − e2dt)k

edkt
= 2dk(cosh(t)d − edt/2d)k.

Putting everything together, we find that

p ≤ 2d2dk(cosh t)d − edt/2d)k

2dk+od(k) = (cosh(t)d − edt/2d)k exp(od(k)).

By optimizing the choice of t, we get the desired bound.
We now compute the asymptotics of β′

d. Let f(t) = (cosh t)d − edt/2d; by expanding out (cosh t)d,
one can show that f(t) is a positive linear combination of exponentials and is thus convex. Now,
after computing

f ′′′(t) = d(3d − 2) sinh t(cosh t)d−1 + d(d − 1)(d − 2)(sinh t)3(cosh t)d−3 − d3edt/2d,

we find that for |t| ≤ d−100, we have |f ′′′(t)| ≤ 1 for large enough d. Therefore, by Taylor’s theorem,
we find that for large d and |t| ≤ d−100, we have |f(t) − g(t)| = O(t3) and |f ′(t) − g′(t)| = O(t2),
where

g(t) = 1 + dt2/2 − 1 − dt + d2t2/2
2d

= (1 − 2−d) − d2−d · t + d + d2/2d

2 · t2

is the second-degree Taylor polynomial of f(t) at t = 0.
Computing g′(t) = (d + d2/2d)t − d2−d, we find that if we define t± = 2−d ± 2−1.5d, both g′(t+)

and −g′(t−) are Ω(2−1.5d). Thus, f ′(t+) and −f ′(t−) are also Ω(2−1.5d), so by convexity f must be
minimized in the interval [t−, t+] for large d. Moreover, g(t) is minimized at t0 = 2−d + O(2−2d) ∈
[t−, t+], and g(t0) = 1 − 2−d − (d/2 + o(1))2−2d. Therefore the minimum of f , which is (β′

d)−1/2d , is
g(t0) + O(2−3d) = 1 − 2−d − (d/2 + o(1))2−2d. It is now straightforward to compute

log β′
d = −2d ·

(
−2d − d

22−2d − 1
22−2d + o(2−2d)

)
= 1 +

(
d + 1

2 + o(1)
)

2−d.

The result follows. □

Remark 5.6. By the theory of large deviations in probability, this bound on βd is in fact the best
possible for this probabilistic procedure.

Remark 5.7. Although we have proved bounds on various βd, it may not be the case that
β∞ = limd→∞ βd. For instance, the functions min(2−x, 3−x), min(2−x, 31−x), min(2−x, 32−x), . . . are
each individually 3−(1+o(1))x, but their pointwise limit is exactly 2−x. The best bound we know
for β∞ comes from using Lemma 5.2 to conclude c(2d+1, d) ≥ (2 − 2−d)cd+1, which implies that
γ∞(2) ≥ 2c and thus β∞ ≥ (1 − 2c)−1/2 ≈ 1.539.
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6. Concluding Remarks

6.1. Minimum shattering for fixed d. As mentioned in the introduction, the problem of
determining g(n, k, d), which is the minimum possible number of subsets of size d of [n] which
are shattered by a family F of k distinct subsets of [n], is much simpler than that of determining
f(n, k, d). An explicit formula for the value of g(n, k, d) is somewhat complicated, we illustrate
the way of computing it by describing the formula for some range of the parameters. Writing(

n
<d

)
=
∑d−1

i=0
(

n
i

)
, let r ∈ [d, n] and suppose that k satisfies(

n

<d

)
+
(

r

d

)
+
[(

r

d + 1

)
− 1
]

+
[(

r

d + 2

)
− 1
]

+ · · · +
[(

r

r − 1

)
− 1
]

≤ k

≤
(

n

<d

)
+
(

r

d

)
+
(

r

d + 1

)
+
(

r

d + 2

)
+ · · · +

(
r

r − 1

)
+
(

r

r

)
.

We claim that in this range g(n, k, d) =
(

r
d

)
. To prove the upper bound it suffices to to establish

it for the upper limit of this range, since g(n, k, d) is clearly weakly increasing in k. Let F be the
family of all subsets of size at most d − 1 of [n] together with all subsets of [r]. Then |F| = k and
the d-subsets of [n] it shatters are exactly all d-subsets of [r]. To prove the lower bound it suffices
to prove that any family F ⊆ 2[n] of size(

n

<d

)
+
(

r

d

)
+
[(

r

d + 1

)
− 1
]

+
[(

r

d + 2

)
− 1
]

+ · · · +
[(

r

r − 1

)
− 1
]

shatters at least
(

r
d

)
subsets of size d of [n]. By the result of Pajor mentioned in the introduction, F

shatters at least |F| subsets of [n]. Note that the family of all shattered subsets forms a simplicial
complex, namely, it is closed under taking subsets. This complex contains at most

(
n

<d

)
subsets

of size at most d − 1. If it contains a subset of size r′ for some r′ ≥ r, then it contains at least(
r′

d

)
≥
(

r
d

)
subsets of size d, as needed. Similarly, if it contains at least

(
r
i

)
subsets of size i for some

i ≥ d, then by the Kruskal-Katona Theorem it contains at least
(

r
d

)
subsets of size d, as required. If

none of these conditions holds, then

|F| ≤
(

n

<d

)
+
[(

r

d

)
− 1
]

+
[(

r

d + 1

)
− 1
]

+
[(

r

d + 2

)
− 1
]

+ · · · +
[(

r

r − 1

)
− 1
]
.

which is smaller than the assumed size. This completes the proof of the claim providing an explicit
formula for g(n, k, d) in this range.

In general, the optimal construction comes from first putting all subsets of [n] with size less than
d in F , and then adding the remaining subsets in lexicographic order, without regard to their size.

6.2. Larger alphabets. This problem, in the binary matrix formulation, naturally generalizes to
an alphabet of size v. Most of the arguments in this paper generalize, with two main exceptions.
First of all, we do not have an exact analogue of Lemma 3.1, so the d = 2 case is significantly more
mysterious. We note, however, that an asymptotic version of the analogue of Lemma 3.1 has been
obtained by Gargano, Körner, and Vaccaro [GKV92] using an elegant construction motivated by
techniques from information theory.

Second, unless v is a prime or a prime power, constructions involving finite field linear algebra
stop working. Nonetheless, it is still possible to salvage something. Letting fv(n, k, d) be the natural
generalization of f(n, k, d) to an alphabet of size v, we have the following:

Proposition 6.1. fv1v2(n1n2, k1k2, d) ≥ d!fv1(n1, k1, d)fv2(n2, k2, d)
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Proof. Consider matrices M1 ∈ [v1]k1×n1 and M2 ∈ [v2]k2×n2 with fv1(n1, k1, d) and fv2(n2, k2, d)
shattered submatrices, respectively. Let M ∈ ([v1]×[v2])k1k2×n1n2 be such that for i1 ∈ [k1], i2 ∈ [k2],
j1 ∈ [n1], and j2 ∈ [n2], we have

M(i1,i2),(j1,j2) = ((M1)i1,j1 , (M2)i2,j2).

One can check that if the k1 × d submatrix of M1 given by columns j1, . . . , jd and the k2 × d
submatrix of M2 given by columns j′

1, . . . , j′
d are both shattered, the k1k2 × d submatrix of M given

by columns (j1, j′
1), . . . , (jd, j′

d) is shattered. This proves the desired bound, as there are d! ways to
combine a pair of shattered submatrices of M1 and M2. □

As a corollary, we find that, after defining cv(k, d) and γv,d(s) to be the natural generalizations of
c(k, d) and γd(s), we have cv1v2(k1k2, d) ≥ cv1(k1, d)cv2(k2, d) and γv1v2,d(s1s2) ≥ γv1,d(s1)γv2,d(s2).
In particular, γv,∞(1) > 0 for all v, since we can write every v as a product of prime powers.

An interesting phenomenon which occurs for v ≥ 2 is that the best known bounds for limd→∞ βv,d

and βv,∞ depend on the factorization of v. Completely random constructions (see Proposition 5.4)
yield limd→∞ βv,d ≥ e unconditionally, while combining linear-algebraic constructions and Proposi-
tion 6.1 yields

lim
d→∞

βv,d ≥ βv,∞ ≥ 1
1 − γv,∞(1) ≥ 1

1 −
∏

q

∏∞
i=1(1 − q−i) ,

where the product is over maximal prime powers q that divide v. This is v − 1 + o(1) for large prime
power v, and is larger than e for all prime powers v ≥ 4, as well as for some v that are not prime
powers but products of large prime powers, the smallest of which is v = 35. Moreover, if q ≡ 2
(mod 4), using the fact that γ2,∞(2) ≥ 2c yields

βv,∞ ≥ 1√
1 − γv,∞(2)

≥ 1√
1 − 2

∏
q

∏∞
i=1(1 − q−i)

,

which is always better as
√

1 − 2a < 1−a for a ∈ (0, 1/2). However, in this case, since (1−2c)−1/2 < e,
this bound is always less than e and thus does not improve on the random construction for
limd→∞ βv,d.

6.3. Application to covering arrays. An (k; d, n, v)-covering array3 is a matrix in [v]k×n such
that every k × d submatrix is shattered. It is easy to see that if M ∈ [v]k×n has m < n submatrices
that are k × d and not shattered, then a (k; d, n − m, v)-covering array exists, since we can just
delete one column from every submatrix that is not shattered. This observation is enough to prove
the following:

Proposition 6.2. For fixed d, v ≥ 2, a (k; d, n, v)-covering array exists whenever

k ≤ (1 + o(1))(d − 1)vd

log2 βv,d
log2 n.

Proof. By Lemma 2.3 and the above observation, a (k; d, n, v)-covering array exists if n ≤ n′ −
(1 − cv(k, d))

(
n′

d

)
for some positive integer n′. Choosing n′ = ⌊(1 − cv(k, d))−1/(d−1)⌋ yields n =

Ω((1 − cv(k, d))−1/(d−1)). Together with monotonicity (we can freely add rows and delete columns),
we get the desired after some manipulation. □

3Our usage of the parameters n and k is unfortunately swapped from the standard literature.
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Proposition 6.2, together with bounds on the βv,d, reproduce a number of results from the
literature. Proposition 5.4 recovers a result of Goldbole, Skipper, and Sunley [GSS96] originally
proved using the Lovász local lemma. Moreover, Proposition 5.5, which generalizes to

βv,d ≥ sup
t∈R

(
(e(v−1)t + (v − 1)e−t)d − e(v−1)dt

vd

)−vd

= e

(
1 +

(
(v − 1)d + 1

2 + ov(1)
)

v−d

)
,

recovers, in the case (v, d) = (2, 3), results proved independently by Roux [Rou87] and Graham,
Harary, Livingston, and Stout [GHLS93]. In the general case, we reproduce a result of Francetić
and Stevens [FS17]. Despite being numerically the same, our result is expressed in a much simpler
form, and as a result we are able to provide an asymptotic which is absent in [FS17].

Finally, Das and Mészáros [DM18] use the fact that γv,∞(1) =
∏∞

i=1(1 − v−i) for prime power
v to construct covering arrays. However, they do not use Proposition 6.1, which, as previously
mentioned, allows one to improve on the random construction when v is a product of large prime
powers.
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