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Abstract

We present several variants of the sunflower conjecture of Erdős and Rado [ER60] and discuss the
relations among them.

We then show that two of these conjectures (if true) imply negative answers to questions of Cop-
persmith and Winograd [CW90] and Cohn et al [CKSU05] regarding possible approaches for obtaining
fast matrix multiplication algorithms. Specifically, we show that the Erdős-Rado sunflower conjecture
(if true) implies a negative answer to the “no three disjoint equivoluminous subsets” question of Copper-
smith and Winograd [CW90]; we also formulate a “multicolored” sunflower conjecture in Zn

3 and show
that (if true) it implies a negative answer to the “strong USP” conjecture of [CKSU05] (although it does
not seem to impact a second conjecture in [CKSU05] or the viability of the general group-theoretic ap-
proach). A surprising consequence of our results is that the Coppersmith-Winograd conjecture actually
implies the Cohn et al. conjecture.

The multicolored sunflower conjecture in Zn
3 is a strengthening of the well-known (ordinary) sun-

flower conjecture in Zn
3 , and we show via our connection that a construction from [CKSU05] yields a

lower bound of (2.51 . . .)n on the size of the largest multicolored 3-sunflower-free set, which beats the
current best known lower bound of (2.21 . . .)n [Edel04] on the size of the largest 3-sunflower-free set in
Zn
3 .
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1 Introduction

Sunflowers. A k-sunflower (also called a ∆-system of size k) is a collection of k sets, from some universe
U , that have the same pairwise intersections. This notion was first introduced in [ER60] and proved itself
to be a very useful tool in combinatorics, number theory and computer science ever since. See, e.g., [Fu91],
[Ju01], [AP01].

A basic problem concerning sunflowers is how many sets do we need in order to guarantee the existence
of a k-sunflower. Erdős and Rado proved the following bound [ER60, ER69].

Theorem 1.1 (Erdős and Rado [ER60]) Let F be an arbitrary family of sets of size s from some universe
U . If |F| > (k − 1)s · s! then F contains a k-sunflower.

They conjectured that actually many fewer sets are needed.

Conjecture 1 (Classical sunflower conjecture [ER60]) For every k > 0 there exists a constant ck such
that the following holds. Let F be an arbitrary family of sets of size s from some universe U . If |F| ≥ csk
then F contains a k-sunflower.

This (and in particular the case k = 3) is one of the most well known open problems in combinatorics
and despite a lot of attention it is still open today (see e.g. [Erd71, Erd75, Erd81]).

This conjecture has applications in combinatorial number theory and the study of Turán type problems
in extremal graph theory ([Fu91]), as well as in other areas in combinatorics including the investigation of
explicit constructions of Ramsey graphs ([AP01]). A close variant has been applied in Circuit Complexity
([Ju01], see also [Ra85], [AB87]).

Matrix multiplication and conjectures implying an O(n2+ε) time algorithm. A fundamental algorith-
mic problem in computer science asks to compute the product of two given n × n matrices. This problem
received a lot of attention since the seminal work of Strassen [Str69] that showed that one can do better
than the simple row-column multiplication. For many years, the best known result was due to Coppersmith
and Winograd, who gave an O(n2.376...) time algorithm for multiplying two n × n matrices [CW90]. Very
recently, this running time has been lowered, by Stothers and Williams [S10, W11], and the world record
now stands at O(n2.373...) [W11]. It is widely believed by experts that one should be able to multiply n× n
matrices in time O(n2+ε), for every ε > 0 (see e.g., [Gat88, BCS97]). It is a major open problem to achieve
such an algorithm (which we term fast matrix multiplication).

In their paper, Coppersmith and Winograd proposed an approach towards achieving fast matrix multipli-
cation. They showed that the existence of an Abelian group and a subset of it that satisfy certain conditions,
imply that their techniques can yield an O(n2+ε) time algorithm.

A new approach for matrix multiplication that is based on group representation theory was suggested
by Cohn and Umans [CU03]. In a subsequent work [CKSU05], Cohn et al. gave several algorithms based
on the framework of [CU03], and were even able to match the result of [CW90]. Similarly to Coppersmith
and Winograd, Cohn et al. formulated two conjectures regarding the existence of certain combinatorial
structures that, if true, would yield O(n2+ε) time matrix-multiplication algorithms.

Our results. We relate variants of the sunflower conjecture to each other, and to two of the aforementioned
matrix multiplication conjectures. Our main results are as follows:

• We prove (Theorem 3.2) that if Conjecture 1 is true then no Abelian group and subset satisfying the
Coppersmith-Winograd conjecture exists. Since Conjecture 1 is well-known and widely believed, this
is a strong indication that the Coppersmith-Winograd conjecture may be false.
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• We formulate a new variant of the sunflower conjecture (Conjecture 6) and prove (Theorem 3.7)
that it contradicts one of two conjectures in [CKSU05], regarding the existence of “Strong Uniquely
Solvable Puzzles.” Thus any construction of Strong Uniquely-Solvable Puzzles that would yield an
exponent 2 algorithm for matrix multiplication must disprove this variant of the sunflower conjecture,
which helps explain the difficulty of the problem. We stress though, that this does not rule out the
possibility of obtaining fast matrix multiplication algorithms using the Cohn-Umans framework. In
particular, in [CKSU05] Cohn et al. propose a second direction that seems not to contradict the
variants of the sunflower conjecture that are considered here.

• We discover via connections proved in this paper, that the Coppersmith-Winograd conjecture actually
implies the Strong Uniquely-Solvable Puzzles conjecture of [CKSU05]. Thus the latter conjecture is
formally easier to prove.

• We show via connections established in this paper that a construction from [CKSU05] yields a lower
bound of (2.51 . . .)n on the size of the largest multicolored 3-sunflower-free set, which beats the
current best known lower bound of (2.21 . . .)n [Edel04] on the size of the largest 3-sunflower-free set
in Zn3 .

• We show that the Erdős-Rado sunflower conjecture, and another well-known sunflower conjecture of
Erdős and Szemerédi [ES78] can be viewed in a uniform way as conjectures about sunflowers in ZnD.

We emphasize that the message of this paper with respect to approaches to matrix multiplication is not
entirely negative. In particular, not all of the statements labeled “conjectures” in this paper have equal
weight. After laying out the various connections, we speculate on the relative likelihood of the various
conjectures, in Section 4.

Organization. We organize the paper as follows. In Section 2 we discuss different sunflower conjectures
and give the relations among them. In Section 3 we present the questions raised in [CW90, CKSU05] and
show their relation to sunflowers. In Section 4 we discuss these implications.

Notations. For an integer m we denote by Zm = {0, . . . ,m − 1} the additive group modulo m. [n]
stands for the set [n] = {1, . . . , n}. All logarithms are taken in base 2. We will often use direct products
of families of sets. For families F1 ⊂ Zn1

m and F2 ⊂ Zn2
m , we define their direct product to be the family

F1 × F2 = {u ◦ v | u ∈ F1 and v ∈ F2}, where u ◦ v is the concatenation of u and v, over Zn1+n2
m . When

each Fi is a family of subsets from some universe Ui, we define the direct product analogously, over the
disjoint union U1 t U2.

2 Sunflower conjectures

Definition 2.1 We say that k subsets A1, . . . , Ak, of a universe U , form a k-sunflower if ∀i 6= j Ai ∩Aj =
∩ki=1Ai.

Conjecture 1 states that for every k there is an integer ck such that any csk sets of size s contain a k-
sunflower. The conjecture is open even for k = 3, which is the case that we are most interested in, in this
paper. This case is also the main one studied in most existing papers on the conjecture, and it is believed that
any proof of the conjecture for k = 3 is likely to provide a proof of the general case as well. Currently the
best known result is given in the following theorem of Kostochka, improving an earlier estimate of [Spe77].
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Theorem 2.2 (Kostochka [Ko97]) There exists a constant c such that every family of s-sets of size at least
cs! · ( log log log slog log s )s contains a 3-sunflower.

The following conjecture of Erdős and Szemerédi [ES78] concerns 3-sunflowers inside [n].

Conjecture 2 (Sunflower conjecture in {0, 1}n [ES78]) There exists ε > 0 such that any family F of sub-
sets of [n] (n ≥ 2) of size |F| ≥ 2(1−ε)·n contains a 3-sunflower.

Note the difference between Conjectures 1 and 2. While Conjecture 1 concerns s-sets from an un-
bounded universe, Conjecture 2 does not restrict the sets to be of the same size, and instead demands that
they all come from an n element set.

An interesting fact is that Conjecture 1 implies Conjecture 2. This was proved in [ES78] (see also
[DEGKM97] for a somewhat sharper estimate). For completeness, we include a short proof.

Theorem 2.3 ([ES78]) Assume that for k = 3 there exists a constant c such that every family of s-sets of size
at least cs contains a 3-sunflower. Set ε = 1/4c. Then any family F of subsets of [n] of size |F| ≥ 2(1−ε)n

contains a 3-sunflower.

Proof Recall that
∑( 1

2
−δ)n

i=0

(
n
i

)
= 2(1+o(1))H( 1

2
−δ)·n, where H(x) = −x log(x)− (1− x) log(1− x) is the

entropy function. As H(12 − δ) < 1 − δ2, for δ small enough, we get that for δ =
√

2ε, F must contain at
least 1

4δn2(1−ε)·n sets of size s for some s ∈ [(12 − δ) · n, (
1
2 + δ) · n]. From now on we shall only consider

those sets of size exactly s in F .
Let α > 0 be some small number to be determined later, such that α · n is an integer. As each s-set

contains exactly
(

s
s−αn

)
subsets of size s− αn, and there are

(
n

s−αn
)

such sets, one (s− αn)-set belongs to
at least

1

4δn
2(1−ε)·n ·

(
s

s−αn
)(

n
s−αn

) =
1

4δn
2(1−ε)·n ·

(
n+αn
αn

)(
n+αn
s

) > 1

4δn
2(1−ε)·n ·

(
n+αn
αn

)
2n+αn

= 2H( α
1+α

)·(1+α)n−αn−εn−o(n) > 2n(α log( 1+α
α

)−α−ε) (1)

s-sets in F . Let α = 1/4c and ε ≤ α. From (1) it follows that, for some (s − αn)-set A, the number of
s-sets in F that contain A is larger than

2n(α log( 1+α
α

)−α−ε) ≥ 2nα log c = cαn .

By the choice of c, it follows that if we remove the set A from all those sets then three of them form a
sunflower (indeed, after removing A, we get a collection of more than cαn sets of size αn). In particular, a
sunflower exists in F . �

The same proof idea can be used to show a strong consequence if Conjecture 2 is false, that will be
useful in the proof of Theorem 2.7.

Theorem 2.4 If Conjecture 2 is false, then the following holds for every ε > 0. For infinitely many n, for
all integers 2 ≤ c < 1/

√
ε, there are families F of n-subsets of [cn] of cardinality

(
cn
n

)1−ε, containing no
3-sunflower.

Proof Let F be a family of 2(1−ε)m subsets of [m] that contain no 3-sunflowers. Then repeating the first
part of the proof of Theorem 2.3, we can find a family F ′ ⊆ F of at least 1

4
√
2εm

2(1−ε)m s-subsets of [m] for

some s ∈ [(1/2−
√

2ε)m, (1/2 +
√

2ε)m]. If m is odd, add an element to the universe and set m′ = m+ 1;
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otherwise set m′ = m. If s = m′/2 + ` for integer ` > 0, then add 2` fresh elements to the universe [m′]. If
s = m′/2 − ` for integer ` > 0, then add 2` fresh elements to the universe [m′] and to every subsets in F ′
to obtain a 3-sunflower-free family of (m′/2 + `)-subsets of [m′ + 2`]. In both cases, since ` ≤

√
2εm, the

cardinality is at least

1

4
√

2εm
2(1−ε)m ≥ 1

8
√

2εm
2(1−ε)m

′ ≥ 1

8
√

2εm
2

1−ε
1+2
√
2ε

(m′+2`)
.

Assuming Conjecture 2 is false, we have families F of 2(1−ε)m subsets of [m] that contain no 3-sunflowers,
for arbitrarily small ε > 0, and infinitely many m. Applying the above transformation, we have that for
every ε > 0, and infinitely many n, there are families of n-subsets of [2n] of cardinality 2(1−ε)2n ≥

(
2n
n

)1−ε
.

This takes care of the case c = 2.
Now, we turn to the cases 2 < c < 1/ε. By taking the (c − 1)-fold direct product of the c = 2

construction, we obtain families of (c − 1)n-subsets of [2(c − 1)n] of cardinality at least 22(c−1)n(1−ε) ≥(2(c−1)n
(c−1)n

)1−ε
. Consider such a 3-sunflower-free family (note that a direct product of sunflower-free families

is also sunflower-free). Set r = (c− 2)n. The number of r-subsets of [2(c− 1)n] is(
2(c− 1)n

r

)
=

(2(c−1)n
(c−1)n

)(
(c−1)n

r

)(2(c−1)n−r
(c−1)n−r

) .

The number of r-subsets of each set in the family is
(
(c−1)n

r

)
. Thus, there is some r-set contained in at least(

2(c− 1)n

(c− 1)n

)1−ε
·

(2(c−1)n−r
(c−1)n−r

)(2(c−1)n
(c−1)n

) ≥ (2(c−1)n−r(c−1)n−r
)

22ε(c−1)n
.

subsets in the family. Remove this r-set from these subsets and the universe. Since 2(c − 1)n − r = cn
and (c− 1)n− r = n, the resulting family consists of n-subset of [cn] that are 3-sunflower-free, and it has
cardinality at least (

cn
n

)
22ε(c−1)n

≥
(
cn
n

)1−2√ε
c2
√
εn

22ε(c−1)n
≥
(
cn

n

)1−2
√
ε

,

using the fact that
(
cn
n

)
≥ cn, and the requirement that 2 ≤ c < 1/

√
ε. As ε > 0 was arbitrary, we are done.

�

In order to relate sunflowers to the question of Cohn et al. we need to consider the following variant of
sunflowers.

Definition 2.5 (Sunflowers in ZnD) We say that k vectors v1, . . . , vk ∈ ZnD form a k-sunflower if for every
coordinate i ∈ [n] it holds that either (v1)i = . . . = (vk)i or they all differ on that coordinate.

Note that this definition is equivalent to that of a k-sunflower of sets, if we assume that the universe is
partitioned into n pairwise disjoint blocks, each of size D, and every set contains exactly one element in
each block.

Conjecture 3 (Sunflower conjecture in ZnD) For every k there is an absolute constant bk so that for every
D and every n any set of at least bnk vectors in ZnD contains a k-sunflower.

While this conjecture seems different from the classical sunflower conjecture, it turns out that they are
equivalent.
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Theorem 2.6 If Conjecture 1 holds for ck then Conjecture 3 is true for bk = ck. Similarly, if Conjecture 3
holds for bk, then Conjecture 1 is true with ck = e · bk.

Proof Conjecture 1⇒ Conjecture 3: Let U = Z and denote by p1, . . . , pn the first n prime numbers. Given
v ∈ ZnD define Sv = {p1+v11 , . . . , p1+vnn }. Clearly Sv is an n-set. It is not hard to see that a collection
F ⊆ ZnD contains a k-sunflower if and only if the corresponding family SF = {Sv | v ∈ F} contains a
k-sunflower.

Conjecture 3 ⇒ Conjecture 1: Given a family F of cs subsets of U we shall define a corresponding
family inside ZsD, for some large D. Indeed, we can assume w.l.o.g. that |U | ≤ s · cs. For convenience
assume that U = [D] for D ≤ s · cs. Pick a map from [D] to [s] uniformly at random from all such maps.
For a given s-set A ⊂ [D], the probability that A was mapped injectively to [s] is exactly s!/ss > e−s.
Thus, there exists a map f : [D]→ [s], that is 1− 1 on at least (c/e)s of the sets in F . Denote those sets by
F̃ and consider any such set A. Define the vector vA = (v1, . . . , vs) where vi = f−1(i) ∩ A. Namely, the
ith coordinate of v is the unique element of A that was mapped to i by f . Denote the new family by vF . It
is not hard to see that F̃ contains a k-sunflower if and only if vF does. As |vF | = |F̃ | ≥ (c/e)s = bs, where
b = c/e, the result follows. �

The following is a weaker version of Conjecture 3, for the special case k = 3.

Conjecture 4 (Weak sunflower conjecture in ZnD) There is an ε > 0 so that for D > D0 and n > n0, any
set of at least D(1−ε)n vectors in ZnD contains a 3-sunflower.

The main difference from Conjecture 3 is that we allow the number of sets to scale with D. It is clear
that Conjecture 3 immediately implies Conjecture 4. Next we show that Conjecture 4 is in fact equivalent to
Conjecture 2.

Theorem 2.7 If Conjecture 2 holds for ε0 then Conjecture 4 holds for ε = ε0/2, D0 ≥ 2
12

ε20 and n > n0. If
Conjecture 4 holds for ε0 and D0 ≥ 3 and n > n0 then Conjecture 2 holds for some ε′0 > 0.

Proof Conjecture 2 ⇒ Conjecture 4: Let d be such that
(
d
d/2

)
≥ D (by Stirling’s approximation, d =

logD + 1
2 log logD + 3 suffices). Pick an arbitrary 1-1 map f from [D] to subsets of size d/2 in {0, 1}d.

Given a family F ⊂ ZnD map every vector v ∈ F to v′ ∈ {0, 1}dn in the natural way. I.e. v′ = f(v1) ◦
f(v2)◦ · · · ◦f(vn), where ◦ stands for concatenation. Call the resulting family F ′. It is clear that if v′, u′, w′

form a 3-sunflower in {0, 1}dn then v, u, w form a 3-sunflower in ZnD (the converse is not necessarily true).
From our choice of parameters it follows that |F ′| = |F| ≥ D(1−ε)n ≥ 2(1−ε0)dn. Hence, F ′ contains a
3-sunflower and therefore so does F .

Conjecture 4 ⇒ Conjecture 2: Assume that Conjecture 2 is false. By Theorem 2.4, we can choose
ε < min(ε0/2, 1/D

2
0) and then for infinitely many n, for each 2 ≤ c ≤ D0 there is a family Fc of at least(

cn
n

)1−ε0/2 n-subsets of [cn]. We now describe a family of vectors in ZD0n
D0

. We use the phrases “0-set,” “1-
set,” etc... to refer to the coordinates of a given vector that have 0s, 1s, etc... Our vectors have as their 0-sets
the subsets in family FD0 . For each 0-set, we have vectors whose 1-sets (which are subsets of the remaining
(D0 − 1)n coordinates) are given by family FD0−1. Then for each pattern of 0s and 1s, we have vectors
whose 2-sets (which are subsets of the remaining (D0 − 2)n coordinates) are given by family FD0−2, and
so on, until we define the (D0 − 2)-sets using family F2. The remaining n coordinates of each vector are
then set to D0 − 1. It is clear that if three vectors u, v, w in this family form a 3-sunflower, then their 0-sets
coincide (since FD0 is 3-sunflower-free), and then their 1-sets coincide (since FD0−1 is 3-sunflower-free),
and so on, until we conclude that u = v = w. Thus our family in ZD0n

D0
is 3-sunflower free, and it has
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cardinality at least((
D0n

n

)(
(D0 − 1)n

n

)(
(D0 − 2)n

n

)
· · ·
(

2n

n

))1−ε0/2
=

(
D0n

n, n, n, · · · , n

)1−ε0/2

≥(∗) D
D0n(1−o(1))(1−ε0/2)
0 ≥ D(1−ε0)D0n

0 ,

where (∗) follows easily from Stirling’s theorem. �

The assertion of Conjecture 4 may well hold for small values of D as well. In particular, the case D = 3
attracted a considerable amount of attention as in this case a 3-sunflower in the group Zn3 is equivalent to a
3-term arithmetic progression in this group.

Conjecture 5 (Weak sunflower conjecture in Zn3 ) There is an ε > 0 so that for n > n0, any set of at least
3(1−ε)n vectors in Zn3 contains a 3-sunflower.

An obvious modification of the previous proof (replacing any symbol of [D] by its base-3 representation)
shows that Conjecture 5 implies Conjecture 4. The best known upper bound for the cardinality of a subset
of Zn3 that contains no 3-sunflower is the recent O(3n/n1+ε) bound, for some small ε > 0, of [BK11]
that improves upon the previous 2 · 3n/n bound of [Me95]. The best known lower bound is (2.217 . . .)n

[Edel04].
It is natural to guess that Conjecture 5 is true when it is seen as a variant of Conjecture 4. On the other

hand, one might guess that Conjecture 5 is false when it is viewed as a variant of the assertion that sets of
size D(1−ε)n in ZnD have a 3-term arithmetic progression, because the latter statement is false for large D.
We include a simple construction, due to Salem and Spencer [SS42]:

Theorem 2.8 (3-term arithmetic progression free sets in ZnD [SS42]) For all ε > 0, if D > 22/ε and n is
sufficiently large, there is a set of D(1−ε)n vectors in ZnD that contains no 3-term arithmetic progressions.

Proof Set d = b(D−1)/2c, and for simplicity assume (d+ 1)|n. Let F be the set of all vectors in ZnD with
equal numbers of the elements {0, 1, 2, . . . , d}. Then

|F| =
(

n

n/(d+ 1), n/(d+ 1), . . . , n/(d+ 1)

)
= (d+ 1)(1−o(1))n ≥ D(1−ε/2−o(1))n > D(1−ε)n

(if (d+ 1) - n, we take vectors with a near-equal distribution, and the calculation is essentially unchanged).
Suppose we have u, v, w ∈ F for which u+w = 2v (i.e., u, v, w form a 3-term arithmetic progression).

Since all entries in u, v, w are at most d this equation holds in the integers as well. Then, consider the set
I of coordinates i for which vi = d. Since all entries in u,w are at most d, it must be that ui = wi = d
for all i ∈ I . But now we have accounted for all of the entries equal to d in all three vectors. The same
argument then gives that all three vectors are d−1 in exactly the same set of coordinates, etc... We conclude
u = v = w. �

The last sunflower conjecture is a “multicolored” version of Conjecture 5. To formulate it, we will
be discussing collections of ordered triples of vectors in Zn3 (instead of collections of vectors in Zn3 ). We
say that such a triple (x, y, z) is an ordered sunflower if the set {x, y, z} is a sunflower in Zn3 , and we say
that two ordered sunflowers (x, y, z) and (a, b, c) are disjoint if x 6= a, y 6= b, and z 6= c. We say that a
collection of ordered triples contains a multicolored sunflower if it contains three triples, (x(1), y(1), z(1)),
(x(2), y(2), z(2)), (x(3), y(3), z(3)), not all equal, for which {x(1), y(2), z(3)} form a sunflower.
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Conjecture 6 (multicolored sunflower conjecture in Zn3 ) There exists ε > 0 so that for n > n0, every
collection F ⊆ Zn3 × Zn3 × Zn3 of at least 3(1−ε)n ordered sunflowers contains a multicolored sunflower.

The requirement in Conjecture 6 that F be a collection of sunflowers (rather than an arbitrary collection
of triples) is needed for non-triviality1. Note that if F ⊆ Zn3 is 3-sunflower-free, then {(x, x, x) : x ∈ F}
is a collection of ordered sunflowers containing no multicolored sunflower. Thus Conjecture 6 implies
Conjecture 5.

Figure 1 describes the connections between the different conjectures.

Conj. 3

��

ks Thm. 2.6 +3 Conj. 1

Thm. 2.3
��

Conj. 6 +3 Conj. 5 +3 Conj. 4 ks Thm. 2.7 +3 Conj. 2

Figure 1: Sunflower conjectures

3 Matrix multiplication

In [CW90] Coppersmith and Winograd gave what was until very recently the asymptotically fastest algo-
rithm for multiplying two n×nmatrices. Their argument fell short of providing anO(n2+ε) time algorithm;
however they proved that if a certain structure (that we define next) exists then their techniques can yield
such an algorithm.

Definition 3.1 ([CW90]) An Abelian group G (with at least two elements) and a subset S of G satisfy the
no three disjoint equivoluminous subsets property if: whenever T1, T2 and T3 are three disjoint subsets of
S, not all empty, they cannot all have the same sum in G:∑

g∈T1

g 6=
∑
g∈T2

g or
∑
g∈T2

g 6=
∑
g∈T3

g .

Coppersmith and Winograd showed that if “... we can find a sequence of pairs G,S with the no three
disjoint equivoluminous subset property, such that log(|G|)/|S| approaches 0” then for every ε > 0 there is
an O(n2+ε) time fast matrix multiplication algorithm. However, the next claim, whose proof is very simple,
shows that if Conjecture 2 is true then there is no such sequence.

Theorem 3.2 If Conjecture 2 holds with ε0 then if G,S have the no three disjoint equivoluminous subset
property then |S| ≤ log(|G|)/ε0.

Proof Given S, consider all its 2|S| subsets. For each subset T ⊆ S, compute σ(T ) =
∑

g∈T g. Clearly,
there is some g ∈ G such that at least 2|S|/|G| subsets T satisfy σ(T ) = g. Now, if log(|G|)/|S| < ε0 then
2|S|/|G| > 2(1−ε0)|S|. Therefore, in this case, Conjecture 2 implies the existence of a 3-sunflower T ′1, T ′2
and T ′3 such that σ(T ′1) = σ(T ′2) = σ(T ′3). Let T = T ′1 ∩ T ′2. Set Ti = T ′i \ T . By our construction we have
that the Ti’s are disjoint and σ(Ti) = g − σ(T ). Hence, they violate the no three disjoint equivoluminous
subsets property. Hence, we must have |S| ≤ log(|G|)/ε0 for the property to hold. �

We now turn to discussing a question that was formulated by Cohn et al. [CKSU05]. Denote by Sym(U)
the group of permutations of a set U .

1Otherwise, e.g., the collection of ordered triples (x, y, z) with the first digit of x = 0, the first digit of y = 0, and the first digit
of z = 1 contains no multicolored sunflower.
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Definition 3.3 (Uniquely solvable puzzle [CKSU05]) A uniquely solvable puzzle (USP) of width n is a
subset F ⊆ Zn3 satisfying the following property: For all permutations π0, π1, π2 ∈ Sym(F), either π0 =
π1 = π2 or else there exist u ∈ F and i ∈ [n] such that at least two of (π0(u))i = 0, (π1(u))i = 1, and
(π2(u))i = 2 hold.

The USP capacity is the largest constant C such that there exist USPs of size (C − o(1))n and width n
for infinitely many values of n.

Quoting [CKSU05]: “The motivation for the name uniquely solvable puzzle is that a USP can be thought
of as a jigsaw puzzle. The puzzle pieces are the sets {i : ui = 0}, {i : ui = 1}, and {i : ui = 2}with u ∈ F ,
and the puzzle can be solved by permuting these types of pieces according to π0, π1, and π2, respectively,
and reassembling them without overlap into triples consisting of one piece of each of the three types. The
definition requires that the puzzle must have a unique solution.”

Cohn et al. observed that the USP capacity is at most 3/22/3 and noticed that a construction of Cop-
persmith and Winograd implies that the capacity is at least 3/22/3 [CW90]. They thus concluded that the
USP capacity equals 3/22/3. For the purpose of obtaining fast matrix multiplication algorithms, [CKSU05]
require a structure that is more restrictive than USP, which they call a strong USP.

Definition 3.4 (Strong uniquely solvable puzzle [CKSU05]) A strong USP is a USP F ⊆ Zn3 in which
the defining property is strengthened as follows: For all permutations π0, π1, π2 ∈ Sym(F), either π0 =
π1 = π2 or else there exist u ∈ F and i ∈ [n] such that exactly two of (π0(u))i = 0, (π1(u))i = 1, and
(π2(u))i = 2 hold.

The strong USP capacity is the largest constant C such that there exist strong USPs of size (C − o(1))n

and width n for infinitely many values of n.

A variant of strong USPs that seems easier to reason about, but potentially harder to construct, is what
[CKSU05] call a local strong USP. Expressing their definition slightly differently, we see the connection to
sunflowers:

Definition 3.5 (local strong USP [CKSU05]) A collection F of vectors in Zn3 is a local strong USP if for
every u, v, w ∈ F , not all equal, the sets {i : ui = 0}, {i : vi = 1}, and {i : wi = 2} do not form a
3-sunflower. The local strong USP capacity is the largest constant C such that there exist local strong USPs
of size (C − o(1))n in Zn3 for infinitely many values of n.

It is not hard to see that a local strong USP is a strong USP (Lemma 6.1 in [CKSU05]). More interest-
ingly, we have the the strong USP capacity is achieved by local strong USPs (Proposition 6.3 in [CKSU05]).
In particular, if the strong USP capacity is at least c, then for infinitely many n, there is a local strong USP
F ⊆ Zn3 of size (c − o(1))n. Cohn et al. conjectured that the strong USP capacity (and thus also the local
strong USP capacity) is equal to the USP capacity. As shown in [CKSU05], this would imply an O(n2+ε)
time algorithm for matrix multiplication.

Conjecture 7 (Conjecture 3.4 in [CKSU05]) The strong USP capacity (and the local strong USP capac-
ity) equals 3/22/3.

Next, we show that Conjecture 6 implies that Conjecture 7 is false. In the proof, it will be convenient if
our local strong USPs have equal numbers of 0’s, 1’s, and 2’s in each vector, and the next lemma shows this
can be assumed without loss of generality.

Lemma 3.6 If the strong USP capacity is at least c, then for infinitely many n, there is a local strong USP
F ⊆ Z3n

3 with each v ∈ F having equal numbers of 0’s, 1’s, and 2’s, of cardinality at least (c− o(1))3n.
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The proof appears in Appendix A.

Theorem 3.7 If the strong USP capacity is at least c, then for infinitely many N , there exists a collection of
at least (22/3c− o(1))N ordered sunflowers in ZN3 × ZN3 × ZN3 that contains no multicolored sunflower. In
particular, if Conjecture 6 is true for ε0, then the strong USP capacity is at most (3/22/3)1−ε0 .

The proof of Theorem 3.7 appears in Appendix A.
Cohn et al. proved that the strong USP capacity is at least 22/3 (Proposition 3.8 in [CKSU05]). Applying

Theorem 3.7, we obtain a lower bound of (24/3−o(1))n > 2.51n on the maximum cardinality of a collection
of ordered sunflowers in Zn3 ×Zn3 ×Zn3 containing no multicolored sunflower. Notice that this is larger than
the best known lower bound on the maximum cardinality of 3-sunflower-free subsets of Zn3 [Edel04].

Finally, we show that if Conjecture 4 is in fact false, then Conjecture 7 is true, and hence the exponent
of matrix multiplication is 2. The complete picture with the two matrix-multiplication related conjectures
included is in Figure 2. Notice the interesting conclusion that the “no three disjoint equivoluminous subsets”
conjecture of [CW90] actually implies the (seemingly very different) strong USP conjecture of [CKSU05].

Conj. 7 false
Thm.3.8

"*NNNNNNNNNN

NNNNNNNNNN
Conj. 3

��

ks Thm. 2.6 +3 Conj. 1

Thm. 2.3
��

Conj. 6 +3

Thm.3.7
4<qqqqqqqqqq

qqqqqqqqqq
Conj. 5 +3 Conj. 4 ks Thm. 2.7 +3 Conj. 2

Thm.3.2 +3 Conj.[CW90] false

Figure 2: Sunflower conjectures and matrix multiplication conjectures. See the discussion in Section 4.

Theorem 3.8 If the strong USP capacity is at most (3/22/3)1−ε0 for some ε0 > 0 then Conjecture 4 holds
with ε = ε0/2 and n large enough.

Proof Assume for convenience that D = 1
3 ·
(
n
n/3

)
, for some integer n divisible by 3 (we later show

that this can be assumed w.l.o.g.) and that we are given a 3-sunflower-free collection F ⊆ ZmD of size
|F| ≥ D(1−ε)m, for m sufficiently large. We will rely on the following (special case of a) theorem of
Baranyai [Bar75].

Theorem 3.9 There is a set G of D vectors in Zn3 , each having exactly n/3 zeros, n/3 ones and n/3 twos,
where every subset of size n/3 of [n] appears exactly once as the set of all occurrences of a 0,1 or 2 in some
vector

We shall create a family, corresponding to F , in Znm3 . Identify the set [D] with the elements of G (arbitrar-
ily). Given a vector in F we replace each symbol by the corresponding member of G and concatenate all
those sets to obtain a vector of length nm. This gives a new family F ′ of D(1−ε)m vectors in Znm3 . As

|F ′| ≥ D(1−ε)m =

(
1

3
·
(
n

n/3

))(1−ε)m
= 2H(1/3)(1−ε)nm+o(nm) =

(
nm

nm/3

)1−ε+o(1)
>

(
nm

nm/3

)1−ε0

we get, by the assumption that the strong USP capacity is at most (3/22/3)1−ε0 , that there are three vectors
u′, v′, w′ (not all equal) in F ′ such that the sets {i : u′i = 0}, {j : v′j = 1} and {l : w′l = 2} form a
3-sunflower. It is not hard to verify that the ‘original’ vectors v, u and w of F form a 3-sunflower. Indeed,
suppose that in some coordinate i we have that the set {ui, vi, wi} contains exactly two distinct values, say
ui = α, vi = α and wi = β. Let Aα and Aβ be the corresponding members of G. By the construction of G,
the sets {j | (Aα)j = 3} and {j | (Aβ)j = 3} are different. Hence, {j | (Aβ)j = 3} intersects at least one
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of the sets {j | (Aα)j = 1} or {j | (Aα)j = 2}. However, since {j | (Aα)j = 1} and {j | (Aα)j = 2} are
disjoint, this contradicts the assumption that u′, v′, w′ form a 3-sunflower.

To complete the proof we argue that we can assume w.l.o.g. that D = 1
3 ·
(
n
n/3

)
, for some integer n di-

visible by 3. Indeed, we can always find an integer n divisible by 3, such that 1
3 ·
(

n−3
(n−3)/3

)
< D ≤ 1

3 ·
(
n
n/3

)
.

As
(

n−3
(n−3)/3

)
> 4

27 ·
(
n
n/3

)
it follows that D(1−ε)m >

(
4
27 ·

(
n
n/3

))(1−ε)m
>
(
n
n/3

)(1−1.1ε)m, for large enough

n. Set D′ =
(
n
n/3

)
and view F as a subset of ZmD′ of size at least D′(1−1.1ε)m. As we picked ε < ε0/2 the

calculations above are not affected by this change. �

4 Discussion

Everything in this paper is labeled a “conjecture” for uniformity of presentation; however some seem more
likely to be true than others. In particular, it would not be overly surprising if everything to the left of
Conjectures 3 and 4 in Figure 2 turned out to be false.

Specifically, a consistent state of affairs would be for the classical Erdős-Rado sunflower conjecture
(Conjecture 1) to be true and the sunflower conjecture in Zn3 (Conjecture 5) to be false. This would make
Conjectures 2, 3, and 4 true, and Conjecture 6 false. In this scenario, the Coppersmith-Winograd conjecture
would necessarily be false, while the Strong Uniquely Solvable Puzzle conjecture of [CKSU05] could be
either true or false.
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[DEGKM97] W. A. Deuber, P. Erdős, D. S. Gunderson, A. V. Kostochka, and A. G. Meyer. Intersection
statements for systems of sets. J. Combin. Theory Ser. A 79 (1997), no. 1, 118–132.

[Edel04] Y. Edel. Extensions of generalized product caps. Designs, Codes and Cryptography 31
(2004), no. 1, 5–14.
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mathematics of Paul Erdős, II, 229-235, Algorithms Combin., 14, Springer, Berlin, 1997.

[Me95] R. Meshulam. On subsets of finite abelian groups with no 3-term arithmetic progressions. J.
Combin. Theory Ser. A 71 (1995), 168–172.

[Ra85] A. A. Razborov. Lower bounds on the monotone complexity of some Boolean functions,
(Russian). Dokl. Akad. Nauk SSSR 281 (1985), no. 4, 798–801.

[SS42] R. Salem and D. Spencer. On sets of integers which contain no three in arithmetic progression.
Proc. Nat. Acad. Sci. (USA), 28:561 563, 1942.

[Spe77] J. Spencer. Intersection theorems for systems of sets. Canadian Math Bulletin, 20(2):249–
254, 1977.

[Str69] V. Strassen. Gaussian elimination is not optimal. Numer. Math, 13:354–356, 1969.

[Str87] V. Strassen. Relative bilinear complexity and matrix multiplication. J. Reine Angew. Math.,
375/376:406–443, 1987.

[S10] A. Stothers. On the complexity of matrix multiplication. Ph.D. Thesis, U. Edinburgh, 2010.

[W11] V. Vassilevska Williams. Breaking the Coppersmith-Winograd barrier. Manuscript, 2011.

A Proofs of Lemma 3.6 and Theorem 3.7

Proof [of Lemma 3.6] We begin with local strong USP U ⊆ Zm3 of cardinality at least N = (c − o(1))m,
which exists because the capacity is at least c. Now, form the strong USP V ⊆ ZmN3 by taking all vectors
that are the concatenation (in some order) of the N vectors of U . Each vector v ∈ V now has the same
distribution of 0’s, 1’s and 2’s. It is easy to see that the local strong USP property is preserved when
cyclically permuting Z3. The direct product of the three local strong USPs obtained from V by these three
transformations is a local strong USP F ⊆ Z3mN

3 with each v ∈ F having an equal number of 0’s, 1’s and
2’s. Its cardinality is

(N !)3 =
(
NN(1−o(1))

)3
≥
(

(c− o(1))mN(1−o(1))
)3

= (c− o(1))3mN

for infinitely many values of m. �

Proof [of Theorem 3.7] Let F ⊆ Z3n
3 be a local strong USP for which every v ∈ F has equal numbers of

0’s, 1’s and 2’s. Our goal will be to produce a collection F ′ ⊆ S0 × S1 × S2 ⊆ (Zn3 )3 such that (1) F ′ is
a collection of pairwise disjoint ordered sunflowers, and (2) every ordered sunflower in S0 × S1 × S2 is in
F ′. Such a collection then contains no multicolored sunflowers.
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For x ∈ Z3n
3 and I ⊆ [n], we denote by xI the projection of x to the coordinates I . Fix a vector v ∈ F

and let I = {i : vi = 0}, J = {j : vj = 1} and K = {k : vk = 2}. We define

T
(v)
0 = {x : xI = 0n, xJ ∈ {1, 2}n, xK ∈ {1, 2}n}

T
(v)
1 = {y : yI ∈ {1, 2}n, yJ = 0n, yK ∈ {1, 2}n}

T
(v)
2 = {z : zI ∈ {1, 2}n, zJ ∈ {1, 2}n, zK = 0n}.

We identify {1, 2}n with the integers {0, 1, 2, . . . , 2n − 1} arbitrarily and denote this lift of w ∈ {1, 2}n to
the integers by w.

Define functions a(v) : T
(v)
0 → Z, b(v) : T

(v)
1 → Z, and c(v) : T

(v)
2 → Z as follows, where s is the

integer d3 · 2n/2e+ 1:

a(v)(x) = ((xJ)− s)2 + 2((xJ)− s)(−xK)

b(v)(y) = (yK)2 + 2(yK)(−yI)
c(v)(z) = (zI)

2 + 2(zI)((−zJ)− s).

These functions and the following lemma are used in [BCS97] (in a presentation of material originally
appearing in [Str87]), to show, in their language, that the matrix multiplication tensor has a large diagonal
which is a combinatorial degeneration. We use it for a slightly different purpose here.

Lemma A.1 ([BCS97] Lemma 15.31) If (x, y, z) ∈ T (v)
0 ×T

(v)
1 ×T

(v)
2 form a sunflower, a(v)(x)+b(v)(y)+

c(v)(z) ≥ 0. Moreover, the set

∆(v) = {(x, y, z) ∈ T (v)
0 × T (v)

1 × T (v)
2 | {x, y, z} form a sunflower

and a(v)(x) + b(v)(y) + c(v)(z) = 0}

is a collection of pairwise disjoint ordered sunflowers with cardinality at least d3 · 22n/4e.

We sketch the proof here for completeness.
Proof When (x, y, z) form an ordered sunflower, we have yI = −zI , xJ = −zJ and xK = −yK , and then
setting i = zI , j = xJ , and k = yK , we have

a(v)(x) + b(v)(y) + c(v)(z) = (j − s)2 + 2(j − s)k + k2 + 2ki+ i2 + 2i(j − s) = (i+ j + k − s)2.

Clearly this function is non-negative, and equals 0 exactly when i + j + k = s. Since each of x, y, and z
determines two of i, j, k and any two of i, j, k determine the third under this constraint (and thus determine
the entire triple), the sunflowers in ∆(v) are pairwise disjoint. The cardinality of ∆(v) is an easy calculation.
�

Now, define T0 =
⋃
v∈F T

(v)
0 , T1 =

⋃
v∈F T

(v)
1 , and T2 =

⋃
v∈F T

(v)
2 . We note that any ordered

sunflower (x, y, z) ∈ T0 × T1 × T2 must have (x, y, z) ∈ T
(v)
0 × T (v)

1 × T (v)
2 for some v ∈ F , because

otherwise by the strong USP property, there is some coordinate i in which exactly two of {xi, yi, zi} equal
0, and so {x, y, z} cannot be a sunflower. We will use this observation, together with Lemma A.1 to produce
our final construction.

Notice that the a(v), b(v), c(v) define in a consistent way functions a, b, c from T0, T1, T2, respectively,
to Z, because the T (v)

0 are disjoint sets (and the same for the T (v)
1 and the T (v)

2 ). Now, consider the `-fold
direct product of the three sets, T `0 , T `1 , T `2 , and the functions A : T `0 → Z, B : T `1 → Z, and C : T `2 → Z
defined by A(X) =

∑
i a(Xi), B(Y ) =

∑
i b(Yi), and A(Z) =

∑
i c(Zi). We claim that

∆ = {(X,Y, Z) ∈ T `0 × T `1 × T `2 : {X,Y, Z} form a sunflower and A(X) +B(Y ) + C(Z) = 0}
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is a collection of pairwise disjoint ordered sunflowers with cardinality at least

(|F| · d3 · 22n/4e)`.

This is because each (Xi, Yi, Zi) must lie in T (vi)
0 × T (vi)

1 × T (vi)
2 for some vi ∈ F (as we observed above),

and then by the first part of Lemma A.1,

A(X) +B(Y ) + C(Y ) = 0⇔ a(Xi) + b(Yi) + c(Zi) = 0 for all i.

Thus ∆ =
(⋃

v∈F ∆(v)
)`

.
We are not done, however, because T `0 × T `1 × T `2 may contain an ordered sunflower (X,Y, Z) not

already in ∆, and this happens exactly when A(X) + B(Y ) + C(Z) > 0. One final trick will fix this
problem, and we describe it next. If a, b, c take values in [−M,M ], then A,B,C take values in [−`M, `M ].
Thus there exist α, β, γ such that at least a 1/(2`M)3 fraction of the triples (X,Y, Z) in ∆ satisfy A(X) =
α,B(Y ) = β,C(Z) = γ. So, define S0 = {X ∈ T `0 : A(X) = α}, S1 = {Y ∈ T `1 : B(Y ) = β},
S2 = {Z ∈ T `2 : C(Z) = γ}, and

F ′ = ∆ ∩ (S0 × S1 × S2).

Then F ′ is a collection of pairwise disjoint ordered sunflowers (because ∆ is) for which every ordered
sunflower (X,Y, Z) ∈ S0 × S1 × S2 is in F ′, as desired. The cardinality of F ′ is at least

(|F| · d3 · 22n/4e)`

(2`M)3
.

If the strong USP capacity is at least c, then by Lemma 3.6, for infinitely many n, there exist balanced,
local strong USPs F ⊆ Z3n

3 with cardinality at least (c − o(1))3n. Taking ` sufficiently large in the above
expression, the theorem follows. �
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