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Abstract

We prove that there is a partial design with n vertices in which each block is of size at

least Ω(
√
n), so that every set that intersects all blocks contains at least Ω(log n) points of

one of them. We also show that the number of sequences n ≥ x1 ≥ x2 ≥ xm ≥ 2 so that there

is a block design on n elements with blocks of sizes x1, x2, . . . , xm is at least 2Ω(n1/2 log n).

This settles two problems of Erdős.

1 Results

We consider two related open problems of Erdős on block designs. Recall that a family of subsets

A1, A2 . . . , Am of a finite set X is a (pairwise balanced) block design if every pair of distinct

elements of X is contained in exactly one of the subsets Ai. It is a partial design if every pair of

distinct elements of X is contained in at most one of the subsets Ai (equivalently, if |Ai∩Aj | ≤ 1

for all 1 ≤ i < j ≤ m.)

The first problem deals with partial designs and appears in [6], see also [4], problem number

664.

Problem 1.1. Is it true that for every fixed positive constant c < 1 there is a finite constant

C = C(c) so that the following holds. For every m and n and for every family of subsets

{A1, A2, . . . , Am} of [n] = {1, 2, . . . , n} that satisfies |Ai| > c
√
n for all 1 ≤ i ≤ m, and |Ai ∩

Aj | ≤ 1 for all 1 ≤ i < j ≤ m, there is a subset B ⊂ [n] so that 0 < |B ∩ Ai| ≤ C for all

1 ≤ i ≤ m?

The second problem appears in [5], page 35, see also [4], problem number 732.

Problem 1.2. Call a sequence n ≥ x1 ≥ x2 ≥ . . . ≥ xm ≥ 2 block-compatible for n if there

is a pairwise balanced block design A1, A2, . . . , Am of m subsets of [n] such that |Ai| = xi for

1 ≤ i ≤ m. Is there an absolute constant c > 0 so that for all large n there are at least ecn
1/2 logn

sequences that are block-compatible for n ?

In this note we show that the answer to the first problem is “no” and the answer to the

second is “yes”. The proofs are short, based on appropriate modifications of the family of lines

of a projective plane which form a block design with m = n = q2 + q + 1 subsets of cardinality

q + 1 = (1 + o(1))
√
n of a set of size n = q2 + q + 1. It is well known that such a plane exists

for any prime power q.
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2 Proofs

Throughout the proofs we assume, whenever this is needed, that the parameter n is sufficiently

large. All logarithms are in base 2, unless otherwise specified. To simplify the presentation we

omit all floor and ceiling signs whenever these are not crucial. We make no serious attempt to

optimize the absolute constants that appear in the proofs.

The following result settles Problem 1.1

Theorem 2.1. Let q be a (large) prime power and put m = n = q2 + q + 1. Then there is a

partial design consisting of m subsets A1, A2, . . . , Am of an n element set P , so that |Ai| > 0.4
√
n

for all 1 ≤ i ≤ m, |Ai ∩ Aj | ≤ 1 for all 1 ≤ i < j ≤ m, and for any subset B of P that has a

nonempty intersection with all sets Aj, there is some 1 ≤ i ≤ m so that |B ∩Ai| ≥ 0.1 log n.

Proof. Let P be the set of n = q2 + q + 1 points of a projective plane of order q, and let

L1, L1, . . . , Lm ⊂ P be the sets of points of the m lines of this plane. Thus each point lies in

q + 1 lines and each line is of size q + 1. For each 1 ≤ i ≤ m let Ai be a random subset of Li

obtained by picking every point of Li, randomly and independently, to lie in Ai with probability

1/2. Note that the choices of distinct subsets Ai here are independent. By the standard estimates

for Binomial distributions (c.f., e.g., [1], Appendix A) together with the union bound, with high

probability (that is, with probability tending to 1 as q (or n) tend to infinity) the following

conditions hold:

1. Each set Ai is of cardinality (1/2 + o(1))
√
n.

2. Each point lies in (1/2 + o(1))
√
n of the sets Ai.

3. |Ai ∩Aj | ≤ 1 for all 1 ≤ i < j ≤ m.

Claim 2.2. With high probability there is no subset B ⊂ P of cardinality at most 0.3
√
n log n

that intersects all the sets Ai.

Proof: Let B be a fixed set of cardinality at most 0.3
√
n log n. Consider the set of pairs

S = {(b, Li) : b ∈ B, 1 ≤ i ≤ m, b ∈ Li}. Clearly |S| = |B|(q + 1). If J = J(B) is the set of all

indices i so that |B ∩ Li| ≥ 0.4 log n then |S| ≥ |J |0.4 log n. Thus

|J | ≤ |B|(q + 1)

0.4 log n
≤ (3/4 + o(1))n < 0.8n.

Therefore there are at least 0.2n lines Li that contain less that 0.4 log n points of B. For each such

line Li, the probability that Ai contains no point of B is at least 2−0.4 logn ≥ n−0.4. Therefore,

the probability that there is no such line (that is, that B intersects all these sets Ai) is at most

(1− 1/n0.4)0.2n ≤ e−0.2n0.6
.
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Since the total number of possible sets B as above is smaller than

n0.3
√
n logn = 20.3

√
n(logn)2 = o(20.2n0.6

) ( = o(e0.2n0.6
) ),

the union bound implies the assertion of the claim.

Returning to the proof of the theorem, fix a choice of the sets Ai that satisfy the conditions 1,

2, 3 above and the assertion of Claim 2.2. If a set B intersects all subsets Ai then it must satisfy

|B| > 0.3
√
n log n. Since each point is contained in (1/2+o(1))

√
n of the sets Ai this implies, by

averaging, that the intersection of B with some set Ai is of size at least |B|(1/2 + o(1))
√
n/n >

0.1 log n. This completes the proof.

The next result settles problem 1.2.

Theorem 2.3. Let q be a large prime power and put n = q2 + q + 1. Let S = (x1 ≥ x2 ≥ x3 ≥
. . . ≥ xm) be any sequence of integers satisfying

q + 1 ≥ x1 ≥ x2 ≥ x3 . . . ≥ xn ≥ 3,

m = n +

n∑
i=1

[

(
q + 1

2

)
−
(
xi
2

)
],

and xi = 2 for all n < i ≤ m. Then S is block-compatible for n. Therefore, the number of

sequences that are block-compatible for n is at least(
n + q − 2

q − 2

)
= 2(0.5+o(1))n1/2 logn.

Proof. Let P and L1, L2, . . . , Ln ⊂ P be, as in the proof of Theorem 2.1, the set of points of a

projective plane of order q + 1 and the sets of points of the n lines of P . For each 1 ≤ i ≤ n let

Xi be a subset of cardinality xi of Li. Consider the block design consisting of the n blocks Xi

together with the following additional

n∑
i=1

[

(
q + 1

2

)
−
(
xi
2

)
]

blocks of cardinality 2: for each 1 ≤ i ≤ n, every pair of distinct elements of Li which is not

contained in Xi. This is clearly a block design and the ordered sequence of cardinalities of its

blocks is the sequence S. This completes the first part of the proof. For the estimate note that

the number of possibilities for the subsequence x1 ≥ x2 ≥ . . . ≥ xn ≥ 3 in the above construction

is the number of ordered sequences of q − 1 nonnegative integers whose sum is n, which is(
n + q − 2

q − 2

)
.

3



3 Concluding remarks

• It is easy to see that the estimate in Theorem 2.1 is tight up to constant factors, for every

partial design in which all blocks are of sizes Θ(
√
n). Indeed the following simple fact

can be proved by choosing the set B randomly and by applying the union bound and the

standard estimates for Binomial distribution.

Proposition 3.1. For any two positive constants c1 < c2 there are two positive constants

C1(c) < C2(c) so that the following holds. For every m and n and for every family of

subsets {A1, A2, . . . , Am} of [n] = {1, 2, . . . , n} that satisfies c1
√
n ≤ |Ai| ≤ c2

√
n for all

1 ≤ i ≤ m, and |Ai ∩ Aj | ≤ 1 for all 1 ≤ i < j ≤ m, there is a subset B ⊂ [n] so that

C1 log n < |B ∩Ai| ≤ C2 log n for all 1 ≤ i ≤ m.

In fact the conclusion holds, of course, even without any assumption on the sizes of the

intersections of pairs of blocks.

• Problem 1.1 for block designs (and not for partial designs) was also asked by Erdős in

[5]. This remains open although we suspect that the answer here is negative as well. We

suggest the following conjecture which, if true, would establish this negative answer.

Conjecture 3.2. Let q be a (large) prime power, put n = q2 + q + 1, let P be the set

of n points of a projective plane of order q and let L1, L2, . . . , Ln be the sets of points of

its lines. Let R be a random subset of P obtained by picking each point of P randomly

and independently to lie in R with probability 1/2. Then with high probability the smallest

cardinality of a subset B of R that intersects all the subsets L1 ∩ R,L2 ∩ R, . . . , Ln ∩ R

satisfies |B|/q > f(q) for some function f(q) tending to infinity as q tends to infinity. In

fact, this may even be true with f(q) = Ω(log q).

This conjecture remains open, although related results have been proved in [2], [3] using

the container method. The parameters in these papers are very different and it seems that

a proof here would require additional ideas.

• As mentioned by Erdős in [5], the ecn
1/2 logn lower bound for the number of block-compatible

sequences for n is tight up to the absolute constant c. For completeness we include a brief

proof of the upper bound. It is clear that if n ≥ x1 ≥ . . . ≥ xm ≥ 2 is block-compatible

for n, then m ≤
(
n
2

)
< n2/2. Therefore, the number of choices of all xi which are, say, at

most 2
√
n is smaller than (

n2/2 + 2
√
n

2
√
n

)
< 24

√
n logn.

Next, observe that for each block-compatible sequence xi for n, the number of indices i

with xi > 2
√
n is smaller than

√
n. Indeed, otherwise the size of the union of a set of blocks
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Ai, i ∈ I with |Ai| = xi > 2
√
n and |I| =

√
n in a block design realizing the sequence is at

least ∑
i∈I
|Ai| −

∑
i,j∈I,i<j

|Ai ∩Aj | >
√
n · 2
√
n−

(√
n

2

)
> n,

which is impossible. Thus there are less than
√
n such large xi, and the number of choices

for those is at most (
n +
√
n√

n

)
< 2

√
n logn.

This gives the required 2O(
√
n logn) upper bound for the total number of block-compatible

sequences for n.

• Call a sequence n ≥ x1 ≥ x2 ≥ . . . ≥ xm ≥ 2 line-compatible for n if there is a set P

of n points in the Euclidean plane R2 so that for the family L1, L2, . . . , Lm of all lines

in R2 determined by the points of P , |Li ∩ P | = xi for 1 ≤ i ≤ m. Note that every

line-compatible sequence for n is also block-compatible for n, but the converse is not true.

Erdős conjectured in [5] (see also [4], problem 733) that the number of sequences which

are line compatible for n is only 2O(n1/2). This upper bound was proved by Szemerédi and

Trotter in [9]. Note that in view of Theorem 2.3 this is much smaller than the number of

block-compatible sequences for n.

Indeed, there are far more block designs on n points than designs that can be described by

the lines determined by a set of points in the plane. This is demonstrated by the following

result.

Proposition 3.3. 1. The number of hypergraphs on n labelled vertices whose edges form

a block design is 2Θ(n2 logn).

2. The number of hypergraphs whose vertices are n labelled points in R2 and whose edges

are the sets of points contained in the lines determined by the points is only 2Θ(n logn).

Proof. The lower bound in the first part follows from the known lower bound for the

number of Steiner triple systems on n points, which as proved in [7] is 2(1+o(1)n2 logn/6. To

prove the upper bound let x1, x2, . . . xm be the sizes of the blocks. Then
∑

i

(
xi
2

)
=
(
n
2

)
and thus

∑
xi ≤ n2. The number of choices of the number of blocks m and their sizes xi

is at most 2O(
√
n logn). Given those, the number of ways to choose subsets of cardinalities

x1, x2, . . . , xm in [n] is at most(
n

x1

)(
n

x2

)
. . .

(
n

xm

)
< n

∑
i xi ≤ nn2

= 2n
2 logn.

The lower bound in the second part is proved by considering all possible labelings of

the hypergraph consisting of a matching of bn/3c pairwise disjoint edges of size 3 and
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additional
(
n
2

)
− bn/3c edges of size 2. It is easy to realize this hypergraph by points in

the plane and the lines they determine by placing 3 points on each of bn/3c parallel lines

where no other line contains more than two points.

We prove the upper bound in the second part by using the result of [8] on the number of

zero patterns of a sequence of polynomials.

If f = (f1, . . . , fa) is a sequence of polynomials in b variables over a field K, then the zero

pattern of f evaluated at the point u ∈ Kb is the set

Zf (u) = {i ∈ [a] : fi(u) = 0}.

Let Zf denote the total number of distinct zero patterns that appear as u ranges over Kb.

We need the following result of Rónyai, Babai, and Ganapathy [8].

Theorem 3.4 ([8]). Let f = (f1, . . . , fa) be a sequence of polynomials in b variables over

a field K, and let di denote the degree of fi. Then

Zf ≤
(
b +

∑a
i=1 di
b

)
.

In our case the field is R, each point can be described by 2 real variables, so b = 2n, and

for each set of 3 points there is a degree 3 polynomial that vanishes iff they lie on a line.

The zero pattern of these
(
n
3

)
real polynomials of degree 3 in 2n variables determines all

the lines, and therefore, by Theorem 3.4, the number of possible hypergraphs here is at

most (
2n + (n3/6)3

2n

)
= 2(4+o(1))n logn.

This completes the proof.
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