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Abstract

We show that for any 0 < ε < 1/6 and n > n0(ε), one can add to any triangle-free graph

on n vertices with maximum degree at most n1/2−ε less than 3n2−ε edges, transforming it

to a triangle-free graph with diameter 2. This settles, in a strong form, an open problem of

Erdős and Gyárfás.

1 Introduction

The following problem was raised by Erdős and Gyárfás ([6], see also [2], Problem number 134).

Problem 1.1. Let ε, δ > 0 be two fixed positive reals, and suppose n is large as a function of

ε, δ. Let G be a triangle-free graph on n vertices with maximum degree smaller than n1/2−ε. Can

G be made into a triangle-free graph with diameter 2 by adding at most δn2 edges ?

They proved that the conclusion holds if the maximum degree is at most log n/ log logn. It

is mentioned in [6] that Simonovits showed that this does not necessarily hold if the maximum

degree is C
√
n for some large fixed C. In fact, maximum degree (1 + o(1))

√
n/2 suffices as

shown by the incidence graph of the lines and points of a projective plane of order p. This is

a bipartite (p + 1)-regular (triangle-free, of course) graph on n = 2(p2 + p + 1) vertices, where

p is a prime power. Any two vertices of the same vertex class in this graph have a common

neighbor. Therefore one cannot add any edge connecting two vertices of the same vertex class

without creating a triangle. It follows that in order to reduce the diameter to 2 one must add

all missing edges between pairs of nonadjacent vertices that do not lie in the same vertex class.

The number of these missing edges is (1/4− o(1))n2 = Ω(n2).

We describe a short proof of the following, which settles the Erdős-Gyárfás problem in a

strong form. Here and in what follows we do not make any effort to optimize the absolute

constants.

Theorem 1.2. Let G = (V,E) be a triangle-free graph with n vertices and maximum degree

d ≤ c(n)
√
n, where

2
(log n)1/3

n1/6
≤ c = c(n) ≤ 1

10

and n is sufficiently large. Then one can add to G at most 2.5cn2 edges and get a triangle-free

graph of diameter 2.

Note that by taking c(n) = n−ε the above theorem implies that if in the Erdős-Gyárfás

problem the maximum degree is at most n1/2−ε then it suffices to add at most O(n2−ε) edges.

Another problem of Erdős and Pach dealing with triangle-free graphs appears right before

the problem above in [6], see also [2], Problem 133.
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Problem 1.3. Let f(n) denote the smallest integer for which there is a triangle-free graph G

on n vertices, diameter 2 and maximum degree f(n). What is the order of growth of f(n) ?

Erdős and Pach conjectured that f(n)/
√
n tends to infinity as n tends to infinity. Erdős also

mentions in [6] that Simonovits observed that the Kneser graph K(3m−1,m) whose vertices are

all m-subsets of a (3m−1)-element set, in which two vertices are connected iff the corresponding

subsets are disjoint, shows that for infinitely many values of n, f(n) ≤ n1−c for some fixed c > 0.

Indeed, this construction shows that

f(n) ≤ n
(1+o(1)) 2

3H(1/3) = n0.7182..,

where H(x) = −x log2 x− (1− x) log2(1− x) is the binary entropy function. Erdős adds that it

is not impossible that this graph gives the smallest possible value of f(n). We observe that this

is not the case.

Fact 1.4. In the notation above, f(n) ≤ O(
√
n log n)

Problem 1.3 remains open. Clearly f(n) ≥ (1 − o(1))
√
n as any graph with maximum

degree f and diameter 2 can have at most 1 + f + f(f − 1) = f2 + 1 vertices. We suspect

that f(n) is O(
√
n) and maybe even f(n) = (1 + o(1))

√
n. It is known that for r ∈ {1, 2, 3, 7}

and possibly also for r = 57 there is an r-regular triangle-free graph of diameter 2 with r2 + 1

vertices. Although the Hoffman-Singleton Theorem [10] asserts that there are no such graphs

for additional values of r, it is possible that there are triangle-free graphs with maximum degree

r and (1− o(1))r2 vertices for infinitely many values of r.

2 Proofs

Proof of Theorem 1.2. Let G = (V,E), d and c = c(n) be as in the statement of the theorem.

Throughout the proof we assume, whenever this is needed, that n > n0 where n0 is a sufficiently

large constant. We first apply (a variant of) the triangle-free process for m = c2n3/2 steps as

follows. Starting with G = G0, in each step i for 1 ≤ i ≤ m let Gi be obtained from Gi−1 by

adding a random edge chosen uniformly among all pairs of nonadjacent vertices of Gi−1 that

are both of degree smaller than 2c
√
n and that do not have a common neighbor. Note that

by construction the maximum degree of Gm (and hence of all the graphs during the process)

is at most 2c
√
n. In addition, by construction, Gm (and all graphs during the process) are

triangle-free.

Claim : With high probability Gm does not contain an independent set of size 5cn.

Proof: Fix an independent set U of 5cn vertices of G = G0. We estimate the probability that

it stays independent in Gm. Since the maximum degree in each Gi is at most 2c
√
n, the number
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of pairs of vertices in U that have a common neighbor is at most

n

(
2c
√
n

2

)
< 2c2n2.

In addition, the total number of vertices whose degrees have been increased already to 2c
√
n is

at most 2cn (since the total number of edges added is at most c2n3/2 so the graph consisting of

all added edges can have at most 2cn vertices of degree at least c
√
n). If follows that in every

Gi during the process there are at least(
|U | − 2cn

2

)
− 2c2n2 > 2c2n2

pairs of vertices of U that are of degree smaller than 2c
√
n and that do not have a common

neighbor. Each such pair can be chosen as the selected random edge in each step, and the

probability none of these edges have been chosen during the process is at most

(1− 4c2)m ≤ e−4c4n3/2
.

There are at most (
n

5cn

)
≤ 2H(5c)n < 210c log(1/c)n

possible sets U , where H is the binary entropy function. Our choice of c ensures that

210c log(1/c)ne−4c4n3/2
= o(1).

The assertion of the claim thus follows by the union bound.

Returning to the proof of the theorem, fix a graph Gm satisfying the conclusion of the claim

and add to it, repeatedly, edges to make it a maximal (with respect to containment) triangle-

free graph. In other words, as long as there is a pair of nonadjacent vertices with no common

neighbor, add the edge connecting them. This creates a triangle-free graph G′ of diameter 2,

and its independence number is at most that of Gm, which is smaller than 5cn, by the claim.

This implies that the maximum degree in G′ is smaller than 5cn, as the set of all neighbors of

any vertex is an independent set. Therefore G′ contains at most 2.5cn2 edges, completing the

proof of Theorem 1.2. □

Proof of Fact 1.4. By the known results about the Ramsey number R(3, t) proved in [3], [7]

(improving the constant in the earlier estimate of Kim [11]) there is a triangle-free graph G on

n vertices with independence number at most (
√
2+ o(1))

√
n log n. Starting with this graph, as

long as it has a nonadjacent pair of vertices with no common neighbor, add an edge connecting

this pair. The resulting graph at the end of this process is a triangle-free graph on n vertices

with independence number at most (
√
2+ o(1))

√
n log n. This implies that its maximum degree

is at most (
√
2+o(1))

√
n log n, since the neighborhood of any vertex is an independent set. The

assertion of the fact follows. □
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Remark: After posting this note I learned from Ishay Haviv that Problem 1.3 has been solved

up to a constant factor already in the 80s by Hanson and Seyffarth [10] who proved that f(n) ≤
2
√
n. Additional constructions appear in [4], [9]. The problem of deciding whether or not

f(n) = (1+o(1))
√
n remains open. The constructions in all three papers above are Cayley graphs

of Abelian groups, and it is easy to see that using such a construction cannot provide graphs

with maximum degree smaller than (
√
2+o(1))

√
n. A better upper estimate of (2/

√
3+o(1))

√
n

is described in [5]. See also [1] for some related constructions.

Acknowledgment I thank Ishay Haviv for telling me about the results in [8], [4], [9].
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