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Abstract

We prove that any finite abelian group G contains a collection F of not too many

subsets with a special structure, so that for every subset A of G with a small doubling,

there is a member F ∈ F that is fully contained in the sumset A+A and is not much

smaller than it. Using this result we obtain improved bounds for the problem of

estimating the typical independence number of sparse random Cayley or Cayley-sum

graphs, and for the problem of estimating the smallest size of a subset of G which

is not a sumset. We also obtain tight bounds for the typical maximum length of an

arithmetic progression in the sumset of a sparse random subset of G.

1 Introduction

Given an abelian group G and a finite subset A of G, define the sumset of A

A+A = {a+ b : a, b ∈ A},

and the associated doubling constant K = |A+A|
|A| . Sumsets and sets with small doubling

K are of fundamental interest in additive combinatorics. Over the years, multiple aspects

of the structure of sumsets and sets with small doubling have been studied. A notable

result is the influential Freiman-Ruzsa theorem [9, 10, 23], generalized by Ruzsa [22] and

Green and Ruzsa [16], which shows that sets A of constant doubling K must be dense

subsets of certain structured objects known as coset progressions.

While structural results typically provide information about the set A given its dou-

bling K, they provide relatively weak information about the sumset A+A. Motivated by

fundamental applications to the investigation of sparse random Cayley graphs [1, 2, 13, 15],

we study in this paper new perspectives on the structure of sumsets A + A of sets with

small doubling. Our main result provides an answer to the following basic question: Does

every sumset A + A of a set A with small doubling K fully contain a dense structured
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subset F? In exploring the inherent structure of the sumset A+A, we also study natural

questions about sumsets A+ A of binomial random sets A. Before describing the precise

results, we first describe the motivating problems for our work.

Sparse random Cayley graphs. Given an abelian group G and a symmetric subset

of it S, the Cayley graph Γ(G;S) of G with generating set S has vertex set G, and two

group elements x and y are connected if and only if y − x ∈ S. A random Cayley graph

G(p) is obtained by selecting each equivalence class {x,−x} to be in the generating set S

independently at random with probability p.

We also consider here the Cayley sum graph Γ+(G;S) which, given a generating set

S (not necessarily symmetric), has vertex set G and two group elements x and y are

connected if and only if x + y ∈ S. A random Cayley sum graph G+(p) is obtained by

selecting each element x to be in S independently at random with probability p.

The independence number α(G(p)) of random Cayley graphs has been extensively

studied. In the dense case p = 1/2 (and more generally p = Θ(1)), the first author and

Orlitsky [4] showed that α(G(1/2)) = O((log |G|)2) with high probability. Here and in

what follows we say that an event holds with high probability (whp, for short) if the

probability it holds tends to 1 as the relevant parameter tends to infinity. Green [13]

showed that whp α(G(1/2)) = Θ(log |G|) for cyclic groups G = Zn and that α(G(1/2)) =

Θ(log |G| log log |G|) for finite field vector spaces G = Fd
2 (a similar result holds for any

finite field vector space G = Fd
p with p fixed). Green and Morris [15] later sharpened

Green’s result to show that whp α(G(1/2)) = (2+ o(1)) log2 |G| for G = Zn. The problem

is significantly harder in the sparse case p = o|G|(1). The best general result in this

direction is the following theorem of the first author [1, 2].

Theorem 1. Let G be a group of size n. The independence number of the random Cayley

graph G(p) is at most O(min(p−2(log n)2,
√

n(log n)/p)) whp.

It is natural to conjecture that, in terms of the independence number, random Cayley

graphs behave similarly to random regular graphs of the same degree. Here and throughout

the paper, we often hide polylogarithmic factors in |G| using the Õ and Ω̃ notation.

Conjecture 2 ([2]). Let G be a group of size n. The independence number of the random

Cayley graph G(p) is at most Õ(p−1) whp.

Unlike random regular graphs, random Cayley graphs, and especially sparse random

Cayley graphs, are significantly harder to analyze due to the limited randomness in their

definition which causes significant dependencies.

In a recent work [7], motivated by Ramsey-theoretic applications, Conlon, Fox, the

second author and Yepremyan gave an improvement of Theorem 1 for general groups G.

Theorem 3. Let G be a group of size n. The independence number of the random Cayley

graph G(p) is at most O
(
p−2 lognmax

(
log p−1, p−1 log

(
logn

log p−1

)))
whp.
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This result is generally tight for the dense case p = Θ(1). On the other hand, for

sparse p, such as p = n−c for some c > 0, the result only gives lower order improvements.

No improvement over the exponent p−2 in Theorem 1 has been obtained so far.

As one application of our key result, we obtain the first improvement in the exponent

of p.

Theorem 4. Let G be an abelian group of size n and let p ≤ 1/2. Then the independence

number of the random Cayley graph G(p) and the random Cayley sum graph G+(p) is at

most Õ(p−3/2) whp.

Largest non-sumsets in Zn. One of the applications of the independence number of

polynomially sparse random Cayley sum graphs is toward the following question in additive

combinatorics first considered by Green [11]. Let f(n) be the largest integer such that

every subset of Zn with size larger than n− f(n) can be represented as a sumset A+ A.

Green asked to determine or estimate f(n) and showed that f(n) ≥ Ω(logn).

The first author proved that f(n) ≥ Ω̃(n1/2) and, via the upper bound α(G+(p)) =

O(p−2(log n)2), that f(n) ≤ Õ(n2/3). Using Theorem 4, we obtain an improvement in the

exponent of the upper bound to f(n).

Theorem 5. In the notation above, f(n) ≤ Õ(n3/5). Specifically, let G be an abelian

group of size n. Then there exists a subset of G of size at least n− Õ(n3/5) which cannot

be represented as a sumset A+A for A ⊂ G.

The key result. Our key input to Theorem 4 is a structural result showing that every

sumset A+A of a set A with small doubling must fully contain a dense structured subset

F .

Theorem 6. There exist C, c > 0 such that the following holds. Let G be an abelian group

of order n and let s ≤ n. There exist collections Fℓ of subsets of G such that

|Fℓ| ≤ exp

(
C

(
min(22ℓ(logn)2,

√
2ℓs(log n)3/2)

))
,

and

min
F∈Fℓ

|F | ≥ c2ℓs/ℓ2,

so that the following property holds.

Let A ⊆ G be such that |A+A| ≤ K|A| and |A| = s. Then there exists ℓ ≤ log2K and

F ∈ Fℓ such that

A+A ⊇ F.

Informally speaking, the theorem yields that for every s ≤ n and every K, there

exists a dyadic scale h = 2ℓ ≤ K and a collection of sets F with complexity log |F| ≤
Õ(min(h2,

√
hs)), such that for every subset A of size s and doubling at most K, A + A
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fully contains a set from F of size at least Ω̃(h|A|). A particularly surprising aspect of

this result is the case the doubling K is bounded. In this case we obtain that A + A

contains a structured subset F which is dense in A+A, where F lies in a collection of sets

of complexity Õ(1) (which, crucially, is independent of A).

Indeed, Lovett [19] asked if it is possible to find a small collection F of dense sets such

that, for every dense subset A ⊆ G, the sumset A+A contains a member of F . For every

dense A, the doubling of A is clearly bounded. As a special case of Theorem 6, we thus

resolve Lovett’s question.

Theorem 7. Let G be an abelian group of order n. For any δ > 0, there are ϵ > 0 and

C > 0 such that the following holds. There exists a collection Fδ ⊆ 2G consisting of sets of

size at least ϵn with |Fδ| ≤ exp(C(log n)2) so that for every |A| ≥ δn, A+A fully contains

a set F ∈ Fδ.

It is easy to see that any collection Fδ satisfying the property in Theorem 7 must

have size at least exp(ωδ(1)(logn)). For example, if G = Fd
2, consider subsets A given by

codimension log2(1/δ) subspaces. Each set F of size |F | ≥ ϵn can be a subset of at most

2log2(1/ϵ) log2(1/δ) subspaces of codimension log2(1/δ). On the other hand, the number of

subspaces of codimension log2(1/δ) is at least 2
d log2(1/δ)−(log2(1/δ))

2
. Hence we get

|Fδ| ≥ 2d log2(1/δ)−log2(1/ϵ) log2(1/δ)−log2(1/δ)
2
.

Theorem 6 connects directly with sparse random Cayley graphs via providing an effi-

cient union bound obstruction or small cover to the existence of large independent sets in

random Cayley graphs. In probabilistic combinatorics language, a cover for a collection

H of sets is a collection G such that every set in H contains a set in G as a subset. In our

case the collection H is the collection of sumsets A + A over sets A of suitable size. In

this language, the collection
⋃

ℓFℓ describes a cover for the collection H. By the union

bound over
⋃

ℓFℓ, the random Cayley sum graph G+(p) typically does not contain an

independent set of size s if this cover is small, that is, if∑
ℓ

∑
F∈Fℓ

(1− p)|F | = o(1).

Union bound obstructions play a crucial role in the study of thresholds. In particular, the

Kahn-Kalai conjecture [17], proved in [21], implies direct connections between thresholds

and union bound obstructions. We expect that the independence number of random Cay-

ley graphs can be accurately determined via an optimally efficient cover for the collection

H of sumsets (see Conjecture 15 in the final section).

Arithmetic progressions in random sumsets. Our results here suggest that, even for

arbitrary sets A, the sumset A+A contains large nontrivial structures of low complexity.

In the investigation of the structure of the collection of sumsets A + A, it is natural to
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study the behavior of typical sumsets, that is, the sumset A + A of a random set A. In

the cyclic group Zp, we consider a random set A obtained by including each element of

Zp independently with probability q. Here we study specifically the length of the longest

arithmetic progression contained in A+A.

For arbitrary dense A, the length of the longest arithmetic progression in A + A has

been extensively studied [12, 8]. In a recent paper of Kohayakawa and Miyazaki [18] the

authors consider the problem of estimating the typical maximum length ap(A+A) of an

arithmetic progression of the sumset A+A of a random subset A of [n] = {1, 2, . . . , n}.
The authors of [18] show that if every element is chosen to lie in A, randomly and

independently, with probability q = q(n), then ap(A + A) exhibits a sharp change of

behavior around q = 1√
n
. In particular, they prove that for

q =
1√

n(log n)Θ(1)

the maximum length is Θ( logn
log logn) whp, and that for q ≥

√
4 logn

n the maximum is Θ(n)

whp. For q = 1√
n

their arguments only suffice to establish an Ω(logn/ log logn) lower

bound and an O(n) upper bound.

Here we prove that for this probability the correct answer is Θ(logn) whp. It is more

convenient to study the closely related analogous problem for the finite cyclic group Zp

for prime p. The same arguments provide a similar result for a random subset of [n].

Let p be a large prime, and let A be a random subset of Zp, where each a ∈ Zp lies

in A, randomly and independently, with probability q = 1/
√
p. Let ap(A+A) denote, as

above, the maximum length of an arithmetic progression in A+A.

Theorem 8. There exist two absolute positive constants c1, c2 so that for A as above, the

maximum length ap(A+A) of an arithmetic progression in A+A satisfies, whp,

c1 log p ≤ ap(A+A) ≤ c2 log p.

Paper organization. In Section 2 we prove our key result, Theorem 6 and Theorem

7. In Section 3 we prove Theorems 4 and 5 as applications of the main covering lemma

Theorem 6. In Section 4 we study random sumsets and prove Theorem 8. The final

Section 5 contains some concluding remarks and open problems.

2 The main covering lemma

2.1 Preliminaries on discrete Fourier analysis

Let G be an abelian group of order n. Denote by Ĝ the group of characters χ : G → C.
Given f : G → C, the Fourier transform of f is defined as

f̂(χ) = E[f(x)χ(x)].
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For the convolution

f ∗ g(x) = Ey[f(y)g(x− y)],

we have that

f̂ ∗ g(χ) = f̂(χ)ĝ(χ).

Parseval’s identity asserts that ∑
χ

|f̂(χ)|2 = E[|f(x)|2].

Finally, we have the Fourier inversion formula

f(x) =
∑
χ∈Ĝ

f̂(χ)χ(−x).

2.2 The covering theorem

In this section we prove the main covering results, Theorem 6 and Theorem 7. Throughout

the section, G is an abelian group of size n and A is a subset of G. Identifying A with its

characteristic function, observe that A+ A = supp(A ∗ A) and A− A = supp(A ∗ (−A)).

Our main tool is the following result giving Fourier sparse pointwise approximation to the

convolutions A ∗A and A ∗ (−A).

Lemma 9. Let α ∈ (0, 1), η ∈ (0, 1) and m = 4η−2(log n). Then for all A ⊆ G of size

αn, there exist χ1, . . . , χm such that

max
x

∣∣∣∣∣A ∗ (−A)(x)− α

m

m∑
i=1

χi(−x)

∣∣∣∣∣ ≤ ηα. (1)

Similarly, there exist χ1, . . . , χm such that

max
x

∣∣∣∣∣A ∗A(x)− α

m

m∑
i=1

Â(χi)
2

|Â(χi)|2
χi(−x)

∣∣∣∣∣ ≤ ηα. (2)

Proof. We have

A ∗ (−A)(x) =
∑
χ

|Â(χ)|2χ(−x).

Note that
∑

χ |Â(χ)|2 = α by Parseval’s identity. For each i ∈ [m], pick χi independently

such that

P(χi = χ) = α−1|Â(χ)|2.

Then

E

[
α

m

m∑
i=1

χi(−x)

]
= A ∗ (−A)(−x).
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Furthermore, noting that |χ(−x)| ≤ 1, by the Hoeffding bound:

P

[∣∣∣∣∣ αm
m∑
i=1

χi(−x)−A ∗ (−A)(x)

∣∣∣∣∣ > t
α√
m

]
≤ 2 exp(−t2/2).

By the union bound, we then have that with positive probability,

max
x

∣∣∣∣∣A ∗ (−A)(x)− α

m

m∑
i=1

χi(−x)

∣∣∣∣∣ ≤ 2
√
log n · α√

m
≤ ηα.

For (2), we follow the same proof, noting that

E

[
α

m

m∑
i=1

Â(χi)
2

|Â(χi)|2
χi(−x)

]
= A ∗A(x).

We are now ready to prove the main covering theorem. Informally, the theorem asserts

that the collection of difference sets {A − A : |A| = αn, |A − A| ≤ K|A|} admits a small

cover. For A ⊆ G and an integer ℓ, let

Aℓ = {x : A ∗ (−A)(x) ∈ (2−ℓ−1α, 2−ℓα]}.

We start with the following simple lemma.

Lemma 10. There is an absolute constant c > 0 such that the following holds. Let G be

an abelian group of order n. Let α ∈ (0, 1). Let A ⊆ G be such that |A− A| ≤ K|A| and
|A| = αn. Then there exists ℓ ≤ log2K such that |Aℓ| ≥ c2ℓαn/ℓ2.

Proof. Note that ExA ∗ (−A)(x) = α2. Thus, if for all ℓ ≤ log2K,

|Aℓ| < c2ℓαn/ℓ2,

then

α2n <
∑

ℓ≤log2 K

2−ℓα · c2ℓαn/ℓ2 + 2−(log2 K+1)αK|A| < α2n,

which is a contradiction for a suitable constant c.

For A ⊆ G such that |A − A| ≤ K|A| and |A| = αn, we denote by ℓ(A) the smallest

index ℓ ≤ log2K such that |Aℓ| ≥ c2ℓαn/ℓ2.

Theorem 11. There are absolute constants C, c > 0 such that the following holds. Let G

be an abelian group of order n. Let α ∈ (0, 1). There exist collections Fℓ of subsets of G

such that

|Fℓ| ≤ exp(C22ℓ(logn)2),

and

min
F∈Fℓ

|F | ≥ c2ℓαn/ℓ2,
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and the following property holds.

Let A ⊆ G be such that |A − A| ≤ K|A| and |A| = αn. Then for ℓ = ℓ(A) there is

F ∈ Fℓ such that

A−A ⊇ F ⊇ Aℓ.

Proof. For each ℓ, we define Gℓ as the collection of functions of the form

α

m

∑
χ∈S

χ(−x),

for S ⊆ Ĝ of size 22ℓ+6(log n). Let Fℓ denote the collection of sets of the form

{x : f̂(x) > 2−ℓ−2α},

for f̂ ∈ Gℓ.

For each set A with |A−A| ≤ K|A|, let ℓ = ℓ(A) be as in Lemma 10. For η = 2−ℓ−2,

we then find S ⊆ Ĝ of size 4η−2(log n) such that∣∣∣∣∣∣A ∗ (−A)(x)− α

m

∑
χ∈S

χ(−x)

∣∣∣∣∣∣ ≤ ηα.

Let f̂A(x) =
α
m

∑
χ∈S χ(−x) and note that f̂A ∈ Gℓ. Let

F (A) = {x : f̂A(x) > ηα},

so F (A) ∈ Fℓ. We then have

F (A) ⊇ {x : A ∗ (−A)(x) > 2ηα} ⊇ Aℓ,

as desired.

A similar proof yields an analogous result for sumsets A+A. For A ⊆ G and an integer

ℓ, let

A+
ℓ = {x : A ∗A(x) ∈ (2−ℓ−1α, 2−ℓα].

Theorem 12. There are constants C, c > 0 such that the following holds. Let G be an

abelian group of order n. Let α ∈ (0, 1). There exists collections Fℓ of subsets of G such

that

|Fℓ| ≤ exp(C22ℓ(logn)2),

and

min
F∈Fℓ

|F | ≥ c2ℓαn/ℓ2,

and the following property holds.

Let A ⊆ G be such that |A + A| ≤ K|A| and |A| = αn. Then for ℓ = ℓ(A) there is

F ∈ Fℓ such that

A+A ⊇ F ⊇ Aℓ.
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Proof. Let η = c/n and let U be an η/32-net for {x ∈ C : |x| = 1} of size O(η−1). For

each ℓ, we define Gℓ as the collection of functions of the form

α

m

∑
χ∈S

tχχ(−x),

for S ⊆ Ĝ of size 22ℓ+6(log n) and tχ ∈ U for each χ ∈ S. Let Fℓ denote the collection of

sets of the form

{x : f̂(x) > 2−ℓ−2α},

for f̂ ∈ Gℓ. The rest of the proof is very similar to the proof of Theorem 11.

We also observe that in the range of large doubling, we have the following version of

the covering theorem.

Theorem 13. There are C, c > 0 satisfying the following. Let G be an abelian group of

order n. Let α ∈ (0, 1). There exists collections Hℓ of subsets of G such that

|Hℓ| ≤ exp

(
C
√

2ℓ|A|(logn)3/2
)
,

and

min
H∈Hℓ

|H| ≥ c2ℓαn/ℓ2,

and the following property holds.

Let A ⊆ G be such that |A − A| ≤ K|A| and |A| = αn. Then for ℓ = ℓ(A) there is

H ∈ Hℓ such that

A−A ⊇ H ⊇ Aℓ.

Proof. We construct

Hℓ =

{
A′ −A′ : |A′| ≤

√
2ℓ+4|A| logn, |A′ −A′| ≥ c2ℓαn/ℓ2

}
.

Let |A| = αn with |A−A| ≤ K|A|. As in the proof of Theorem 11, there exists ℓ such

that

|Aℓ| ≥ c2ℓαn/ℓ2.

Consider a random subset A′ of A where each element is sampled independently with

probability q = (2ℓ+3(log n)/|A|)1/2. Then we have, for x ∈ Aℓ,

P(x /∈ A′ −A′) ≤ (1− q2)2
−ℓ−1|A| ≤ n−2.

Thus, combining with the standard Chernoff bound, with high probability, A′ −A′ ⊇ Aℓ,

and |A′| ≤
√

2ℓ+4|A| logn.
In particular, there exists H ∈ Hℓ such that

A−A ⊇ H ⊇ Aℓ.

9



By the same proof, we also obtain the sumset analog of Theorem 13.

Theorem 14. There are C, c > 0 satisfying the following. Let G be an abelian group of

order n. Let α ∈ (0, 1). There exists collections Hℓ of subsets of G such that

|Hℓ| ≤ exp

(
C
√

2ℓ|A|(logn)3/2
)
,

and

min
H∈Hℓ

|H| ≥ c2ℓαn/ℓ2,

and the following property holds.

Let A ⊆ G be such that |A + A| ≤ K|A| and |A| = αn. Then for ℓ = ℓ(A) there is

H ∈ Hℓ such that

A+A ⊇ H ⊇ Aℓ.

Theorems 11, 12, 13 and 14 imply Theorem 6. Theorem 7 is a direct corollary of

Theorem 12, noting that K ≤ 1/δ and ℓ(A) ≤ log2K.

3 Applications of the main covering lemma

3.1 Independence number of random Cayley graphs

As mentioned earlier, the efficient cover constructed for the collection of difference sets or

sumsets in Theorem 6 immediately yields improved bounds for the independence number

of random Cayley graphs or random Cayley sum graphs, Theorem 4. Here, we deduce

Theorem 4 based on Theorem 6 by an application of the union bound.

Proof of Theorem 4. Consider A ⊆ G with |A| = s := ξp−3/2(log n)19/4. Let ℓ = ℓ(A).

Let ℓ0 be so that 2ℓ0 is within a factor 2 of p−1/2(logn)3/4.

For ℓ ≥ ℓ0, let Eℓ denote the event that the complement of the random generating

set of the Cayley graph S contains H for some H ∈ Hℓ. For ℓ < ℓ0, let Eℓ denote the

event that the complement of the random generating set of the Cayley graph S contains

F for some F ∈ Fℓ. Then the event that the independence number of Γ(G;S) is at least

s = ξp−3/2(log n)19/4 is contained in the union of the events Eℓ for ℓ ≥ ℓ0 and Eℓ for ℓ < ℓ0.

By the union bound, we have

P[α(Γ(G;S)) > s]

≤
∑
ℓ<ℓ0

|Fℓ|(1− p)minF∈Fℓ
|F | +

∑
ℓ≥ℓ0

|Hℓ|(1− p)minH∈Hℓ
|H|

≤
∑
ℓ<ℓ0

exp
(
C22ℓ(logn)2

)
exp

(
−pc2ℓs/ℓ2

)
+

∑
ℓ≥ℓ0

exp

(
C
√

2ℓ(log n)3/2s

)
exp

(
−pc2ℓs/ℓ2

)
.
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We next check that for a sufficiently large absolute constant ξ each of the two sums

above is small. To bound the first sum it suffices to check that for every ℓ < ℓ0

pc2ℓs/ℓ2 ≥ 2 · C22ℓ(logn)2

Since ℓ ≤ logn this is the case provided

pcs/(log n)2 > 2C2ℓ(log n)2

Substituting the values of s = ξp−3/2(log n)19/4 it follows that this is equivalent to the

inequality cξp−1/2(logn)3/4 > 2C2ℓ which clearly holds for each ℓ < ℓ0, since 2ℓ0 is within

a factor of 2 of p−1/2(log n)3/4.

Note that the main contribution for this sum is given by ℓ = 0, implying that for an

appropriate ξ this sum is bounded by exp(−Ω(p−1/2(log n)11/4)).

In order to bound the second sum it suffices to check that for ℓ ≥ ℓ0,

2ℓpcs/(log n)2 > 2C
√

2ℓ(logn)3/2s.

This is equivalent to the inequality

2ℓ ≥ 4C2

c2ξ
p−1/2(logn)3/4,

which clearly holds for all ℓ ≥ ℓ0 by the choice of ℓ0, provided ξ is a sufficiently large

constant. Here the main contribution for the sum is obtained for ℓ = ℓ0, showing that the

second sum is bounded by exp(−Ω(p−1(log n)7/2)).

Altogether, this computation shows that

P[α(Γ(G;S)) > s] ≤ exp(−Ω(p−1/2(log n)11/4)).

Via a similar argument, we obtain similar bounds for the upper bound to the independence

number of random Cayley sum graphs.

It is worth noting that the polylogarithmic factor above can be improved, we make

here no serious attempt to optimize it.

3.2 Large sets which are not sumsets

Given Theorem 4, we give a short proof of Theorem 5, showing that there exists a subset

of Zn of size n− Õ(n3/5) that cannot be represented as a sumset.

Proof of Theorem 5. For a suitable value of p which we will choose later, we let S1 be a

random subset of G where each element is chosen with probability p. We will then let

A = G \ (S1 ∪ S2), and show that there exists a choice of S2 of size Θ(pn) for which A
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cannot be written as a sumset B+B. Note that if A = B+B then B+B is disjoint from

S1 and hence B is an independent set in Γ+(G;S1).

By Theorem 4 (and its proof above), with high probability, |S1| ≤ 2pn and any inde-

pendent set B in Γ+(G;S1) has size at most ξp−3/2(logn)19/4. Hence, given S1, for any

choice of S2, the number of potential choices for B such that B +B = G \ (S1 ∪ S2) is at

most ∑
i≤ξp−3/2(logn)19/4

(
|G|
i

)
≤ exp

(
ξp−3/2(logn)23/4

)
.

On the other hand, the number of choices for S2 is at least exp (Ω(pn log n)). Hence, for

p = ξ′n−2/5(logn)19/10 for a sufficiently large constant ξ′, there must exist a choice of S2

so that no B satisfies B +B = G \ (S1 ∪ S2).

4 Arithmetic progressions in sumsets of random sets

In this section, we study A+A for a random subset A of Zp where each element is included

independently with probability q = 1/
√
p and prove Theorem 8 regarding the length of the

longest arithmetic progression contained in A+A. The proof is described in the following

two subsections. The upper bound is proved by applying Talagrand’s Inequality (with a

twist). The lower bound is established by a second moment argument.

4.1 The upper bound

In this subsection we prove the upper bound in Theorem 8. Put k = c log p, where c is a

constant, to be chosen later.

Claim 1: With high probability, the set A does not contain 5 elements inside any pro-

gression of length k.

We apply a simple union bound. There are less than p2 arithmetic progressions b1, b2, . . . bk.

In each progression there are less than k5 possibilities to choose 5 elements, and the

probability all of them belong to A is q5 = 1/p2.5. By the union bound the probability

that A contains 5 elements inside a progression of length k is thus at most p2k5/p2.5 which

is O( log
5 p

p1/2
) = o(1), proving the claim

Note that if the assertion of Claim 1 holds then A+A does not contain 5 elements in

a progression as above, with all of them being the sum of a single element a of A with 5

elements of A (possibly including a itself).

Claim 2: For the right choice of the constant c, whp there is no progression of k = c log p

terms, so that each of its terms is a sum of two elements of A, where no element of A is

used more than 4 times in these k sums.

Note that if the assertions of both claims hold, then A contains no k-term Arithmetic

Progression.
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To prove Claim 2 we fix a progression P of k terms and use Talagrand’s Inequality

to bound the probability of getting all elements of P in A + A by sums of the required

form (that is, sums where no element of A is used more than 4 times). We show that this

probability is much smaller than 1/p2 and then conclude that Claim 2 holds by the union

bound.

Let X be the random variable which is the maximum cardinality of a subset T of

P that can be expressed by sums of pairs of elements of A, with no element used more

than 4 times. Clearly this is a 4-Lipschitz function. It is not difficult to check that the

expectation of X is at most 0.4k (even without the extra constraint that no a ∈ A is used

more than 4 times.) Indeed, for each fixed element g ∈ Zp, the probability that g is not

in A+A is precisely

(1− q)(1− q2)(p−1)/2 = (1 + o(1))1/
√
e > 0.6

Therefore the probability that g ∈ A + A is smaller than 0.4 and the desired estimate

follows by linearity of expectation.

Another simple fact is that for any integer t, if X ≥ t, then this can be certified by

at most 2t coordinates of the random vector of the p random choices determining which

g ∈ Zp belong to A.

Therefore, Talagrand’s inequality (see, for example, [5], Section 7.7) implies that for

every b and t

Prob[X ≤ b− 4t
√
2b] · Prob[X ≥ b] ≤ e−t2/4. (3)

Taking in the inequality above b as the median of X, this implies that the probability

that X is much smaller than the median is very small. Similarly, taking b and t so that

b−4t
√
2b is the median shows that the probability that X is much larger than the median

is also very small. This implies that the median is close to the expectation, thus it is at

most (0.4+ o(1))k < k/2. We can now substitute b = k and choose t so that k− 4t
√
2k is

the median. This gives t = Θ(
√
k). Thus (3) provides an upper bound for the probability

that X = k. This upper bound is of the form e−Θ(k) = e−Θ(c log p), which is (much) less

than 1/p2 for an appropriate choice of c. This completes the proof of Claim 2 and hence

that of the upper bound in Theorem 8.

4.2 The lower bound

In the proof of the lower bound in Theorem 8 it will be convenient to restrict attention

only to arithmetic progressions of length k in which each term is a sum of two distinct

elements of A, all the relevant 2k elements of A are pairwise distinct, and moreover all the(
2k
2

)
sums of pairs of these 2k elements are distinct.

For every fixed arithmetic progression P = (b1, b2, . . . , bk) of length k in Zp, where the

difference is smaller than p/2, and for every ordered sequence C = ({c1, c2}, . . . , {c2k−1, c2k})
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of k unordered pairs of elements of Zp satisfying c2i−1 + c2i = bi for all 1 ≤ i ≤ k, where

all the elements ci are distinct and all pairs of their sums are distinct, let X(P,C) be the

indicator random variable whose value is 1 iff all elements cj belong to the random set A.

Note that if this random variable is 1 then A+A contains the arithmetic progression P .

It is not difficult to check that the number of these indicator random variables is

(1− o(1))
p2

2

(
p− 1

2

)k

Indeed, there are p(p−1)/2 progressions P = (b1, b2, . . . , bk) (obtained by choosing b1, b2).

For each i there are (p − 1)/2 unordered pairs of distinct elements c2i−1, c2i whose sum

is bi. The number of choices in which not all the elements cj are distinct or two sums of

pairs of them are identical is negligible with respect to the total number of choices.

Let X be the sum of all these indicator random variables. Note that if X > 0 then

A+A contains an arithmetic progression of length k.

For a set C of k pairs as above let us denote by C the subset of size 2k of Zp consisting

of all elements in the union of the k pairs in C. Note that for each fixed indicator X(P,C)

as above, the probability it is 1 is exactly q2k, since it is 1 if and only if all the 2k elements

in C lie in A. Therefore, by linearity of expectation and using the fact that k = Θ(log p)

and q = 1/
√
p, the expected value E(X) = µ of X satisfies

E(X) = µ = (1− o(1))
p2

2

(
p− 1

2

)k

q2k = (1− o(1))
p2

2k+1
.

Our objective is to show that for k = b log p with the right choice of the constant b, the

variance of this random variable is o(E(X)2). This will show that X > 0 whp. Since

E(X) = µ tends to infinity as p tends to infinity, it suffices to prove, using the second

moment method as described, for example, in [5], Chapter 4, that ∆ = o(µ2), where ∆

is defined as follows. It is the sum, over all pairs X(P,C) and X(P ′, C ′) that are not

independent, of the probability that

X(P,C) = X(P ′, C ′) = 1.

We proceed to upper bound ∆. Fixing an indicator random variable X(P,C) we bound

the sum of the conditional probabilities
∑

Prob[X(P ′, C ′) = 1 | X(P,C) = 1] where

X(P,C) is fixed and X(P ′, C ′) ranges over all the indicators that are not independent of

X(P,C).

Note, first, that if C
′ ∩C = ∅ then the above indicator random variables are indepen-

dent, hence we may and will assume that C ∩ C
′
is nonempty. Put

C = ({c1, c2}, . . . , {c2k−1, c2k}) and C ′ = ({c′1, c′2}, . . . , {c′2k−1, c
′
2k}).

Let ℓ be the number of pairs c′2j−1, c
′
2j in which both elements belong to C. Similarly, let m

be the number of additional indices j so that c′j belongs to C. Therefore |C∩C
′| = 2ℓ+m.

We consider three possible cases, as follows.
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Case 1: ℓ ≥ 2.

There are
(
k
ℓ

)
ways to choose the indices j for which both elements of the pair c′2j−1, c

′
j

belong to C. For each such choice, there are less than (2k)4 possibilities to choose the

specific items of C which are equal to the items in the first two pairs above. Given these

choices, and given C, we can compute the values of the corresponding two terms of the

progression P ′, and hence get all other terms of the progression. Now each additional term

of the progression P ′ which is the sum of two elements of A corresponding to another pair

of indices of C ′ that lie in C, has to be a sum of two distinct elements cj . There is at most

one way to choose these two cj (since all sums of pairs cj are distinct, by assumption).

Next, there are at most (2k)2m ways to choose the additional ordered set of m identical

elements in C and in C
′
and decide about the bijection between them. It remains to choose

the additional 2k − 2ℓ−m elements of C
′
that have not been determined yet. Note that

at this point the progression P ′ is determined, and 2ℓ+m of the values c′j are determined

as well. This also determines uniquely the values of additional m elements c′j , since we

know the sum of each of the m pairs of elements in which one summand is known already.

There are still 2k−2ℓ−2m yet undetermined values c′j that are partitioned into k− ℓ−m

pairs, where in each of these pairs the sum of elements is known. This gives (p−1
2 )k−ℓ−m

ways to choose the remaining pairs.

Summarizing, we have seen that there are at most(
k

ℓ

)
(2k)4(2k)2m

(
p− 1

2

)k−ℓ−m

indicators X(P ′, C ′) corresponding to Case 1 with parameters ℓ and m, where, conditioned

on X(P,C) = 1 it is still possible that X(P ′, C ′) = 1. This last event happens if and only

if the 2k − 2ℓ − m required elements c′j that are not in C lie in A. This probability

is 1
p(2k−2ℓ−m)/2 . It follows that the total contribution of the sum

∑
Prob[X(P ′, C ′) =

1 | X(P,C) = 1] for a fixed X(P,C), that correspond to Case 1 over all choices of the

parameters ℓ ≥ 2 and m ≥ 0 is bounded by

∑
ℓ≥2,m≥0

(
k

ℓ

)
(2k)4(2k)2m

(
p− 1

2

)k−ℓ−m 1

pk−ℓ−m/2
< 2k(2k)4

∑
m≥0

[
(2k)4

p

]m/2

≤ 32k42k.

Multiplying by the probability that X(P,C) = 1 and summing over all our indicators, we

get a bound for the total contribution to ∆ arising from pairs that correspond to Case 1.

This total contribution is bounded by

∆1 ≤ µ · 32k42k.

Case 2: ℓ = 1.
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The discussion here is similar, so we only describe it briefly. There are k possibilities to

choose the index j of the pair c′2j−1, c
′
2j of indices contained in C and less than (2k)2 ways

to choose the corresponding indices in C. This determines one term of the progression P ′,

so there are less than p ways to choose the whole progression. Next, there are at most

(2k)2m ways to choose the additional elements of C
′
that lie in C and the indices of them

in C. Then there are at most (p−1
2 )k−1−m to select the additional elements of C ′. This

gives a total of at most

k(2k)2p(2k)2m
(
p− 1

2

)k−1−m

relevant indicatorsX(P ′, C ′). The conditional probability of each of them to be 1 assuming

that X(P,C) = 1 is 1
p(2k−2−m)/2 . The total contribution from these terms to ∆ is therefore

at most

∆2 ≤ µ4k3p ·
∑
m≥0

(2k)2m
1

pm/2
= µ(4k3)p

∑
m≥0

[
(2k)4

p

]m/2

< µ · 8k3p.

Case 3: ℓ = 0.

Following the same reasoning as before the contribution to ∆ from this case is bounded

by

∆3 ≤ µ ·
∑
m≥1

(2k)2m
(
p− 1

2

)k−m 1

p(2k−m)/2
< µ

∑
m≥1

[
(2k)4

p

]m/2

= µ · o(1).

Summing ∆1,∆2 and ∆3 we conclude that

∆ ≤ µ[32 · 2kk4 + 8k3p+ o(1)].

Since µ = (1 + o(1)) p2

2k+1 it follows that if, say, k = 0.999 log2 p, then ∆ = o(µ2) and then

X > 0 whp. This completes the proof of the lower bound, and the assertion of Theorem

8 follows.

5 Concluding remarks

The main covering lemma shows that sumsets of sets with small doubling contain dense

subsets which have low complexity. We believe that this result will have further potential

applications beyond those discussed in the present paper. In particular:

• In follow-up work, leveraging the main covering lemma and the combinatorial ap-

proach to sets with small doubling [7], we derive sharp asymptotics for the inde-

pendence number of random Cayley graphs in Zn with density (logn)−2+o(1). This

improves and surpasses barriers in earlier works [15, 6, 20].
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• Combining the probabilistic perspective on sumsets of sets with small doubling with

further inputs, we will address a question of the first author, Balogh, Morris, and

Samotij [3] about accurate estimates of the number of sets with small doubling and

the typical structure of sets with small doubling.

An optimal dependence on the doubling K in the main covering lemma, Theorem 6, would

be very interesting. In particular, the following conjecture, if true, would give optimal

obstructions that characterize the independence number of sparse random Cayley graphs

up to logarithmic factors.

Conjecture 15. There exist collections of sets Fℓ such that

log |Fℓ| = Õ(2ℓ),

and

min
F∈Fℓ

|F | = Ω̃(2ℓs),

such that for every |A| = s with |A+A| ≤ K|A|, there exists ℓ ≤ log2K and F ∈ Fℓ such

that A+A ⊇ F .

We believe that it is also interesting to study further properties of the low-complexity

subsets of sumsets arising in Theorem 6. In particular, this would address a version of

Lovett’s question appearing in Green’s list of open problems [14], which asks if sumsets

A+A of dense sets contain large subsets which are iterated sumsets B +B +B +B.

Regarding arithmetic progressions in random sumsets A+A:

• For random subsets A ⊂ Zp obtained by picking each element with probability

q = 1/
√
p it is also possible to prove the upper bound established here using the first

moment method, where one can show that the main contribution to the expectation

is given by k-progressions expressed by sums of 2k distinct terms. Indeed, to bound

the contribution of the other possibilities one can consider the connected components

of the graph whose edges represent the pairs that sum to the required elements.

This gives an upper bound of (2 + o(1)) log2 p. For random sets obtained with

larger probability q = C
√
p, where C > 1, this first moment argument does not

seem to provide any nontrivial upper bound, but the argument described here using

Talagrand’s Inequality does provide a bound of some B(C) log p where B(C) is a

finite constant for every fixed C.

• Let A = A(q) ⊂ Zp be a random subset of Zp obtained by picking each element of

Zp, randomly and independently, with probability q = q(p). Combining the methods

here with the Brun Sieve it may be possible to determine the typical asymptotic

behavior of ap(A + A) up to a constant factor, or even up to a (1 + o(1)) factor,

for every possible q = q(p). For sufficiently small values of q this is essentially done

(using a different method) in [18]. We hope to return to this problem in the future.
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