HITTING k¢ PRIMES BY DICE ROLLS
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ABSTRACT. Let S = (di1,d2,ds,...) be an infinite sequence of rolls of independent fair dice. For an
integer k > 1, let Ly = Lk (S) be the smallest 7 so that there are k integers j < 4 for which Z{:I ds
is a prime. Therefore, Ly is the random variable whose value is the number of dice rolls required
until the accumulated sum equals a prime k times. It is known that the expected value of L is
close to 2.43. Here we show that for large k, the expected value of Ly is (1+0(1))k log, k, where the
o(1)-term tends to zero as k tends to infinity. We also include some computational results about
the distribution of Ly for k < 100.
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1. RESuLTS

Let S = (dy,da,ds, . ..) be an infinite sequence of rolls of independent fair dice. Thus the d; are
independent, identically distributed random variables, each uniformly distributed on the integers
{1,2,...,6}. For each i > 1 put s; = 2221 d;. The sequence S hits a positive integer x if there
exists an ¢ so that s; = x. In that case it hits x in step .

For any positive integer k, let Ly = Li(S) be the random variable whose value is the smallest 4
so that the sequence S hits k primes during the first ¢ steps (oo if there is no such ¢, but it is easy
to see that with probability 1 there is such 7). The random variable L; is introduced and studied
in [1], see also [4], [3] for several variants and generalizations.

Here we consider the random variable Lj for larger values of k, focusing on the estimate of its

expectation.

1.1. Computational results. This article is accompanied by a Maple package PRIMESk, available
from
https://sites.math.rutgers.edu/"zeilberg/mamarim/mamarimhtml/primesk.html |
where there are also numerous output files.
Using our Maple package, we computed the following values of the expectation of Ly for k < 30.

E(Lk) k| E(Lk) k| E(L)
2.428497914 | 11 | 48.14320555 | 21 | 106.3962997
5.712240468 | 12 | 53.61351459 | 22 | 112.5650207
9.498878119 | 13 | 59.16406655 | 23 | 118.7684092
13.65059271 | 14 | 64.79337350 | 24 | 125.0081994
18.05408931 | 15 | 70.50517127 | 25 | 131.2881683
22.64615402 | 16 | 76.30284161 | 26 | 137.6114097
27.42115902 | 17 | 82.18566213 | 27 | 143.9783110
32.37752852 | 18 | 88.14757626 | 28 | 150.3859881
37.50029903 | 19 | 94.17811256 | 29 | 156.8292462
42.76471868 | 20 | 100.2648068 | 30 | 163.3025173

1

OO | O T = | W DO |

—_
]




The table suggests that the asymptotic value of this expectation is (14 0(1))k log k, where the o(1)-
term tends to zero as k tends to infinity, and the logarithm here and throughout the manuscript is
in the natural basis. This is confirmed in the results stated in the next subsection and proved in
Section 2L

The value of the standard deviation of Ly for k < 30 is given in the following table.

Std(Ly) | k| Std(Ly) | k| Std(Ly)
24985553 | 11 | 14.9184147 | 21 | 23.3873070
12393979 | 12 | 15.8185435 | 22 | 24.0816339
5.7679076 | 13 | 16.7109840 | 23 | 24.7769981
71185391 | 14 | 17.6115574 | 24 | 25.4821834
8.3598784 | 15 | 18.5197678 | 25 | 26.1952166
9.5715571 | 16 | 19.4227324 | 26 | 26.9055430
10.7618046 | 17 | 20.3022748 | 27 | 27.5997195
11.0062438 | 18 | 21.1419697 | 28 | 28.2678482
12.9824596 | 19 | 21.9329240 | 29 | 28.9080719
13.9823359 | 20 | 22.6771846 | 30 | 29.5276021
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The value of the skewness of L, for £ < 30 is given in the following table.

Skew(Ly) | k | Skew(Ly) | k | Skew(Ly,)
3.3904247 | 11 | 0.7569428 | 21 | 0.5205173
2.1496468 | 12 | 0.7362263 | 22 | 0.5148284
1.6420771 | 13 | 0.7250716 | 23 | 0.5134409
1.3892778 | 14 | 0.7131387 | 24 | 0.5108048
1.2554076 | 15 | 0.6939289 | 25 | 0.5029053
1.1503502 | 16 | 0.6657344 | 26 | 0.4888319
1.0474628 | 17| 0.6307374 | 27 | 0.4707841
0.9487703 | 18 | 0.5936550 | 28 | 0.4528198
0.8625227 | 19 | 0.5601812 | 29 | 0.4391145
0.7974496 | 20 | 0.5351098 | 30 | 0.4324204
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The value of the kurtosis of Ly for £ < 30 is given in the following table.

Ku(Ly) | k| Ku(Ly) | k | Ku(Lg)
20.6214485 | 11 | 3.9630489 | 21 | 3.4553514
10.0475452 | 12 | 3.9427896 | 22 | 3.4675149
7.2098904 | 13 | 3.9031803 | 23 | 3.4566369
6.1044828 | 14 | 3.8308431 | 24 | 3.4199435
5.5085380 | 15 | 3.7314241 | 25 | 3.3679599
5.0273441 | 16 | 3.6223695 | 26 | 3.3183350
46151697 | 17 | 3.5254483 | 27 | 3.2873677
42993763 | 18 | 3.4590869 | 28 | 3.2835481
4.0978890 | 19 | 3.4312823 | 29 | 3.3051186
3.9989275 | 20 | 3.4359383 | 30 | 3.34149883
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We end this section with some figures and a table of the scaled probability density functions for
the number of rolls of a fair die until visiting the primes k times for various k values. (Recall that
the scaled version of a random variable X with expectation p and variance o2 is (X — p)/0).

k | Expectation | Standard Deviation | Skewness | Kurtosis
20 | 100.2648068 22.6771846 0.5351098 | 3.4359883
40 | 229.8903783 36.1271902 0.3777949 | 3.1278526
60 | 370.5241578 46.0245135 0.1406763 | 2.6164507
80 | 520.2899340 57.8152360 0.2910580 | 2.9707515
100 | 676.3153763 65.2765933 0.2230411 | 3.0704308

primesk100. jpg

k =100

FI1GURE 1. Scaled probability density function for the number of rolls of a fair die
until visiting the primes k times.

Based on the available data above, the argument described in the next section, and the known
results about the function 7(n) which is the number of primes that do not exceed n, a possible
guess for a more precise expression for F(Ly) may be k(logk + loglogk + ¢1) + ¢o. This is also
roughly consistent with the computational evidence.

1.2. Asymptotic results. In the next section we prove the following two results.

Theorem 1.1. For any fized positive reals €,§ there exists ko = ko(e,0d) so that for all k > ko the
probability that |Ly — klogk| > eklogk is smaller than ¢.
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Theorem 1.2. For any fized ¢ > 0 and any k > ko(e), the expected value of the random variable
Ly, satisfies |E(Ly) — klogk| < eklogk.

2. PROOFS

In all proofs we omit all floor and ceiling signs whenever these are not crucial, in order to simplify
the presentation.

Lemma 2.1. There are fixed positive C and p, 0 < p < 1 so that the following holds. Let S =
(d1,da,...) be a random sequence of independent rolls of fair dice. For any positive integer x, let
p(x) denote the probability that S hits x. Then |p(z) —2/7| < C(1 — p)*, that is, as x grows, p(x)
converges to the constant 2/7 with an exponential rate.

Proof. Define p(—5) = p(—4) = p(—3) = p(—2) = p(—1) = 0, p(0) = 1 and note that for every
i>1,

1 6
pli) = = > pli =)
j=1

Indeed, S hits ¢ if and only if the last number it hits before ¢ is i — j for some j € {1,...,6}, and
the die rolled after that gives the value j. The probability of this event for each specific value of
jisp(i —j)-(1/6), providing the equation above. (Note that the definition of the initial values is
consistent with this reasoning, as before any dice rolls the initial sum is 0). Thus, the sequence (p(7))
satisfies the homogeneous linear recurrence relation given above. The characteristic polynomial of
that is

1
P(z):,2676(25+z4+z3+z2+z+1).

One of the roots of this polynomial is z = 1, and its multiplicity is 1 as the derivative of P(z)
does not vanish at 1. It is also easy to check that the absolute value of each of the other roots Aj;,
2 < j<6of P(z) is at most 1 — p for some absolute positive constant p, 0 < p < 1. Therefore,
there are constants c¢; so that

6
p(i)=c - 1"+ ch)\é»,
j=2

implying that
p(i) — 1] < C(1 - p)f

for some absolute constant C'. It remains to compute the value of ¢;. By the last estimate, for any
positive n,

> p(i) — enn| < C/(1 - p).
i=1

Note that the sum ), p(i) is the expected number of integers in [n] = {1,2,...,n} hit by the
sequence S.

For each fixed f, di +da + --- + dy is a sum of f independent identically distributed random
variables, each uniform on {1,2,...,6}. By the standard estimates for the distribution of sums of
independent bounded random variables, see., e.g., [2], Theorem A.1.16, this sum is very close to 7f/2
with high probability. Therefore for large n the expectation considered above is (1 + o(1))(2/7)n.
Dividing by n and taking the limit as n tends to infinity shows that ¢; = 2/7, completing the

proof. O
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Note that the lemma above implies that there exists an absolute positive constant ¢ so that for
any (large) integer g the following holds:

2 5
(1) For any = > clogg — 5, p(x) = ;eel(z), 1—p(z) = ;682(“"”) where [e1(2)| <1/g,[e2(2)] < 1/g.

It will be convenient to apply this estimate later.

Let Y;,,(S) denote the number of primes in [m] = {1,2,...,m} hit by S. In the next lemma we
use the letters H and N to represent "hit” and ”"not-hit”, respectively.

Lemma 2.2. For any sequence of integers 1 < x1 < xo < --- < x4 that satisfy x1 > clogg and
Tir1—x; > clogg for all 1 <i < g—1, where c is the constant from , and for everyv € {H, N}’
the following holds. Let h be the number of H coordinates of v. Then,

9 h 5 g—h
P(S hits €T; Zﬁ Vv, = H) = <7> <7> eE(V)a

where |e(v)] < 1.

Proof. The probability of the event (S hits z; iff v; = H) is a product of g terms. The first term
is the probability that S hits x; (if v; = H) or the probability that S does not hit z; (if 11 = N).
Note that since z; > clogg this probability is %651 in the first case and %652 in the second case,
where both |e1] and |e2] are at most 1/g.

The second term in the product is the conditional probability that S hits x9 (if o = H), or that
it does not hit xo (if o = N), given the first value it hit in the interval x;,z1 +1,...,21 + 5. If
v1 = H, this first value is z; itself, and then the probability to hit xs is exactly p(xe — x1). If
v1 = N, then this first value is one of the 5 possibilities x1 +j for some 1 < j < 5. Subject to hitting
x1 + j, the conditional probability to hit x4 is exactly p(z2 — 1 — j), which by the assumption on
the difference x9 — x1, is very close to % By the law of total probability it follows that in any case
the conditional probability to hit xo is %egl and the conditional probability not to hit it is %eaﬂ
where the absolute value of ¢’ and of £” is at most 1/¢. Continuing in this manner we get a product
of g terms, h of which are very close to 2/7 and g — h are very close to 5/7, where the product of
all error terms e is of the form e for some |e| < g - (1/g) = 1. This completes the proof of the
lemma. ]

Proposition 2.3. For any sequence x1 < xo < --- < ,, of positive integers and any a > /nlog(n)

/ a2

2 o _a®
P <)#CL‘Z hit — ?n) > a) < e © nlog(n),

for some absolute positive constant c.

Proof. Split 1, ..., x, into clog(n) subsequences, where subsequence number j consists of all x;
with index ¢ = j mod (clog n) where c is the constant from (). Note that the difference between any
two distinct elements in the same subsequences is at least clogn and that each of these subsequences
can contain at most one element smaller than clogn. Each one of the subsequences contains

r:= —2— elements z;. In each subsequence, the probability to deviate in absolute value from %r

clog(n

hits by ﬁlgre than ﬁ‘(n) can be bounded by the Chernoff’s bound for binomial distributions, up

to a factor of e. Indeed, Lemma shows that the contribution of each term does not exceed the

contribution of the corresponding term for the binomial random variable with parameters r and

2/7 by more than a factor of e. Note that although each subsequence may contain one element

smaller than clogn, the contribution of this single element to the deviation is negligible and can be
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ignored. Plugging in the standard bound, see, e.g. [2], Theorem A.1.16, we get that the probability
of the event considered is at most

/1 a2

2e - e_cl(ﬁ‘(n)y/(ﬁ(n)) < e € mlogm)

for appropriate absolute constants ¢/, ¢”. Here we used the fact that since a is large the constant
2e can be swallowed by the choice of ¢’. Therefore, the probability to deviate in at least one of the
subsequences by more than a/(clogn) is at most

/) 2 117 a2

Clog(n)eiclnlgg(n) S e*C nlog(n)7
where in the last inequality we used again the fact that a > y/nlog(n). O
Recall that L; is the minimum 7 so that S hits k& primes in the first 7 steps.
Corollary 2.4. (1) If %W(ml) <k—a and a > \/m(mq)log(m(my)), then

/11 2

PV, > k)< e mmnostatmy

(2) If 21(m2) > k + a and a > \/m(mz) log(m(mz)) then

a2

o a®
P (Y, <k)<e © mlmplogtimg)

Proof. (1) The event {Y,,, > k} means that the number of primes that are at most m; and are hit
by the infinite sequence of the initial sums of dice rolls is a least k. Therefore, if %w(ml) <k-a,
we have

P (Y, > k) =P (le - gﬂ(ml) >k ?W(m1)> <p ((le - ;ﬂ(ml)‘ > a> <

2

111 a
m(mq)log(m(my)) ,

where the last inequality follows from Proposition [2.3

(2) Similarly, if Z7(m2) > k + a, we have

P (Y, <h) =P <ym2 _ %Tr(mg) < k- iﬂ(m2)> <p <Ym2 _ gw(mg) < —a)

a2

M av
m(m2) log(m(mg)) ,

<P <‘Ym2 - ;ﬂ'(mg)‘ > a) <e ©
where the last inequality follows from Proposition [l
Corollary 2.5. (1) For a given (large) k, let my be the smallest integer so that
m(my) = L;(k —2Vklogk).
Then for any ¢ satisfying %z < my — a, where a > 2vklog(k),

1" ﬁ /11 k 1032 k

PLp<i)<P(di+-+di>m)+P Yy >k <e© 7+ e © mmploglm) < k=
for some absolute constant o > 0.

(2) For a given (large) k and for a > /klog?k let ma be the smallest integer so that

w(ma) = [k +a)].
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Then for any i satisfying %z > mg + b, where b > a
b2 /11 a?

P(Lp 2 i) S P+ +di S mg) + P (Y, k) < e "% 4 o Tty

Proof. (1) If both events {d; + - - - + d; > m1} and {Y,,; > k} do not occur, then the event {L; < i}
does not occur. Therefore, for %z < mj — a we have

P(Lp<i)<P(di+--+d;i >mi)+ P (Y, 2k)§P<d1+---+di—;iza>+P(Ym1 > k)

76////ﬁ —C”'M
<e i +e m(mq)log(m(m1))

where the last inequality follows from Chernoff’s bound and the first part of Corollary 2.4} Note
that here 2v/klogk > \/m(m1)log(m(m1)) and therefore the corollary can be applied.

2) Similarly, if both events {d; + --- + d; < mo} and {Y;,, < k} do not occur, then the event
2 —
{Ly > i} does not occur. Therefore, for %z > mg + b, we have

,,,,ﬁ " a

P (Lk > Z) <P (d1 4+ -4+ d; — gl < —b> + P (Ym2 < k) <e ¢ T+ e ¢ m(my) log(m(my)) |

where the last inequality follows again from Chernoff’s bound and the second part of Corollary
Indeed the corollary can be applied since it is not difficult to check that for large k£ and any

a > Vklog?k,

@ 2 /m(mz) og(r(ma)) = |2 (k -+ a)] og(T 2 (k + a)]).
g

Proof of Theorem Note that by the Prime Number Theorem in the first part of Corollary
2.5

7
my = (5 +o(1))klog k.

Taking a = 2vklog k and letting i; be the largest integer so that %z < mj — a it follows from this
first part that i1 = (1 + o(1))klogk and that the probability that Ly is smaller than i; is smaller
than some negative power of k, that is, tends to 0 as k tends to infinity.

Similarly, substituting in the second part of the corollary a = b = vk log? k and letting i5 be the
smallest integer so that Zi > my + a it is easy to see that iy is also (1 + o(1))klogk (since

7
ma = (5 +o(1))klog k,

by the Prime Number Theorem). By the second part of the corollary the probability that Ly
is larger than s is smaller than any fixed negative power of k, and hence tends to 0 as k tends
to infinity. Therefore Ly is (1 + o(1))klog k with probability tending to 1 as k tends to infinity,
completing the proof of the theorem. O

Proof of Theorem The expectation of L; is the sum over all positive integers i, of the
probabilities P(Ly > 7). Taking a = Vk log2 k and defining m4 and mo as before we break this sum
into three parts,

Si= > P(Lp=i),

i:%i§m1—a

So= > P(Lp=4),

i:%ing—l—a
7



and

Sy = > P (L, >1i).

my—a< %i<m2 +a

By the first part of Corollary each summand in the first sum S; is 1 — o(1) and therefore
S1 = (140(1))klogk, as the number of summands is (1+o0(1))klog k, since m1 = (% +o(1))klog k.
By the second part of the corollary (applied to an appropriately chosen sequence of a, mg and b) it
is not difficult to check that the infinite sum S is only o(1). Indeed, it is possible, for example, to
choose ag = Vklog? k and a; = jk for all j > 1. The corresponding value my ; of mg for each a; is
defined as the smallest integer satisfying m(mo ;) = [Z(k + a;)]. Taking b; = a; we can apply the
estimate in the second part of the corollary to all values of i satisfying mo j+a; < %z < M2 jt1+aj41.
The sum of the probabilities P(Ly > i) for these values of i is thus at most ke~ og™ k) £o; 7 =0,
and at most ke 2Uk/108GK) for each j > 1. The sum of all these quantities is smaller than any
fixed negative power of k, and is therefore o(1), as needed.

The sum S3 is a sum of at most my — mq + 2a terms, and each of them is at most 1, implying
that 0 < S3 < ma —my + 2a = o(klogk), since both my and my are (% + o(1))klogk, and
2a = O(vVklog? k). This completes the proof of the theorem. O

3. CONCLUDING REMARKS AND EXTENSIONS

e Extensions for biased r-sided dice and arbitrary subsets of the integers. The
proofs in the previous section use very little of the specific properties of the primes and the
specific distribution of each d;. It is easy to extend the result to any r-sided dice with an
arbitrary discrete distribution on [r] in which the values obtained with positive probabilities
do not have any nontrivial common divisor. The constants 3.5 and 2/7 will then have to be
replaced by the expectation of the random variable d; and by its reciprocal, respectively.
It is interesting to note that while for different dice the expectation of Lj for small values
of k can be very different from the corresponding expectation for a standard fair die, once
the die is fixed, for large k the expectation is always (1 + o(1))klog k, where the o(1)-term
tends to 0 as k tends to infinity.

It is also possible to replace the primes by an arbitrary subset 1" of the positive inte-
gers, and repeat the arguments to analyze the corresponding random variable for this case,
replacing the Prime Number Theorem by the counting function of T. We omit the details.

e Heuristic suggestion for a more precise expression for E(L). If we substitute for
7(n) its approximation n/logn and repeat the analysis described here with this approxi-
mation, the more precise value for the expectation E(Ly) that follows is k(log k +log log k +
O(1)). Since at the beginning there are some fluctuations, we tried to add another constant
and consider an expression of the form k(logk + loglogk + ¢1) + c2. Choosing ¢; and ¢y
that provide the best fit for our (limited and therefore maybe overfitted) computational
evidence we obtained the heuristic expression f(k) = k(logk + loglogk + 0.543) + 8.953.
For the record, here are the ratios of E[Lg]/f(k) for k = 20,40, 60, 80, 100, respectively:

0.9861651120,0.9976101939, 0.9966486957,0.998338113, 0.9997448512.

One can also replace n/logn by the more precise approximation Li(n) for w(n), but the
difference between these two estimates does not change the expression obtained for E(Ly)
in a significant way.
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