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Abstract. Let S = (d1, d2, d3, . . .) be an infinite sequence of rolls of independent fair dice. For an

integer k ≥ 1, let Lk = Lk(S) be the smallest i so that there are k integers j ≤ i for which
∑j

t=1 dt
is a prime. Therefore, Lk is the random variable whose value is the number of dice rolls required
until the accumulated sum equals a prime k times. It is known that the expected value of L1 is
close to 2.43. Here we show that for large k, the expected value of Lk is (1+o(1))k loge k, where the
o(1)-term tends to zero as k tends to infinity. We also include some computational results about
the distribution of Lk for k ≤ 100.
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1. Results

Let S = (d1, d2, d3, . . .) be an infinite sequence of rolls of independent fair dice. Thus the di are
independent, identically distributed random variables, each uniformly distributed on the integers
{1, 2, . . . , 6}. For each i ≥ 1 put si =

∑i
j=1 dj . The sequence S hits a positive integer x if there

exists an i so that si = x. In that case it hits x in step i.
For any positive integer k, let Lk = Lk(S) be the random variable whose value is the smallest i

so that the sequence S hits k primes during the first i steps (∞ if there is no such i, but it is easy
to see that with probability 1 there is such i). The random variable L1 is introduced and studied
in [1], see also [4], [3] for several variants and generalizations.

Here we consider the random variable Lk for larger values of k, focusing on the estimate of its
expectation.

1.1. Computational results. This article is accompanied by a Maple package PRIMESk, available
from

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/primesk.html ,
where there are also numerous output files.
Using our Maple package, we computed the following values of the expectation of Lk for k ≤ 30.

k E(Lk) k E(Lk) k E(Lk)
1 2.428497914 11 48.14320555 21 106.3962997
2 5.712240468 12 53.61351459 22 112.5650207
3 9.498878119 13 59.16406655 23 118.7684092
4 13.65059271 14 64.79337350 24 125.0081994
5 18.05408931 15 70.50517127 25 131.2881683
6 22.64615402 16 76.30284161 26 137.6114097
7 27.42115902 17 82.18566213 27 143.9783110
8 32.37752852 18 88.14757626 28 150.3859881
9 37.50029903 19 94.17811256 29 156.8292462
10 42.76471868 20 100.2648068 30 163.3025173
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The table suggests that the asymptotic value of this expectation is (1+o(1))k log k, where the o(1)-
term tends to zero as k tends to infinity, and the logarithm here and throughout the manuscript is
in the natural basis. This is confirmed in the results stated in the next subsection and proved in
Section 2.
The value of the standard deviation of Lk for k ≤ 30 is given in the following table.

k Std(Lk) k Std(Lk) k Std(Lk)
1 2.4985553 11 14.9184147 21 23.3873070
2 4.2393979 12 15.8185435 22 24.0816339
3 5.7679076 13 16.7109840 23 24.7769981
4 7.1185391 14 17.6115574 24 25.4821834
5 8.3598784 15 18.5197678 25 26.1952166
6 9.5715571 16 19.4227324 26 26.9055430
7 10.7618046 17 20.3022748 27 27.5997195
8 11.9062438 18 21.1419697 28 28.2678482
9 12.9824596 19 21.9329240 29 28.9080719
10 13.9823359 20 22.6771846 30 29.5276021

The value of the skewness of Lk for k ≤ 30 is given in the following table.

k Skew(Lk) k Skew(Lk) k Skew(Lk)
1 3.3904247 11 0.7569428 21 0.5205173
2 2.1496468 12 0.7362263 22 0.5148284
3 1.6420771 13 0.7250716 23 0.5134409
4 1.3892778 14 0.7131387 24 0.5108048
5 1.2554076 15 0.6939289 25 0.5029053
6 1.1503502 16 0.6657344 26 0.4888319
7 1.0474628 17 0.6307374 27 0.4707841
8 0.9487703 18 0.5936550 28 0.4528198
9 0.8625227 19 0.5601812 29 0.4391145
10 0.7974496 20 0.5351098 30 0.4324204

The value of the kurtosis of Lk for k ≤ 30 is given in the following table.

k Ku(Lk) k Ku(Lk) k Ku(Lk)
1 20.6214485 11 3.9630489 21 3.4553514
2 10.0475452 12 3.9427896 22 3.4675149
3 7.2098904 13 3.9031803 23 3.4566369
4 6.1044828 14 3.8308431 24 3.4199435
5 5.5085380 15 3.7314241 25 3.3679599
6 5.0273441 16 3.6223695 26 3.3183350
7 4.6151697 17 3.5254483 27 3.2873677
8 4.2993763 18 3.4590869 28 3.2835481
9 4.0978890 19 3.4312823 29 3.3051186
10 3.9989275 20 3.4359883 30 3.3414988
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We end this section with some figures and a table of the scaled probability density functions for
the number of rolls of a fair die until visiting the primes k times for various k values. (Recall that
the scaled version of a random variable X with expectation µ and variance σ2 is (X − µ)/σ).

k Expectation Standard Deviation Skewness Kurtosis
20 100.2648068 22.6771846 0.5351098 3.4359883
40 229.8903783 36.1271902 0.3777949 3.1278526
60 370.5241578 46.0245135 0.1406763 2.6164507
80 520.2899340 57.8152360 0.2910580 2.9707515
100 676.3153763 65.2765933 0.2230411 3.0704308

k = 20 k = 40

k = 60 k = 80

primesk100.jpg

k = 100

Figure 1. Scaled probability density function for the number of rolls of a fair die
until visiting the primes k times.

Based on the available data above, the argument described in the next section, and the known
results about the function π(n) which is the number of primes that do not exceed n, a possible
guess for a more precise expression for E(Lk) may be k(log k + log log k + c1) + c2. This is also
roughly consistent with the computational evidence.

1.2. Asymptotic results. In the next section we prove the following two results.

Theorem 1.1. For any fixed positive reals ε, δ there exists k0 = k0(ε, δ) so that for all k > k0 the
probability that |Lk − k log k| > εk log k is smaller than δ.
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Theorem 1.2. For any fixed ε > 0 and any k > k0(ε), the expected value of the random variable
Lk satisfies |E(Lk)− k log k| < εk log k.

2. Proofs

In all proofs we omit all floor and ceiling signs whenever these are not crucial, in order to simplify
the presentation.

Lemma 2.1. There are fixed positive C and µ, 0 < µ < 1 so that the following holds. Let S =
(d1, d2, . . .) be a random sequence of independent rolls of fair dice. For any positive integer x, let
p(x) denote the probability that S hits x. Then |p(x)− 2/7| ≤ C(1− µ)x, that is, as x grows, p(x)
converges to the constant 2/7 with an exponential rate.

Proof. Define p(−5) = p(−4) = p(−3) = p(−2) = p(−1) = 0, p(0) = 1 and note that for every
i ≥ 1,

p(i) =
1

6

6∑
j=1

p(i− j).

Indeed, S hits i if and only if the last number it hits before i is i− j for some j ∈ {1, . . . , 6}, and
the die rolled after that gives the value j. The probability of this event for each specific value of
j is p(i− j) · (1/6), providing the equation above. (Note that the definition of the initial values is
consistent with this reasoning, as before any dice rolls the initial sum is 0). Thus, the sequence (p(i))
satisfies the homogeneous linear recurrence relation given above. The characteristic polynomial of
that is

P (z) = z6 − 1

6
(z5 + z4 + z3 + z2 + z + 1).

One of the roots of this polynomial is z = 1, and its multiplicity is 1 as the derivative of P (z)
does not vanish at 1. It is also easy to check that the absolute value of each of the other roots λj ,
2 ≤ j ≤ 6 of P (z) is at most 1 − µ for some absolute positive constant µ, 0 < µ < 1. Therefore,
there are constants cj so that

p(i) = c1 · 1i +
6∑

j=2

cjλ
i
j ,

implying that

|p(i)− c1| ≤ C(1− µ)i

for some absolute constant C. It remains to compute the value of c1. By the last estimate, for any
positive n,

|
n∑

i=1

p(i)− c1n| ≤ C/(1− µ).

Note that the sum
∑n

i=1 p(i) is the expected number of integers in [n] = {1, 2, . . . , n} hit by the
sequence S.

For each fixed f , d1 + d2 + · · · + df is a sum of f independent identically distributed random
variables, each uniform on {1, 2, . . . , 6}. By the standard estimates for the distribution of sums of
independent bounded random variables, see., e.g., [2], Theorem A.1.16, this sum is very close to 7f/2
with high probability. Therefore for large n the expectation considered above is (1 + o(1))(2/7)n.
Dividing by n and taking the limit as n tends to infinity shows that c1 = 2/7, completing the
proof. □
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Note that the lemma above implies that there exists an absolute positive constant c so that for
any (large) integer g the following holds:

(1) For any x ≥ c log g − 5, p(x) =
2

7
eε1(x), 1− p(x) =

5

7
eε2(x) where |ε1(x)| < 1/g, |ε2(x)| ≤ 1/g.

It will be convenient to apply this estimate later.

Let Ym(S) denote the number of primes in [m] = {1, 2, . . . ,m} hit by S. In the next lemma we
use the letters H and N to represent ”hit” and ”not-hit”, respectively.

Lemma 2.2. For any sequence of integers 1 ≤ x1 < x2 < · · · < xg that satisfy x1 ≥ c log g and
xi+1−xi ≥ c log g for all 1 ≤ i ≤ g−1, where c is the constant from (1), and for every ν ∈ {H,N}g
the following holds. Let h be the number of H coordinates of ν. Then,

P (S hits xi iff νi = H) =

(
2

7

)h(5

7

)g−h

eε(ν),

where |ε(ν)| ≤ 1.

Proof. The probability of the event (S hits xi iff νi = H) is a product of g terms. The first term
is the probability that S hits x1 (if ν1 = H) or the probability that S does not hit x1 (if ν1 = N).
Note that since x1 > c log g this probability is 2

7e
ε1 in the first case and 5

7e
ε2 in the second case,

where both |ε1| and |ε2| are at most 1/g.
The second term in the product is the conditional probability that S hits x2 (if ν2 = H), or that

it does not hit x2 (if ν2 = N), given the first value it hit in the interval x1, x1 + 1, . . . , x1 + 5. If
ν1 = H, this first value is x1 itself, and then the probability to hit x2 is exactly p(x2 − x1). If
ν1 = N , then this first value is one of the 5 possibilities x1+j for some 1 ≤ j ≤ 5. Subject to hitting
x1 + j, the conditional probability to hit x2 is exactly p(x2 − x1 − j), which by the assumption on
the difference x2 − x1, is very close to 2

7 . By the law of total probability it follows that in any case

the conditional probability to hit x2 is 2
7e

ε′ and the conditional probability not to hit it is 5
7e

ε”

where the absolute value of ε′ and of ε” is at most 1/g. Continuing in this manner we get a product
of g terms, h of which are very close to 2/7 and g − h are very close to 5/7, where the product of

all error terms eε
′′′

is of the form eε for some |ε| ≤ g · (1/g) = 1. This completes the proof of the
lemma. □

Proposition 2.3. For any sequence x1 < x2 < · · · < xn of positive integers and any a ≥
√
n log(n)

P

(∣∣∣#xi hit − 2

7
n
∣∣∣ ≥ a

)
≤ e

−c′ a2

n log(n) ,

for some absolute positive constant c′.

Proof. Split x1, . . . , xn into c log(n) subsequences, where subsequence number j consists of all xi
with index i ≡ j mod (c log n) where c is the constant from (1). Note that the difference between any
two distinct elements in the same subsequences is at least c log n and that each of these subsequences
can contain at most one element smaller than c log n. Each one of the subsequences contains
r := n

c log(n) elements xi. In each subsequence, the probability to deviate in absolute value from 2
7r

hits by more than a
c log(n) can be bounded by the Chernoff’s bound for binomial distributions, up

to a factor of e. Indeed, Lemma 2.2 shows that the contribution of each term does not exceed the
contribution of the corresponding term for the binomial random variable with parameters r and
2/7 by more than a factor of e. Note that although each subsequence may contain one element
smaller than c log n, the contribution of this single element to the deviation is negligible and can be
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ignored. Plugging in the standard bound, see, e.g. [2], Theorem A.1.16, we get that the probability
of the event considered is at most

2e · e−c′
(

a
c log(n)

)2
/
(

n
c log(n)

)
≤ e

−c′′ a2

n log(n)

for appropriate absolute constants c′, c′′. Here we used the fact that since a is large the constant
2e can be swallowed by the choice of c′′. Therefore, the probability to deviate in at least one of the
subsequences by more than a/(c log n) is at most

c log(n)e
−c′′ a2

n log(n) ≤ e
−c′′′ a2

n log(n) ,

where in the last inequality we used again the fact that a ≥
√
n log(n). □

Recall that Lk is the minimum i so that S hits k primes in the first i steps.

Corollary 2.4. (1) If 2
7π(m1) ≤ k − a and a ≥

√
π(m1) log(π(m1)), then

P (Ym1 ≥ k) ≤ e
−c′′′ a2

π(m1) log(π(m1)) .

(2) If 2
7π(m2) ≥ k + a and a ≥

√
π(m2) log(π(m2)) then

P (Ym2 ≤ k) ≤ e
−c′′′ a2

π(m2) log(π(m2)) .

Proof. (1) The event {Ym1 ≥ k} means that the number of primes that are at most m1 and are hit
by the infinite sequence of the initial sums of dice rolls is a least k. Therefore, if 2

7π(m1) ≤ k − a,
we have

P (Ym1 ≥ k) = P

(
Ym1 −

2

7
π(m1) ≥ k − 2

7
π(m1)

)
≤ P

(∣∣∣Ym1 −
2

7
π(m1)

∣∣∣ ≥ a

)
≤ e

−c′′′ a2

π(m1) log(π(m1)) ,

where the last inequality follows from Proposition 2.3.

(2) Similarly, if 2
7π(m2) ≥ k + a, we have

P (Ym2 ≤ k) = P

(
Ym2 −

2

7
π(m2) ≤ k − 2

7
π(m2)

)
≤ P

(
Ym2 −

2

7
π(m2) ≤ −a

)
≤ P

(∣∣∣Ym2 −
2

7
π(m2)

∣∣∣ ≥ a

)
≤ e

−c′′′ a2

π(m2) log(π(m2)) ,

where the last inequality follows from Proposition 2.3. □

Corollary 2.5. (1) For a given (large) k, let m1 be the smallest integer so that

π(m1) = ⌊7
2
(k − 2

√
k log k⌋.

Then for any i satisfying 7
2 i ≤ m1 − a, where a ≥ 2

√
k log(k),

P (Lk ≤ i) ≤ P (d1 + · · ·+ di ≥ m1) + P (Ym1 ≥ k) ≤ e−c′′′′ a
2

i + e
−c′′′ k log2 k

π(m1) log(π(m1)) ≤ k−α

for some absolute constant α > 0.

(2) For a given (large) k and for a ≥
√
k log2 k let m2 be the smallest integer so that

π(m2) = ⌈7
2
(k + a)⌉.
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Then for any i satisfying 7
2 i ≥ m2 + b, where b ≥ a

P (Lk ≥ i) ≤ P (d1 + · · ·+ di ≤ m2) + P (Ym2 ≤ k) ≤ e−c′′′′ b
2

i + e
−c′′′ a2

π(m2) log(π(m2)) .

Proof. (1) If both events {d1 + · · ·+ di ≥ m1} and {Ym1 ≥ k} do not occur, then the event {Lk ≤ i}
does not occur. Therefore, for 7

2 i ≤ m1 − a we have

P (Lk ≤ i) ≤ P (d1 + · · ·+ di ≥ m1) + P (Ym1 ≥ k) ≤ P

(
d1 + · · ·+ di −

7

2
i ≥ a

)
+ P (Ym1 ≥ k)

≤ e−c′′′′ a
2

i + e
−c′′′ k log2 k

π(m1) log(π(m1)) ,

where the last inequality follows from Chernoff’s bound and the first part of Corollary 2.4. Note
that here 2

√
k log k ≥

√
π(m1) log(π(m1)) and therefore the corollary can be applied.

(2) Similarly, if both events {d1 + · · ·+ di ≤ m2} and {Ym2 ≤ k} do not occur, then the event
{Lk > i} does not occur. Therefore, for 7

2 i ≥ m2 + b, we have

P (Lk ≥ i) ≤ P

(
d1 + · · ·+ di −

7

2
i ≤ −b

)
+ P (Ym2 ≤ k) ≤ e−c′′′′ b

2

i + e
−c′′′ a2

π(m2) log(π(m2)) ,

where the last inequality follows again from Chernoff’s bound and the second part of Corollary
2.4. Indeed the corollary can be applied since it is not difficult to check that for large k and any
a ≥

√
k log2 k,

a ≥
√

π(m2) log(π(m2)) =

√
⌈7
2
(k + a)⌉ log(⌈7

2
(k + a)⌉).

□

Proof of Theorem 1.1: Note that by the Prime Number Theorem in the first part of Corollary
2.5,

m1 = (
7

2
+ o(1))k log k.

Taking a = 2
√
k log k and letting i1 be the largest integer so that 7

2 i ≤ m1 − a it follows from this
first part that i1 = (1 + o(1))k log k and that the probability that Lk is smaller than i1 is smaller
than some negative power of k, that is, tends to 0 as k tends to infinity.

Similarly, substituting in the second part of the corollary a = b =
√
k log2 k and letting i2 be the

smallest integer so that 7
2 i ≥ m2 + a it is easy to see that i2 is also (1 + o(1))k log k (since

m2 = (
7

2
+ o(1))k log k,

by the Prime Number Theorem). By the second part of the corollary the probability that Lk

is larger than i2 is smaller than any fixed negative power of k, and hence tends to 0 as k tends
to infinity. Therefore Lk is (1 + o(1))k log k with probability tending to 1 as k tends to infinity,
completing the proof of the theorem. □

Proof of Theorem 1.2: The expectation of Lk is the sum over all positive integers i, of the
probabilities P (Lk ≥ i). Taking a =

√
k log2 k and defining m1 and m2 as before we break this sum

into three parts,

S1 =
∑

i: 7
2
i≤m1−a

P (Lk ≥ i) ,

S2 =
∑

i: 7
2
i≥m2+a

P (Lk ≥ i) ,
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and

S3 =
∑

i:m1−a< 7
2
i<m2+a

P (Lk ≥ i) .

By the first part of Corollary 2.5 each summand in the first sum S1 is 1 − o(1) and therefore
S1 = (1+o(1))k log k, as the number of summands is (1+o(1))k log k, since m1 = (72 +o(1))k log k.
By the second part of the corollary (applied to an appropriately chosen sequence of a,m2 and b) it
is not difficult to check that the infinite sum S2 is only o(1). Indeed, it is possible, for example, to

choose a0 =
√
k log2 k and aj = jk for all j ≥ 1. The corresponding value m2,j of m2 for each aj is

defined as the smallest integer satisfying π(m2,j) = ⌈72(k + aj)⌉. Taking bj = aj we can apply the

estimate in the second part of the corollary to all values of i satisfyingm2,j+aj ≤ 7
2 i < m2,j+1+aj+1.

The sum of the probabilities P (Lk ≥ i) for these values of i is thus at most ke−Ω(log3 k) for j = 0,

and at most ke−Ω(jk/ log(jk)) for each j ≥ 1. The sum of all these quantities is smaller than any
fixed negative power of k, and is therefore o(1), as needed.

The sum S3 is a sum of at most m2 −m1 + 2a terms, and each of them is at most 1, implying
that 0 ≤ S3 ≤ m2 − m1 + 2a = o(k log k), since both m1 and m2 are (72 + o(1))k log k, and

2a = O(
√
k log2 k). This completes the proof of the theorem. □

3. Concluding remarks and extensions

• Extensions for biased r-sided dice and arbitrary subsets of the integers. The
proofs in the previous section use very little of the specific properties of the primes and the
specific distribution of each di. It is easy to extend the result to any r-sided dice with an
arbitrary discrete distribution on [r] in which the values obtained with positive probabilities
do not have any nontrivial common divisor. The constants 3.5 and 2/7 will then have to be
replaced by the expectation of the random variable di and by its reciprocal, respectively.
It is interesting to note that while for different dice the expectation of Lk for small values
of k can be very different from the corresponding expectation for a standard fair die, once
the die is fixed, for large k the expectation is always (1 + o(1))k log k, where the o(1)-term
tends to 0 as k tends to infinity.

It is also possible to replace the primes by an arbitrary subset T of the positive inte-
gers, and repeat the arguments to analyze the corresponding random variable for this case,
replacing the Prime Number Theorem by the counting function of T . We omit the details.

• Heuristic suggestion for a more precise expression for E(Lk). If we substitute for
π(n) its approximation n/ log n and repeat the analysis described here with this approxi-
mation, the more precise value for the expectation E(Lk) that follows is k(log k+log log k+
O(1)). Since at the beginning there are some fluctuations, we tried to add another constant
and consider an expression of the form k(log k + log log k + c1) + c2. Choosing c1 and c2
that provide the best fit for our (limited and therefore maybe overfitted) computational
evidence we obtained the heuristic expression f(k) = k(log k + log log k + 0.543) + 8.953.
For the record, here are the ratios of E[Lk]/f(k) for k = 20, 40, 60, 80, 100, respectively:

0.9861651120, 0.9976101939, 0.9966486957, 0.998338113, 0.9997448512.
One can also replace n/ log n by the more precise approximation Li(n) for π(n), but the

difference between these two estimates does not change the expression obtained for E(Lk)
in a significant way.
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