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Abstract

We study vertex colourings of digraphs so that no out-neighbourhood is monochromatic and
call such a colouring an out-colouring. The problem of deciding whether a given digraph has
an out-colouring with only two colours (called a 2-out-colouring) is NP-complete. We show that
for every choice of positive integers r, k there exists a k-strong bipartite tournament which needs
at least r colours in every out-colouring. Our main results are on tournaments and semicomplete
digraphs. We prove that, except for the Paley tournament P7, every strong semicomplete digraph
of minimum out-degree at least 3 has a 2-out-colouring. Furthermore, we show that every semi-
complete digraph on at least 7 vertices has a 2-out-colouring if and only if it has a balanced such
colouring, that is, the difference between the number of vertices that receive colour 1 and colour 2
is at most one. In the second half of the paper, we consider the generalization of 2-out-colourings
to vertex partitions (V1, V2) of a digraph D so that each of the three digraphs induced by re-
spectively, the vertices of V1, the vertices of V2 and all arcs between V1 and V2 have minimum
out-degree k for a prescribed integer k ≥ 1. Using probabilistic arguments, we prove that there
exists an absolute positive constant c so that every semicomplete digraph of minimum out-degree
at least 2k + c

√
k has such a partition. This is tight up to the value of c.

1 Introduction

A k-partition of a (di)graph G = (V,A) is a partition of V into k disjoint non-empty subsets
V1, . . . , Vk. The complexity of deciding whether one can partition the vertex set of a (di)graph into
two or more non-empty subsets of vertices, such that the sub(di)graphs induced by these sets satisfy
prescribed properties is a difficult problem. In [6, 8] the complexity of 120 such problems concerning
2-partitions of digraphs was settled.

Thomassen [16] proved that every digraph with minimum out-degree at least 3 has a 2-partition
(V1, V2) such that each of the subdigraph induced by these two sets has minimum out-degree at least
1, see also [1] for an extension for partitioning into more parts. One can decide in polynomial time
whether a given digraph has a 2-partition such that each set has minimum out-degree at least 1 (see
e.g. [6]). Another result by Thomassen on digraphs with no even directed cycle [17] implies that
there is no lower bound on the minimum out-degree of a digraph that implies that a digraph D has
a 2-partition (V1, V2) such that the bipartite digraph D(V1, V2) induced by the arcs between V1, V2
has minimum out-degree at least one. Still, as was shown in [5], it can be decided in polynomial time
whether a given digraph has a 2-partition V1, V2 such that D(V1, V2) has minimum out-degree at least
one (if we require higher out-degrees, the problem becomes NP-complete [4]).

In the language of 2-partitions of digraphs, a 2-out-colouring is the same thing as a 2-partition
(V1, V2) such that each vertex has an out-neighbour in both sets. That is, we want both of the
properties above. This is the same thing as searching for a 2-colouring with no monochromatic edges
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of the hypergraph HD = (V, E) on |V | edges that we obtain from a given digraph D = (V,A) by
letting the edges in E correspond to each of the |V | out-neighbourhoods in D. It is well-known [12]
that it is NP-complete to decide whether one can 2-colour the vertices of a hypergraph H in such
a way that no edge is monochromatic. As we show below this problem remains NP-complete for
hypergraphs like HD that are the out-neighbourhood hypergraph of some digraph D, even if D
has some particular properties (like large out-degree, bipartite or symmetric).

Our main focus is on tournaments and semicomplete digraphs, that is, respectively, orientations
of complete graphs and digraphs with no pair of non-adjacent vertices. Tournaments form the most
well-studied class of digraphs and despite their restricted structure a lot of deep results exist and
many challenging problems remain for this class (see e.g. [9] for a comprehensive list of results on
tournaments and semicomplete digraphs). In this paper, we show, among other results, that with
only one exception on 7 vertices, every semicomplete digraph with minimum out-degree at least 3
has a 2-out-colouring and give a polynomial algorithm for finding such a partition or certifying its
nonexistence in an arbitrary semicomplete digraph. In the second part of the paper, we consider
a generalization of 2-out-colourings where we do not only want that each vertex has at least one
out-neighbour in both sets but now we want at least k out-neighbours in each set for a prescribed
number k. Using probabilistic arguments, we prove that every tournament whose minimum out-degree
is sufficiently large as a function of k has such a partition. The bound we give on this function is
asymptotically best possible.

The paper is organized as follows. We first provide some notation and show that even for highly
structured digraphs, such as symmetric digraphs and bipartite tournaments, high out-degree is not
sufficient to guarantee the existence of an out-colouring with r colours for any fixed r. In Section 3,
we show that deciding whether a digraph has a 2-out-colouring is NP-complete, even when the input
is restricted to be a symmetric digraph with high out-degree or to be semicomplete bipartite. In
Section 4, we characterize all tournaments which have a 2-out-colouring. Using these results, we
characterize also in Section 5 all semicomplete digraphs admitting a 2-out-colouring. In Section 6, we
prove that with very few exceptions, if a semicomplete digraph has a 2-out-colouring, then it also has a
balanced one, that is, the sizes of the two sides of the 2-partition differ by at most one. In Section 7, we
study the generalization of 2-out-colourings where we want a 2-partition such that each vertex has at
least k out-neighbours in both sets. Using probabilistic methods, we give asymptotically best possible
bounds for the minimum out-degree which will guarantee that a tournament with this minimum out-
degree has a 2-partition as above. Finally, in Section 8 we mention some further consequences of our
results.

2 Terminology and preliminaries

Notation follows [7]. For any digraph D = (V,E) we use the notation u→ v if the arc uv belongs to E
and we say that u dominates v and say that v is an out-neighbour of u and u is and in-neighbour
of v. The set of out-neighbours (in-neighbours) of a vertex v is denoted by N+(v) (N−(v)) and we
denote by δ+(D) the minimum out-degree of the digraph D, that is the minimum size of an out-
neighbourhood. For two disjoint sets of vertices A and B of D, we write A ⇒ B if a → b for every
a ∈ A and b ∈ B. Similarly, if A is a subdigraph of D, then we write A⇒ B if V (A)⇒ B holds (and
the same if B is a subdigraph of D). A set X ⊂ V is an in-dominating set in D = (V,A) if every
vertex in V −X dominates at least one vertex in X.

For a set X ⊂ V , the subdigraph of D induced by X is the digraph with vertex set X and arc set
{uv : uv ∈ A(D) and u ∈ X, v ∈ X}. We denote it by D[X]. We denote also by D \X the digraph
D[V \X]. Similarly if H is a subdigraph of D we denote by D \H the digraph D \ V (H).

A (u, v)-path is a directed path from u to v. A digraph is strongly connected (or strong) if it
contains a (u, v)-path for every ordered pair of distinct vertices u, v. A digraph D is k-strong if for
every set S of less than k vertices the digraph D − S is strong. A strong component of a digraph
D is a maximal subdigraph of D which is strong. A strong component is trivial, if it has order 1.
An initial (resp. terminal) strong component of D is a strong component X with no arcs entering
(resp. leaving) X in D. It is easy to see that for a tournament T which is not strong, we can order
the strong components uniquely as D1, . . . , Dk, k ≥ 2 so that all arcs are directed from Di to Dj

for 1 ≤ i < j ≤ k. In particular T has exactly one initial component D1 and exactly one terminal
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component Tk.
In all of the paper, we use path and cycle for directed path and directed cycle respectively.
A k-colouring γ of a digraph D = (V,E) is a mapping γ : V → {1, . . . , k} of its vertex set. A

k-colouring γ of D is a k-out-colouring (or out-colouring for short) if no out-neighbourhood is
monochromatic, that is for every vertex u of D there exist two out-neighbours v and w of u with
γ(u) 6= γ(v).

For a 2-colouring γ : V → {1, 2} of a digraph D we will denote by Vi the set {x ∈ V : γ(x) = i},
for i = 1, 2. As the set V1 totally defines γ we will often just specify it to describe the 2-colouring γ
and we will simply say that it defines γ. At several places in the paper, we will exhibit a 2-colouring
and claim that it is also a 2-out-colouring. Generally, there is an argument to show that all but a
small number of the vertices (usually 3 or 4) have out-neighbours in both colours. For the sake of
readibility, we often do not provide the full details to argue that the remaining vertices also have
out-neighbours in both colours.

The following observation shows that even for some classes of highly structured digraphs, for every
integer r there does not exist a number K so that all digraphs from this class and with minimum
out-degree at least K have an r-out-colouring. A bipartite tournament is a digraph that can be
obtained from a complete bipartite graph B by assigning an orientation to each edge of B.

Proposition 2.1 For all positive integers k, r with r > 1, there exists a k-strong bipartite tournament
Bk,r with δ+(Bk,r) = k which has no r-out-colouring.

Proof: Let U = {1, . . . , kr} and V be the set of all k-subsets of U . We define Bk,r to be the
bipartite tournament with bipartition (U, V ) where for all u ∈ U and X ∈ V , we have X → u if and
only if u ∈ X. It is easy to check that Bk,r is k-strong. No matter how we r-colour U there will be a
monochromatic k-set X ∈ V , showing that Bk,r has no r-out-colouring. �

One can ask if the chromatic number of the underlying graph of a digraph may have a role to
force the existence of an r-out-colouring. However, by adding a new set W inducing a digraph whose
underlying graph has chromatic number at least p− 2 and all possible arcs from U to W and from W
to V , we see that there is no bound on the out-degree that guarantees a r-out-colouring, even when
the digraph has a p-chromatic underlying graph.

3 Complexity of 2-out-colouring

Every undirected graph G = (V,E) corresponds to the symmetric digraph D =
↔
G that we obtain from

G by replacing every edge of G by a directed 2-cycle.
A total dominating set of a graph G = (V,E) is a set of vertices S such that every vertex of G

has a neighbour in S. Note that a graph G has a partition into two total dominating sets (S, V − S)

if and only if
↔
G has a 2-out-colouring. Thus the result of [11] that deciding whether a graph has a

2-partition into total dominating sets is NP-complete, implies the following.

Theorem 3.1 Deciding whether a given digraph has a 2-out-colouring is NP-complete.

For completeness we give a short proof of the following strengthening of Theorem 3.1

Theorem 3.2 For every integer K, deciding whether a given symmetric digraph of minimum out-
degree at least K, has a 2-out-colouring is NP-complete.

Proof: Let H = (X,E) be a hypergraph. We consider its bipartite representation G. That is, the
vertices of G are X ∪ E and there is an edge from x ∈ X to e ∈ E iff x ∈ e. We add to G a vertex z
linked to all vertices of X and then replace every edge by a 2-cycle to obtain the digraph DH. It is
clear that DH is a symmetric digraph, and we claim that H is 2-colourable if and only if DH admits
a 2-out-colouring. Indeed, if H is 2-colourable, then we keep this colouring on the set of vertices of
DH corresponding to X, colour the vertices of DH corresponding to E by 1 and z by 2. Then we
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obtain a 2-out-colouring of DH. Conversely, if DH has a 2-out-colouring, as the out-neighbours of
every vertex belonging to E contains different colours, the colouring of X corresponds to a 2-colouring
of the hypergraph H.
The claim now follows from the NP-completeness of the 2-colouring problem for hypergraphs [12],
mentioned in the introduction, and the easy fact that the hypergraph 2-colouring problem remains
NP-complete when every vertex is in at least K hyperedges and all hyperedges have size at least K.
Indeed, let us briefly indicate how to reduce the classical hypergraph 2-colouring problem to this last
problem. Let H be a hypergraph. If some hyperedges of H have size less than K, then we add a set
X of size 2K − 2 and all the K-subsets of X as hyperedges to H. Call H+ the resulting hypergraph.
In every 2-colouring of H+ the set X will contain exactly K−1 vertices of colour 1 and K−1 vertices
of colour 2. Now, if a hyperedge e of H has size r < K, then we replace it by

(
2K−2
K−r

)
hyperedges

containing each a different subset of size K − r of X and the r vertices of e. Now, every hyperedge of
H+ has size at least K. And if a vertex x of H+ is in less than K hyperedges, then we can add new
K vertices and enough new hyperedges containing x and some of these new vertices to insure that x,
and all the new vertices, are now in at least K hyperedges. Call H′ the resulting hypergraph. It is
now easy to check that H′ is 2-colourable if and only if H is.
Thus the hypergraph 2-colouring problem remains NP-complete when every vertex is in at least K
hyperedges and all hyperedges have size at least K and deciding whether a given symmetric digraph
of minimum out-degree at least K has a 2-out-colouring is also NP-complete. �

We show below that even for highly structured digraphs with many arcs, the problem is still hard.

Theorem 3.3 It is NP-complete to decide whether a bipartite tournament with minimum out-degree
3 admits a 2-out-colouring.

Proof: Let F be an instance of monotone NAE-3-SAT1 with variables x1, x2, . . . , xn and clauses
C1, C2, . . . , Cm with m ≥ 3. Let U = {u1, u2, . . . , un}, U ′ = {u′1, u′2, u′3}, V = {c1, c2, . . . , cm−1, cm, }
and V ′ = {v1, v2, v3} be four disjoint vertex sets. For each clause Ci, i ∈ [m] we add 3 arcs from ci
to the vertices ui1 , ui2 , ui3 corresponding to the three literals xi1 , xi2 , xi3 of Ci and let all remaining
vertices in U have an arc to ci. Moreover, we add all the arcs from U to V ′, from V ′ to U ′ and from
U ′ to V . We denote by B = B(F) the resulting digraph. The digraph B is bipartite with bipartition
(U ∪ U ′, V ∪ V ′) and has minimum out-degree 3.

We claim that B has a 2-out-colouring if and only if there is a truth assignment φ to the variables
such that every clause has either one or two true literals. Suppose first that B has a 2-out-colouring.
Then we let variable xi be true precisely if ui receives colour 1 under this colouring. Since cj has
precisely 3 out-neighbours in B it follows that this truth assignment will satisfy one or two variables
of each clause. Conversely, suppose φ is a truth assignment to the variables so that Cj has either one
or two true literals for j ∈ [m]. For each i ∈ [n] such that φ(xi) = true we colour ui by 1 and for all
i such that φ(xi) = false we colour ui by 2. Now, all vertices of V , the clause vertices, have both
colours in their out-neighbourhoods, so we just have to make sure the same holds for the vertices of
U , V ′ and U ′. For that, in each of the sets V ′, U ′ and V , we colour one vertex by 1 and the other
ones by 2. It is now easy to check that we obtain a 2-out-colouring of B. �

4 Out-colourings of tournaments

In this section, we focus on 2-out-colourings of tournaments.
First, we recall the following classical result due to Moon that we will use in the forthcoming proof.

A digraph D on n vertices is vertex-pancyclic if for every vertex v of D and every 3 ≤ k ≤ n there
exists a cycle in D of length k containing v.

Theorem 4.1 (Moon) [13] Every strong tournament is vertex-pancyclic.

1Recall that NAE-3-SAT is the variant of 3-SAT where we seek a truth assignment t such that each clause has both
a false and a true literal under t. The further restriction monotone NAE-3-SAT means that we restrict to instances
with no negated variables. This problem is still NP-complete [14].
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Now, let T be a tournament which is not strongly connected and denote by C the terminal
component of T . As T \ C ⇒ C the following holds.

Observation 1 For k > 1, if γ is a k-out-colouring of the terminal component C of a tournament
T , then every extension of γ to the vertices of T \ C leads to a k-out-colouring of T .

Lemma 4.2 Every tournament T on n ≥ 5 vertices contains either an in-dominating vertex or an
in-dominating cycle of size at most n− 2.

Proof: First assume that T is not strongly connected and denote by X the terminal component
of X. If X only contains one vertex, this vertex is an in-dominating vertex of T . Otherwise if |X| ≥ 4
then by Theorem 4.1, T contains a cycle on |X| − 1 vertices which is an in-dominating cycle of T of
size at most n− 2. And if |X| = 3 then a Hamiltonian 3-cycle of X forms also an in-dominating cycle
of T of size at most n− 2.

Now if T is strongly connected, by Theorem 4.1 it contains a cycle C on n − 2 vertices. Let us
denote by x and y the vertices of T \ C. If x and y have both an out-neighbour on C, then C is an
in-dominating cycle of T . Otherwise, as T is strongly connected, it means for instance that y has an
out-neighbour on C and that we have x→y and C⇒x. In this case if we let z be an out-neighbour of
y on C, xyz is an in-dominating cycle of T of size 3 ≤ n− 2. �

4.1 2-out-colouring of tournaments with minimum out-degree 2

The rotational tournament on 5 vertices denoted by RT5 has vertex set {1, 2, 3, 4, 5} and is the
union of the two directed cycles 12345 and 13524. It is easy to check that RT5 has no 2-out-colouring.
Moreover, we define the tournament T7 on 7 vertices. It contains two 3-cycles C and C ′ and a vertex
z such that C ′ ⇒ z, z ⇒ C and C ⇒ C ′. It is also easy to check that T7 has no 2-out-colouring.
A tournament T on n ≥ 6 vertices with δ+(T ) = 2 belongs to the family G1 if there exists a sub-
tournament T ′ of T on n−3 vertices such that: T ′ has an in-dominating vertex w, T \T ′ is a 3-cycle C,
C ⇒ z where z is a vertex of T ′ different from w and with out-degree at least 2, and T ′\z ⇒ C. Notice
that if T belongs to G1 then T has no 2-out-colouring. Indeed, in such a colouring all the vertices of
C must receive the same colour (different from the colour of z) and then the out-neighbourhood of w
would be monochromatic. The tournaments RT5, T7 and the family G1 are depicted in Figure 1 (for
the more general case of semicomplete digraphs).

Theorem 4.3 A tournament T with δ+(T ) = 2 admits a 2-out-colouring except if it belongs to the
family G1 or if its terminal strong component is RT5 or T7.

Proof: By Observation 1 we can assume that T is strongly connected. We deal with two different
cases.

Case 1: T has exactly one vertex with out-degree 2. In this case T admits a 2-out-colouring. Indeed,
denote by a the vertex of T with out-degree 2 and by b and c its out-neighbours with b→ c. Let also
c1 and c2 be two out-neighbours of c. Consider the 2-colouring defined by {a, c, c1}. As every vertex
different from a has out-degree at least 3, it is a 2-out-colouring of T except if there exists a vertex
d1 whose out-neighbourhood is exactly {a, c, c1}. Now the 2-colouring defined by {a, c, c2} is a 2-out-
colouring of T : If this was not the case, then there would be a new vertex d2 with N+(d2) = {a, c, c2},
but then d1 dominates d2, contradicting our conclusion above.

Case 2: T contains at least two vertices of out-degree 2. We observe two different sub-cases.
Case 2.1: No two vertices of out-degree 2 have a common out-neighbour. In this case, denote by a
and b two vertices of out-degree 2 with a→ b. Denote by c the other out-neighbour of a and by d and
e the two out-neighbours of b with d→ e. Notice that we have c→ b and {d, e} ⇒ a. First consider
the 2-colouring of T defined by {a, b, e}. It is a 2-out-colouring of T except if there exists a vertex x
with its out-neighbourhood included in {a, b, e}. In this case, the out-neighbourhood of x is exactly
{a, b, e} otherwise x has out-degree 2 and has a common out-neighbour with a or b which is excluded
in this sub-case. In particular, we have x ∈ N−(a) ∪N−(b) and every vertex different from a, b and
e dominates x. So now the 2-colouring with first set {a, b, d} is a 2-out-colouring of T .
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Case 2.2: There exist two vertices of out-degree 2 with a common out-neighbour. Call by a and b
two such vertices with a → b and denote by d their common out-neighbour and by c the other out-
neighbour of b. Also denote by X the set N−(a) ∩ N−(b) = V (T ) \ {a, b, c, d}. First assume that
c→ d. If c has an out-neighbour e in X and d→ e, then {b, c, e} defines a 2-out-colouring of T , as in
particular, every vertex of X dominates a and b. If d does not dominate e then, this time, {b, c, e, f}
defines a 2-out-colouring of T where f is an out-neighbour of d. So, we can assume that X ⇒ {a, b, c}
and that c has out-degree 2 also, that is we have c→ a. If there is w ∈ X whose out-neighbourhood
is exactly {a, b, c}, then T belongs to the family G1, with T ′ = T [X ∪ {d}], C = abc and d playing
the role of z. So, we can assume that for every x ∈ X we have N+(x) 6= {a, b, c}. Now, let e3 be an
out-neighbour of d and consider the 2-colouring defined by {a, b, c, e3}. If it is not a 2-out-colouring
of T , it means that there exist e2 whose out-neighbourhood is exactly {a, b, c, e3} (as assumed before,
it cannot be just {a, b, c} otherwise T belongs to G1). Similarly, if {a, b, c, e2} does not define a 2-out-
colouring of T there exists e1 whose out-neighbourhood is {a, b, c, e2}. Now, either {a, b, c, e1} defines
a 2-out-colouring of T or T [a, b, c, d, e1, e2, e3] is the terminal component of T and isomorphic to T7.
In this later case, T does not admit a 2-out-colouring.
Finally, we treat the case where d → c. Assume that there exist e and f two different vertices in X
such that c→ e and d→ f . Then {b, c, e} defines a 2-out-colouring of T . Thus, we may assume that c
and d are vertices of out-degree 2 and they have a common out-neighbour e in X. If X \ {e} = ∅ then
T = RT5, otherwise X \{e} ⇒ {a, b, c, d} and as T is strongly connected e must have an out-neighbour
in X. So we check that {a, b, c} defines a 2-out-colouring of T . �

4.2 2-out-colouring of tournaments with minimum out-degree at least 3

Lemma 4.4 Every tournament T with δ+(T ) ≥ 3 and which has an in-dominating set of size 2
admits a 2-out-colouring

Proof: Assume that {a, b} is an in-dominating set of T with a dominating b. Let c be an out-
neighbour of b, in particular, as {a, b} is an in-dominating set of T , we have c → a. We consider the
2-colouring of T defined by {a, b, c}. If it is not a 2-out-colouring of T it means that there exists a
vertex d whose out-neighbourhood is exactly {a, b, c}. So we choose another out-neighbour c′ of b and
check that {a, b, c′} defines a 2-out-colouring of T (as every vertex of T \ {a, b, c, d} dominates either
a or b and dominates d). �

For a prime q which is 3 modulo 4, the quadratic residue tournament, or Paley tournament
Pq is the tournament whose vertices are the integers modulo q where (i, j) is a directed edge iff i− j
is a quadratic residue modulo q.

Theorem 4.5 Every tournament T with δ+(T ) ≥ 3 and whose terminal strong component is different
from P7 admits a 2-out-colouring.

Proof: By Observation 1 we can assume that T is strongly connected. Consider a vertex x of T
with minimum out-degree. If T [N+(x)] has an in-dominating vertex y, then {x, y} is an in-dominating
set of T of size 2 and we conclude with Lemma 4.4. We study now different cases:

First assume that δ+(T ) ≥ 5. In particular d+(x) ≥ 5 and by Lemma 4.2 T [N+(x)] contains an
in-dominating cycle C of size at most d+(x)− 2. So C ∪x defines a 2-out-colouring of T . Indeed, it is
clear that every vertex has an out-neighbour coloured by 1. And if a vertex y has only out-neighbours
coloured by 1, it means that d+(y) ≤ |C|+ 1 ≤ d+(x)− 2 + 1 < d+(x), a contradiction.

Now, assume that δ+(T ) = 4. We have d+(x) = 4 and as T [N+(x)] does not contain any in-
dominating vertex, T [N+(x)] contains an in-dominating 3-cycle. So, we denote N+(x) = {a, b, c, d}
with abc being a 3-cycle and d→ a. We consider the 2-colouring of T defined by {x, a, b, c}. If it is not
a 2-out-colouring it means that there exists y ∈ N−(x) such that N+(y) = {x, a, b, c}. In this case,
let e be an out-neighbour of b lying in N−(x) and consider the 2-colouring of T defined by {x, a, b, e}.
As every vertex of N−(x) \ y dominates y, this colouring is a 2-out-colouring of T .

Finally, we assume that δ+(T ) = 3. We have d+(x) = 3 and as T [N+(x)] does not contain
any in-dominating vertex, T [N+(x)] is 3-cycle, denoted by abc. By Lemma 4.4, we may assume
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that N+(a) ∩ N+(b) 6= ∅, N+(b) ∩ N+(c) 6= ∅ N+(c) ∩ N+(a) 6= ∅. If a, b and c have a common
out-neighbour y in N−(x), then consider the 2-out-colouring of T defined by {x, a, y}. If it is not
a 2-out-colouring of T , then {x, b, y} defined a 2-out-colouring of T . Similarly, if a and b have two
common out-neighbours y and y′, then {x, a, y} or {x, a, y′} defines a 2-out-colouring of T . Thus
by symmetry, it means that a and b have exactly one common out-neighbour, called d, that b and
c have exactly one common out-neighbour, called f , and that c and a have exactly one common
out-neighbour, called e. Using that every vertex of N−(x) \ d dominates a or b, we can deduce the
following. If d → f then {x, c, d, e} defines a 2-out-colouring of T . So by symmetry we can assume
that def is a 3-cycle of T . If {a, b, c} has an out-neighbour in N−(x) \ {d, e, f}, say that c→ y with
y ∈ N−(x) \ {d, e, f}, then {x, c, d, y} defines a 2-out-colouring of T . Finally, if N−(x) \ {d, e, f} 6= ∅,
then, as T is strongly connected, it means that for instance d→ y for some y ∈ N−(x)\{d, e, f}. But
then {x, c, d, e} defines a 2-out-colouring of T . Otherwise, N−(x) \ {d, e, f} = ∅ and T is exactly the
Paley tournament. �

Together Theorem 4.3, Theorem 4.5 and the fact that our proofs are constructive provide the
following corollary.

Corollary 4.6 A tournament T with δ+(T ) ≥ 2 admits a 2-out-colouring if and only if its terminal
strong component is different from RT5, T7 and P7 and T does not belong to the family G1. Conse-
quently, in polynomial time, one can decide whether or not a tournament admits a 2-out-colouring
and find a 2-out-colouring when it exists.

5 Out-colourings of semicomplete digraphs

We extend the results of the previous section to semicomplete digraphs.

5.1 2-out-colourings of semicomplete digraphs with minimum out-degree
2

Figure 1 defines a family G of semicomplete digraphs. A digraph belongs to G if its terminal strong
component is CD3, RT5, RT a

5 , RT b
5 , RT bb

5 or RT c
5 or if it belongs to G1 or G2. A digraph belongs

to G1 if it has minimum out-degree at least 2 and contains a vertex w whose out-neighbourhood is
a 2- or 3-cycle C and such that the union of the out-neighbourhoods of the vertices of C is exactly
V (C) ∪ {z} where z is different from w. Finally, a semicomplete digraph T belongs to the family G2
if its terminal strong component contains a 2- or 3-cycle C which dominates a 2- or 3-cycle C ′ which
dominates a vertex z dominating C.

Lemma 5.1 None of the semicomplete digraphs in G admit a 2-out-colouring. Moreover, for each
semicomplete digraph T ∈ G if we add an arc to T , then either the resulting digraph admits a 2-out-
colouring or it belongs to G.

Proof: We will not provide the complete proof of the statement but just give some important
remarks on how to obtain the result. We leave it to the reader to check that if we add an extra arc to
one of the six digraphs in G −G1−G2, then we either get a new digraph in G or the resulting digraph
has a 2-out-colouring. However, we pay attention to the family G1 where the most technical case
occurs. Let T be a digraph of G1 and xy be an arc to add to T . If xy is incident neither to C nor to w,
then T + xy is clearly a member of G1. The same holds if x = z or y ∈ C. If x ∈ C or xy = wz then
we check that T + xy admits a 2-out-colouring. Finally, let us assume that x = w and that y belongs
to X = V (T ) \ (V (C) ∪ {w, z}). If z has a other out-neighbour in X different from y, then {w, y, z}
defines a 2-out-colouring of T + xy. So, assume now that y is the only out-neighbour of z in X. If y
has an out-neighbour t in X, then {z, y, t} defines a 2-out-colouring of T + xy. In the remaining case
V (C) ∪ {w, y, z} forms the terminal strong component of T + xy and contains the 2-cycle wy which
dominates C which dominates z which in turn dominates the 2-cycle wy. Then T + xy belongs to G2.
Finally let us just mention that adding an arc to any digraph of G2 leads to a digraph admitting a
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CD3

RT5 RT a
5 RT b

5

RT bb
5 RT c

5

C ′ C

G1

z w

C

G2

z

Figure 1: The semicomplete digraphs CD3, RT5, RT a
5 , RT b

5 , RT bb
5 and RT c

5 and the families G1 and
G2 (in G1, bolded arcs could be replaced by 2-cycles and non oriented bolded edges could be oriented
in any direction, provided that z has out-degree at least 2).

2-out-colouring. �

Theorem 5.2 A semicomplete digraph T with δ+(T ) = 2 admits a 2-out-colouring unless its terminal
strong component is CD3, RT5, RT a

5 , RT b
5 , RT bb

5 or RT c
5 or if it belongs to G1 or G2.

Proof: We prove the result by induction on the number of 2-cycles in T . If T does not contain
any 2-cycle, then the result holds by Theorem 4.3. Assume now that T has a 2-cycle xy and suppose
first that the digraph T − xy still satisfies δ+(T − xy) = 2. If T − xy admits a 2-out-colouring, then
so does T . Otherwise, by induction it means that T − xy belongs to the family G. By Lemma 5.1 T
also belongs to G or admits a 2-out-colouring.

Now by symmetry we can assume that both x and y have out-degree exactly 2 in T . We look at
two sub-cases: either x and y have common out-neighbour or not. Assume first that x and y both
dominate a vertex z. If there exists w ∈ V (T ) such that N+

T (w) = {x, y}, then either w = z and the
terminal component of T is CD3 or w 6= z and T belongs to the family G1. In both cases, T does not
admit a 2-out-colouring. Otherwise, it means that δ+(T \ {x, y}) ≥ 1. If z dominates x or y, then
{x, y} defines a 2-out-colouring of T . If z has an out-neighbour u such that δ+(T \{x, y, u}) ≥ 1, then
{x, y, u} defines a 2-out-colouring of T . Otherwise it is easy to check that the out-neighbourhood of z
is exactly a 2- or a 3-cycle C dominated by V (T ) \ (V (C)∪ {x, y}). But in this case T belongs to G2.
For the other sub-case, assume that x and y do not have a common out-neighbour. So, we respectively
denote by z and t the other out-neighbour of x and y. In particular, z dominates y and t dominates
x. Without loss of generality, we can assume that z dominates t. If δ+(T \ {x, y}) ≥ 1, then {x, y}
defines a 2-out-colouring of T . Otherwise, it means that there exists v ∈ T with N+(v) = {x, y}.
Notice that v 6= z as z→t. We treat together the cases v = t and v 6= t. If z has an out-neighbour u in
V (T ) \ {x, y, t, v}, then {x, z, u} defines a 2-out-colouring of T . Otherwise, the out-neighbourhood of
z is exactly {v, t, y} and T belongs to the family G1 with tvy being the 2- or 3-cycle C and x playing
the role of w. �

5.2 2-out-colourings of semicomplete digraphs with minimum out-degree
at least 3

Lemma 5.3 Every semicomplete digraph T with δ+(T ) ≥ 3 which admits an in-dominating set of
size 2 has a 2-out-colouring.
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Proof: Let {a, b} be an in-dominating set of T . If T [a, b] is a 2-cycle, then {a, b} defines a 2-out-
colouring of T , as δ+(T ) ≥ 3. Otherwise, assume that a dominates b and that b does not dominate a.
Let c be an out-neighbour of b. We know that c dominates a or b and so if {a, b, c} does not define a
2-out-colouring of T , it means that there exists d ∈ V (T ) such that N+(d) = {a, b, c}. As a is not an
out-neighbour of b, there exists a vertex c′ /∈ {a, b, c, d} such that b→c′. As previously, if {a, b, c′} does
not define a 2-out-colouring of T , then there exists d′ ∈ V (T ) with N+(d′) = {a, b, c′}. As d′ does
not dominate d we must have d′ = c. Now, if b→d then bd is a in-dominating 2-cycle of T , and we
conclude as in the first part of the proof. Otherwise, there exists c′′ /∈ {a, b, c, d, c′} such that b→c′′.
To conclude, we check that {a, b, c′′} defines a 2-out-colouring of T . �

Theorem 5.4 Every semicomplete digraph T with δ+(T ) ≥ 3 admits a 2-out-colouring unless its
terminal strong component is P7.

Proof: We prove the result by induction on the number of 2-cycles in T . If T does not contain
any 2-cycle, then the result holds by Theorem 4.5. Besides it is easy to show the Paley tournament on
7 vertices plus one arc admits a 2-out-colouring. Indeed without loss of generality, this semicomplete
digraph has vertex set {1, . . . , 7} and arc set {ij : j − i = 1, 2 or 4 mod 7} ∪ {21} and admits the
2-out-colouring defined by {3, 4, 6}. So, assume that T contains a 2-cycle ab. When we remove from
T the arc ab, if we obtain a semicomplete digraph with minimum out-degree at least 3 (including P7),
then T admits a 2-out-colouring by induction or by the previous remark. Otherwise, it means that a
has out-degree exactly 3. The same holds for b and we denote by S the set (N+(a) ∪N+(b)) \ {a, b}.
Thus, we have 2 ≤ |S| ≤ 4. If we have |S| = 4 then {a, b} is an in-dominating set of T of size 2 and we
conclude with Lemma 5.3. If |S| = 2 then a and b have two common out-neighbours c and d. Assume
that c dominates d, then {a, d} is an in-dominating set of T of size 2 and we conclude again with
Lemma 5.3. Finally, if |S| = 3 then a and b has a common out-neighbour c and we denote by d the
third out-neighbour of a and by e the one of b. As |S| = 3 we have d 6= e. If d and e both dominate
c, then {a, c} is an in-dominating set of T and we use Lemma 5.3. Otherwise, we can assume without
loss of generality that c dominates d. As a does not dominate e, e has to dominate a. Once again,
{a, d} is an in-dominating set of T and we use Lemma 5.3 to conclude. �

As the proofs of Theorem 5.2 and Theorem 5.4 are constructive, we obtain the following corollary.

Corollary 5.5 A semicomplete digraph T with δ+(T ) ≥ 2 admits a 2-out-colouring unless its terminal
strong component is CD3, RT5, RT a

5 , RT b
5 , RT bb

5 , RT c
5 or P7 or if it belongs to G1 or G2. Consequently,

in polynomial time, one can decide whether or not a semicomplete digraph admits a 2-out-colouring
and find a 2-out-colouring when it exists.

To conclude this section, notice that every exception listed in the previous statement can be
3-out-coloured. So we obtain the following.

Corollary 5.6 Every semicomplete digraph T with δ+(T ) ≥ 2 admits a 3-out-colouring.

6 Balanced 2-out-colourings of semicomplete digraphs

A 2-out-colouring with colour classes V1 and V2 is balanced if we have
∣∣|V1| − |V2|∣∣ ≤ 1.

The next figure defines three families of semicomplete digraphs T1, T2 and T3 containing respectively
two, three and five digraphs. It is not difficult to check that all of the digraphs in T1, T2 and T3 have
a 2-out-colouring (the one indicated by the two columns of vertices) and that none of them have a
balanced 2-out-colouring.

Theorem 6.1 Every semicomplete digraph T which admits a 2-out-colouring also admits a balanced
2-out-colouring except if T belongs to T1, T2 or T3.
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e
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must be a 2-cycle)

(one of the two bolded arcs (e must dominate w or d)

Figure 2: The families T1, T2 and T3 of semicomplete digraphs which admit a 2-out-colouring but
no balanced 2-out-colouring (bolded arcs could be replaced by 2-cycles and non oriented bolded edge
could be oriented in any direction).

Proof: Let T be a semicomplete digraph which admits a 2-out-colouring. If |T | ≤ 5, where |T |
denotes the number of vertices of T , then any 2-out-colouring of T is balanced. So, we assume that
|T | ≥ 6 and among all the 2-out-colourings of T we consider one, denoted by γ, inducing a partition
(V1, V2) with

∣∣|V1| − |V2|∣∣ as small as possible. Assume that
∣∣|V1| − |V2|∣∣ > 1 and that we have

|V2| > |V1|+ 1. So, let Y2 be the set {v2 ∈ V2 : d+V2
(v2) = 1}, let X2 be N+

V2
(Y2) and for every vertex

v2 ∈ V2 let Zv2 be the set {v1 ∈ V1 : N+
V2

(v1) = {v2}}. Notice that as T is semicomplete, we have
|X2| = |Y2| ≤ 3 and that if a vertex v2 ∈ V2 \X2 satisfies Zv2 = ∅ then V1 ∪ {v2} also defines a 2-out-
colouring of T , contradicting the choice of γ. So, we have Zv2 6= ∅ for every v2 ∈ V2 \X2. Moreover, by
definition, all the sets Zv2 are disjoint and we have |V1| ≥

∑
v2∈V2\X2

|Zv2 | ≥ |V2 \X2| = |V2| − |X2|.
So, we have |X2| = 2 or |X2| = 3.

Below we will show that we can either easily reach a contradiction to the optimality of γ or we
may choose one vertex x in V1 and two vertices y and z in V2 such that the 2-colouring γ′ defined by
(V1 \ {x}) ∪ {y, z} is a 2-out-colouring of T , contradicting also the choice of γ. In order to define γ′,
we will also select another vertex x′ in V1. If V1 contains a vertex with out-degree exactly 1 in V1,
then we choose x′ to be such a vertex and x the only out-neighbour of x′ in V1. Otherwise, we choose
x′ to be any vertex of V1 and x one out-neighbour of x′ in V1. In any case, every vertex of V1 \ {x′}
has at least one out-neighbour in V1 \ {x}. Then we consider several cases.

First, assume that |Y2| = 2 and that T [Y2] is 2-cycle ab. In this case, we have X2 = Y2 and V2 \X2

dominates X2. Thus, we also have |V2| = |V1| + 2 and |Zv2 | = 1 for every vertex v2 ∈ V2 \ X2 and
then V1 = ∪v2∈V2\X2

Zv2 . Notice that the arcs from V1 to V2 form a matching. So, we choose y ∈ V2
such that Zy = {x′} and z = a. Let us check that in this case γ′ is 2-out-colouring of T . Every vertex
of V2 \X2 dominates X2 and hence dominates a vertex from V1(γ′) and one from V2(γ′). The same
holds for the vertices of X2 because they dominate x′ and x. Every vertex of V1 \ x′ has still one
out-neighbour in V1 \ {x} ⊂ V1(γ′) and one in V2 − {y} ⊂ V2(γ′). And finally x′ dominates x which
lies in V2(γ′) and y which lies in V1(γ′). So γ′ is a 2-out-colouring of T , a contradiction.

Next, assume that |Y2| = 2 also but that T [Y2] is not a 2-cycle. In this case, we must also have
|V2| = |V1| + 2 and |Zv2 | = 1 for every vertex v2 ∈ V2 \X2 and then V1 = ∪v2∈V2\X2

Zv2
. We denote

by a and b the vertices of Y2 with a → b and we denote by c the only out-neighbour of b, that is,
X2 = {b, c}. Notice that every vertex of V2 \ {a, b, c} dominates {a, b}. If |V1| ≥ 3 then every vertex
of V2 has at least two out-neighbours in V1 and we can choose y ∈ V2 such that Zy = {x′} and z = a.
As previously, we check that γ′ is 2 out-colouring of T , using especially that the only arcs from V1
to V2 is the matching {uv : Zv = {u}, v ∈ V2 \ X2} and so that every vertex of V2 has at least
one out-neighbour in V1(c′). So, we must have |V1| = 2 and then V1 is a 2-cycle de with d → a for
instance. Denote by f the vertex of V2 with Zf = {e}. So, T must contain the following arcs: fa,
fb, ca and all the arcs from V2 to V1 except possibly ad and fe. If T has a 2-out-colouring such
that d and e receive the same colour, then a, b, c and f are forced to receive the other colour and
the 2-out-colouring is not balanced. If d and e have different colours in a balanced 2-out-colouring,
then this 2-out-colouring must have bipartition ({a, b, d}, {c, e, f}). Every vertex dominates a vertex
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in each part except possibly f . But if f does not dominate c or e, then T belongs to the family T1.
Finally, assume that |Y2| = 3. In this case, Y2 is a 3-cycle, denoted by abc, and Y2 = X2 is

dominated by V2 \ X2. If |V2 \ X2| = |V1|, then as previously, we have V1 = ∪v2∈V2\X2
Zv2 . We

choose x, x′ and y as before and let z = a, then we check that the resulting colouring γ′ is a balanced
2-out-colouring of T . Thus, we must have |V1| = |V2 \ X2| + 1. In this case, we have |Zv2 | = 1 for
every vertex v2 ∈ V2 except possibly for one vertex v2 where we can have |Zv2 | = 2. So, we pick one
vertex in each Zv2 and denote by w the only vertex of V1 not chosen. Now we denote by Y1 the set
{v1 ∈ V1 : d+V1

(v1) = 1}, and by X1 the set N+
V1

(Y1). If there exists x1 6= w in V1 \X1, it means that
every vertex in V1 has an out-neighbour in V1 \ x1. Then we choose y and z in X2 = {a, b, c} such
that N+

V2
(w) 6⊆ {y, z}. Now, it is easy to check that the 2-colouring defined by (V1 \ {x1})∪{y, z} is a

2-out-colouring of T . So, we must have that V1 ⊆ X1∪{w}. In particular, as |X1| = |Y1| ≤ 3, we have
|V1| ≤ 4. We will first look at two particular cases. In case A we assume that T [X1] is a 2-cycle or a
3-cycle and that w dominates all vertices of X1. Then, we choose x′ ∈ X1, x the out-neighbour of x′

in T [X1], y the vertex of V2 such that x′ ∈ Zy and z ∈ X2. It is easy to check that (V1 \ {x})∪ {y, z}
defines a 2-out-colouring of T . In case B we assume that T [V1] has size 3 and contains a 3-cycle
wx1y1. We denote by x2 (resp. y2) the only out-neighbour of x1 (resp. y1) in V2. If N+

V2
(w) = {x2}

then we check that (V1 \ {w}) ∪ {y2, a} defines a 2-out-colouring of T . If N+
V2

(w) 6= {x2} then we can

choose z ∈ {a, b, c} such that N+
V2

(w)∩ (V2 \{x2, z}) 6= ∅. So we check that (V1 \{y1})∪{x2, z} defines
a 2-out-colouring of T .
Now, if |V1| = 4 then X1 = Y1 = V1 \ w and T [V1] is a 3-cycle dominated by w, situation we treated
in case A. If |V1| = 3 then either |X1| = 2 or |X1| = 3. In the former case, if Y1 = X1 then T [V1 \ w]
is a 2-cycle dominated by w, corresponding to case A. If |X1| = 2 and Y1 6= X1, then T [V1] contains
a 3-cycle, case we already settled in case B. And if |V1| = |X1| = 3 then T [V1] is exactly a 3-cycle,
situation corresponding to case B. Finally, if |V1| = 2 then T [V1] is a 2-cycle. We denote by wd this
2-cycle and by e the only out-neighbour of d in V2. If w has at least one out-neighbour and at least
one in-neighbour in X2, then we can assume that w dominates a and is dominated by b. So T has a
balanced 2-out-colouring defined by {a, b, w}, contradicting the choice of γ. Otherwise, X2 dominates
w or is dominated by w and there are no digons between w and X2. In these cases, we can see that
T belongs to the family T2 or T3. �

From the proof of the above theorem we can derive the following corollary.

Corollary 6.2 There exists a polynomial algorithm which given a semicomplete digraph T 6∈ Ti, i ∈ [3]
and a 2-out-colouring of T , returns a balanced 2-out-colouring of T

7 2-partitions of tournaments with out-degree at least k to
both sets

In this section, for a given 2-partition (V1, V2) we let D〈Vi〉 denote the induced subgraph of D on
Vi and let D〈V1, V2〉 denote the spanning bipartite subgraph whose edges are all edges of D with
an end vertex in V1 and an end vertex in V2. Recall that we call a 2-partition (V1, V2) balanced if
||V1| − |V2|| ≤ 1.

Our aim is to use probabilistic methods to obtain results about sufficient conditions, in terms of
minimum out-degrees, for the existence of 2-partitions where all vertices have at least k out-neighbours
in both sets. Our main result is the following.

Theorem 7.1 There exist two absolute positive constants c1, c2 so that the following holds.

1. Let T = (V,E) be a tournament with minimum out-degree at least 2k + c1
√
k. Then there is a

balanced partition V = V1 ∪ V2 of V so that δ+(T 〈V1〉), δ+(T 〈V2〉) and δ+(T 〈V1, V2〉) are all at
least k.

2. For infinitely many values of k there is a tournament with minimum out-degree at least 2k+c2
√
k

so that for any partition V = V1 ∪ V2 of V into two disjoint sets, at least one of the quantities
δ+(T 〈V1〉), δ+(T 〈V2〉), δ+(T 〈V1, V2〉) is smaller than k.
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In order to illustrate the usefulness of the probabilistic method, we first give a short probabilistic
proof of the following corollary of Theorems 4.5 and 6.1. Recall that the constant 4 is best possible
by the Paley tournament P7.

Corollary 7.2 Let T = (V,E) be a tournament with minimum out-degree at least 4. Then there is a
balanced partition V = V1∪V2 of V so that δ+(T 〈V1〉), δ+(T 〈V2〉) and δ+(T 〈V1, V2〉) are all at least 1.

7.1 Proofs

We need the following simple statement.

Lemma 7.3 Let (ni)i≥i0 be a sequence of integers with a finite number of nonzero terms, put Nj =∑j
i=i0

nj and let (pi)i≥i0 be a non-increasing sequence of non-negative reals. Suppose Nj ≤ Bj for all
j ≥ i0. Then the sum

S =
∑
i≥i0

nipi

satisfies

S ≤ Bi0pi0 +
∑
i≥i0

(Bi+1 −Bi)pi+1.

Proof: Let S be as above, then

S = Ni0pi0 + (Ni0+1 −Ni0)pi0+1 + (Ni0+2 −Ni0+1)pi0+2 + . . .

= Ni0(pi0 − pi0+1) +Ni0+1(pi0+1 − pi0+2) + . . .

≤ Bi0(pi0 − pi0+1) +Bi0+1(pi0+1 − pi0+2) + . . . = Bi0pi0 +
∑
i≥i0

(Bi+1 −Bi)pi+1,

as needed. �

Proof of Corollary 7.2: Let ni denote the number of vertices of T with out-degree i, and put
Nj =

∑
i≤j ni. Thus N3 = 0. Note that Ni ≤ 2i+ 1 for all i, as the average out-degree in any induced

subgraph of T on more than 2i+ 1 vertices exceeds i. We consider two possible cases.

Case 1: n4 ≥ 2. A near perfect matching of T is a matching covering all the vertices of T if T has
an even number of vertices, or a matching covering all the vertices of T except one if T has an odd
number of vertices. Let x, y be two vertices of out-degree 4 in T and let M be an arbitrary near
perfect matching in T containing the edge connecting x and y and two additional edges x1x2 and y1y2
where x1, x2 are out-neighbors of x and y1, y2 are out-neighbors of y (it is easy to check that there
are always three disjoint edges as above). For each edge cd of M , randomly and independently, place
either c in V1 and d in V2 or c in V2 and d in V1, where each of these choices are equally likely. If
|V | is odd place the remaining vertex, uncovered by M , randomly and uniformly either in V1 or in
V2. Note that by construction V1 and V2 are of nearly equal sizes. In addition both x and y have
an out-neighbor in V1 and an out-neighbor in V2. Moreover, each of the vertices that is neither an
out-neighbor of x nor of y has both x and y as out-neighbors, and hence has at least one out-neighbor
in V1 and at least one in V2. The only remaining vertices are the out-neighbors of x and y (besides x
and y). There are at most 7 such vertices. For each such vertex v let Av denote the event that v fails
to have an out-neighbor in V1 or in V2. If the out-neighbors of v contain an edge of M , the probability
of this event is 0. Else, its probability is exactly 21−d

+(v) ≤ 1/8, where d+(v) is the out-degree of v.
Thus, by the union bound, the probability that some event Av holds is at most 7/8 < 1, showing that
with positive probability no event Av holds, that is, there is a partition with the desired properties in
this case.

Case 2: n4 ≤ 1. Put pi = 21−i and let M be a near perfect matching as before, including an edge
connecting two out-neighbors of the unique vertex of out-degree 4, if there is such a vertex. Let V1
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and V2 be chosen randomly, as before, by the random process splitting the endpoints of each edge of
M randomly and independently between V1 and V2. Thus V1 and V2 are of nearly equal sizes and if
there is a vertex of degree 4, then it has out-neighbors in V1 and in V2. It remains to deal with the
other vertices. For each vertex v with out-degree at least 5, let Av be the event defined in Case 1.
We have to show that with positive probability no event Av holds. Using the fact that the sequence
pi is decreasing it follows, by Lemma 7.3 with i0 = 5, S =

∑
i≥5 nipi and Bi = 2i + 1, that the sum

of probabilities of all these events is at most

11p5 +
∑
i≥5

((2i+ 3)− (2i+ 1))pi+1 = 11 · 2−4 +
∑
i≥5

21−i = 13/16 < 1.

This proves the existence of the desired partition.

We proceed with the proof of the second part of Theorem 7.1. Recall that Pq is the Paley tourna-
ment on q vertices.

Lemma 7.4 Denote respectively by V and E the vertex and arc set of the tournament Pq. Then for
any function f : V 7→ {−1, 1} there is a vertex v ∈ V so that |

∑
u∈N+(v) f(u)| > 1

2

√
q.

Proof: It is easy and well known (c.f., e.g., [3], Chapter 9) that every vertex of Pq has out-degree
and in-degree (q − 1)/2 and any two vertices of it have exactly (q − 3)/4 common in-neighbors (and
out-neighbors). Let A = Aq be the adjacency matrix of Pq, that is, the 0/1 matrix whose rows and
and columns are indexed by the vertices of Pq, where Aij = 1 iff (i, j) is a directed edge. By the
above comment each diagonal entry of AtA is (q − 1)/2 and each other entry is (q − 3)/4. Thus
the eigenvalues of AtA are (q − 1)/2 + (q − 1)(q − 3)/4 = (q − 1)2/4 (with multiplicity 1) and
(q − 1)/2− (q − 3)/4 = (q + 1)/4 (with multiplicity (q − 1)). This implies that

||Af ||22 = f tAtAf ≥ (q + 1)/4||f ||22 = q(q + 1)/4.

It follows that there is an entry of Af whose square is at least (q + 1)/4, completing the proof. �

Note that by the above Lemma, for any partition of the vertices of Pq into two disjoint (not
necessarily nearly equal) sets V1 and V2 there is a vertex v of Pq so that the number of its out-
neighbors in V1 differs from that in V2 by more than

√
q/2. This implies the assertion of part (ii) of

Theorem 7.1 for infinitely many values of k.
Before proving the assertion of Theorem 7.1, we describe a short proof of the following weaker

result.

Proposition 7.5 Let T = (V,E) be a tournament with minimum out-degree at least

2k + (1 + o(1))
√

2k ln k

where the o(1)-term tends to zero as k tends to infinity. Then there is a balanced partition V = V1∪V2
of V so that δ+(T 〈V1〉), δ+(T 〈V2〉) and δ+(T 〈V1, V2〉) are all at least k. (The o(1)-term above tends
to zero as k tends to infinity.)

Proof: The proof is similar to that of Corollary 7.2. We assume, whenever this is needed, that k is
sufficiently large. Put m = 2k+(1+ε)

√
2k ln k and consider a tournament T with minimum out-degree

at least m. Let ni denote the number of vertices of T with out-degree i, and put Nj =
∑

i≤j ni. Thus
we have Ns = 0 for all s < m and Ns ≤ 2s+ 1 for all s. Let M be an arbitrary near perfect matching
in T . For each edge cd of M , randomly and independently, place either c in V1 and d in V2 or c
in V2 and d in V1, where each of these choices are equally likely. If |V | is odd place the remaining
vertex, uncovered by M , randomly and uniformly either in V1 or in V2. Note that by construction
V1 and V2 are of nearly equal sizes. For each vertex v of T let Av be the event that v has less than
k out-neighbors in V1 or less than k out-neighbors in V2. Let d(≥ m) be the out-degree of v. Note
that Av is exactly the event that the number of out-neighbors of v in V1 differs from that in V2 by
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more than d − 2k. Let Xv be the random variable whose value is this difference. If the set of out-
neighbors of v contains no edge of the matching M , then Xv is the sum of d independent uniform
−1, 1 variables. By the Chernoff Inequality (c.f., e.g., [3], Theorem A.1.2) the probability of the event

Av is at most 2e−(d−2k)
2/2d. If the set of out-neighbors contains t edges of the matching, then Xv is

the sum of only d − 2t independent uniform −1, 1 variables and the probability is even smaller. Put
pd = 2e−(d−2k)

2/2d. It is easy to check that the sequence pd is decreasing for all d ≥ 2k (indeed the
function g(x) = −(x − 2k)2/2x is decreasing on the interval [2k,+∞[). Therefore, by Lemma 7.3
(with i0 = m and Bj ≤ 2j + 1 for all j ≥ i0) and the union bound, the probability that at least one
of the events Av holds is at most

P ≤ 2 · (2m+ 1)e−(m−2k)
2/2m + 2

∑
d>m

pd.

In the sum above each of the terms pd for d ≤ 4k is at most pm, and each of the terms pd for bigger
d is at most 2e−d/8. Therefore

P ≤ (4m+ 2 + 2 · 4k)e−(m−2k)
2/2m + 2

∑
d>4k

2e−d/8 < (1 + o(1))16ke−(m−2k)
2/2m + 40e−4k/8 < 1,

where in the last inequality we have used the assumption that k is large. It follows that with positive
probability none of the events Av holds, completing the proof. �

We proceed with the proof of part (i) of Theorem 7.1. An equivalent formulation of this part is
that for any tournament T = (V,A) with minimum out-degree at least 2k + c1

√
k there is a function

f : V 7→ {−1, 1} so that |
∑

v∈V f(v)| ≤ 1 and for every vertex v of T with out-degree d = |N+(v)|

|
∑

u∈N+(v)

f(u)| ≤ d− 2k. (1)

Indeed, given such an f we can simply define V1 = f−1(1) and V2 = f−1(−1). This resembles results
about discrepancy of set systems (see, e.g., [3], Chapter 13). Recall that the discrepancy of a family
of subsets F of a finite set X is the minimum D so that there is a function f : X → {−1, 1} such that
for every F ∈ F , |

∑
i∈F f(i)| ≤ D. In our case the finite set X is V and the family of subsets F is

the collection of all sets of out-neighbors N+(v) for v ∈ V . The difference between our objective here
and that in the classical discrepancy question is that here we are not interested in a uniform bound
D for all the quantities |

∑
u∈N+(v) f(u)|, and the required bound depends on the cardinality of the

set N+(v), as stated in (1). In particular, for the special case in which the number of vertices of the
tournament is at most, say, 10k, the above follows easily from the six standard deviations result of
Spencer [15], which is the following.

Theorem 7.6 (Spencer [15]) The discrepancy of any hypergraph with m vertices and at most m
edges is at most 6

√
m.

The general case requires more work, we prove it by combining a variant of the partial coloring
idea of [15] (see also [10]) with the main result of [15]. In what follows we make no attempt to optimize
the absolute constants.

Lemma 7.7 Let F be a family of subsets of [n] = {1, 2, . . . , n}, and suppose that each set F ∈ F is
of size at least 2k + 1000

√
k. Suppose, further, that for every s there are less than 3s members of F

of size at most s. Then there is a function f : [n] 7→ {−1, 0, 1} such that

1. |
∑n

i=1 f(i)| ≤ 1

2. For every F ∈ F satisfying |F | ≤ 100k, |
∑

i∈F f(i)| ≤ 200
√
k

3. For every F ∈ F of size |F | > 100k, |f−1(1) ∩ F | ≥ k and |f−1(−1) ∩ F | ≥ k.
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Proof : Without loss of generality assume that n is even (otherwise add a point). The proof can be
described using the pigeonhole principle, but it is cleaner to present a version applying some simple
properties of the entropy function. Recall that the (binary) entropy of a random variable X getting
values xi with probabilities pi for i ∈ I is

H2(X) =
∑
i∈I

pi log2(1/pi).

It is well known (see, e.g., [3], Chapter 15) that if X = (X1, X2, . . . , Xq) is a vector then

H2(X) ≤
q∑

i=1

H2(Xi) (2)

Another fact we need is that

if pi ≤ 2−r for all i ∈ I then H2(X) ≥
∑
i∈I

pi · r = r (3)

Let g : [n] 7→ {−1, 1} be a random function defined as follows. For each i ≤ n/2 randomly, uniformly
and independently put g(2i−1) = 1, g(2i) = −1 or g(2i−1) = −1, g(2i) = 1. Put F1 = {F ∈ F , |F | ≤
100k}. For each F ∈ F1 define

t(F ) = b0.5 +

∑
j∈F g(j)

20
√
|F |

c

We claim that for each such F , t(F ) is very likely to be 0. It is 1 or −1 only with probability smaller

than e−50, and more generally it is l or −l with probability smaller than e−50l
2

for all integer l ≥ 1. To
prove this claim note that for a fixed F , if |t(F )| ≥ l then we have |

∑
j∈F g(j)| ≥ 10l

√
|F |. However,

the expression
∑

j∈F g(j) is the sum of at most |F | independent random variables, each getting the
values 1 and −1 with equal probability. (At most |F |, since if F contains some pairs {2i− 1, 2i} their
contributions cancel, after these cancellations the remaining values g(j) in the sum are independent).
It thus follows by Chernoff’s Inequality (c.f., e.g., [3], Theorem A.1.1) that the probability the sum is

at least a (or at most −a) is upper bounded by e−a
2/2|F |, implying the claimed statement.

It follows that the entropy of the random variable t(F ) is smaller than

log2

1

1− 2e−50
+
∑
i≥1

2 · log2 e · (50i2)e−50i
2

which is much smaller than 1/30000. Let X be the (vector valued) random variable defined by
X = (t(F ) : F ∈ F1). By (2), since the total number of members of F1 is smaller than 300k, the
entropy of the vector X is smaller than 0.01k. It follows by (3) that there is a specific value of the
vector X obtained with probability at least 2−0.01k. Fix such a vector X. In what follows we show
that we can choose a pair g1, g2 of functions g as above that give this vector so that f = (g1 − g2)/2
satisfies the assertion of the lemma.

We need the following claim.

Claim 1 Let F be a fixed member of F − F1. Then the number of pairs of functions g1, g2 : [n] 7→
{−1, 1} defined in the previous paragraph so that there are less than k elements j of F with g1(j) =
1 = −g2(j) or that there are less than k elements j of F with g1(j) = −1 = −g2(j) is smaller than
2n−0.1|F |.

Proof of Claim 1: Let s be the number of indices i so that {2i−1, 2i} ⊂ F . Then there are |F |−2s
elements of F whose mate in the matching {2i− 1, 2i}, (i ≤ n/2) is not in F . Thus there are exactly
2s+|F |−2s = 2|F |−s ways to choose the values of g1(j) for all j ∈ F and the same number of ways to
choose the values of g2(j) for j ∈ F . We next bound the number of choices in which there are less
than k elements j of F satisfying g1(j) = 1 = −g2(j). This number is at most

M =
∑

j+`<k

(
s

j

)
2s
(
|F | − 2s

`

)
3|F |−2s−` <

(
|F |
k

)
2s3|F |−2s. (4)
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Indeed, for each j, ` with j + ` < k there are
(
s
j

)
ways to choose j pairs {2i− 1, 2i} contained in F in

which g1, g2 do not agree. Once these are chosen there are still 2s ways to choose the actual values of
g1, g2 on these s pairs (agreeing on j pairs and disagreeing on s − j). There are then

(|F |−2s
`

)
ways

to select the elements j ∈ F that do not belong to these pairs for which g1(j) = 1 = −g2(j). Finally
there are 3 possibilities for the values of g1(j) and g2(j) for each other element j.

Since |F | ≥ 100k it follows that
(|F |

k

)
≤ 2H2(0.01)|F | < 20.1|F |. Here we used the known fact that

for every pair of integers a > b > 0,
(
a
b

)
≤ 2H2(b/a)a where

H2(x) = x log2

1

x
+ (1− x) log2

1

1− x

is the binary entropy of the number x, 0 < x < 1, which is the binary entropy of the indicator random
variable attaining the value 1 with probability x and the value 0 with probability 1 − x. The above
inequality follows, for example, from the assertion of Corollary 15.7.3 in [3] by taking n = a with F
being the family of all subsets of cardinality b of {1, 2, . . . , a}.

Plugging in (4) we conclude that

M ≤ 20.1|F |2s3|F |−2s < 20.1|F |4|F |−s(3/4)|F | < 2−0.3|F |4|F |−s < 2−0.11|F |4|F |−s

Each choice of the values of g1, g2 on the |F | − s pairs of elements {2i − 1, 2i} intersecting F can be
completed to the full values of g1, g2 in 4n/2−|F |+s ways. Thus the number of pairs g1, g2 for which
there are less than k elements j with g1(j) = 1 = −g2(j) is smaller than

2−0.11|F |4|F |−s · 4n/2−|F |+s = 2n−0.11|F |

By symmetry, the number of pairs g1, g2 so that there are less than k elements j with g1(j) = −1 =
−g2(j) satisfies the same inequality. This provides the assertion of Claim 1. �

Returning to the proof of Lemma 7.7 recall that we have fixed a value of X such that there are at
least 2n/2−0.01k choices for the function g giving the value of X. Hence there are at least 2n−0.02k

choices for an ordered pair of functions g1, g2 giving this value. By Claim 1, among these choices, the
number of pairs that have, in some set F ∈ F − F1, less than k elements j with g1(j) = 1 = −g2(j)
or less than k elements j with g2(j) = 1 = −g1(j) is at most∑

F∈F−F1

2n−0.1|F | <
∑

s≥100k

(3s)2n−0.1s < 2n−0.02k

(with a lot of room to spare).
In the above inequality we used the fact that for A =

∑∞
s=r sq

s, qA =
∑∞

s=r sq
s+1, and thus

A− qA = rqr +

∞∑
s=r+1

qs = rqr +
qr+1

1− q

So we obtain

A =
rqr

1− q
+

qr+1

(1− q)2

Taking q = 2−0.1 and r = 100k gives the required bound.
Since there are 2n−0.02k choices for the ordered pair of functions g1, g2, each giving the value of

X, it follows that there is a pair g1, g2 for which the event described in Claim 1 does not happen for
any F ∈ F − F1. Fix such g1, g2 and define f = (g1 − g2)/2. We claim that f satisfies the assertion
of Lemma 7.7. Indeed, by construction it satisfies property 1. Property 2 follows from the fact that
both g1 and g2 give the same vector X implying that for every F ∈ F1

b0.5 +

∑
i∈F g1(i)

10
√
|F |

c = b0.5 +

∑
i∈F g2(i)

10
√
|F |

c
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Property 3 follows from the fixed choice of the functions g1, g2. This completes the proof of the lemma.
�

Proof of Theorem 7.1, part (i): Let [n] = {1, 2, . . . , n} denote the set of vertices of T and let F be
the family of out-neighborhoods of its vertices. Note that it satisfies the assumptions of Lemma 7.7.
As in the proof of that lemma, let F1 denote the out-neighborhoods of vertices with out-degrees
at most 100k. Let f be as in the conclusion of the lemma. Put all elements in f−1(1) in V1 and
all elements in f−1(−1) in V2 (the partition of the elements in f−1(0) will be determined in what
follows.) Note that the partial assignment above already ensures, by property 3, that all vertices with
out-degree exceeding 100k have at least k out-neighbors in V1 as well as in V2.

It remains to assign the vertices i for which f(i) = 0 values in {−1, 1} ensuring that we do
not increase the discrepancy of the members of F1 by too much and maintaining the property
|
∑
f(i)| ≤ 1. We then define V1 = f−1(1), V2 = f−1(−1). By ensuring that the discrepancy of

each out-neighbourhood of size at most 100k (namely, each member of F1) will stay smaller than
c1
√
k, each vertex will have at least k out-neighbors in V1 and in V2.
The existence of this assignment is proved by applying the result of [15] that implies that the

discrepancy of any set system of m sets (of any sizes) is at most 12
√
m, (see [3], Corollary 13.3.4).

Apply that to the family consisting of the intersections of the sets in F1 with f−1(0) together with
one additional set: the set f−1(0). Adding this set ensures that our resulting partition is nearly
balanced, and we can now change the values of some O(

√
k) elements (among those determined in

this last step) arbitrarily, to make the split precisely balanced without changing the discrepancy of
any set F in F1 by more than 2 · 12

√
300k + 1 (an addition of at most 12

√
300k + 1 corresponding

to the discrepancy of F ∩ f−1(0) and another addition of at most this quantity corresponding to the
final arbitrary modification of values that makes the split balanced). This completes the proof. �

7.2 Consequences of our methods

We conclude this section with some observations about further consequences of the methods and
proofs we used.

• The proofs carry over with no change to semicomplete digraphs.

• The same proof works to split a tournament or a semicomplete digraph to r parts with each
vertex having at least k out-neighbors in each part. Minimum out-degree (1 + o(1))rk suffices.
Getting best possible bounds for small r and k, e.g., r ≤ 10 and k = 1, may be difficult.

• The same proof works to split an oriented graph with no independent set of size s. Here any set
of size exceeding (s− 1)(2r + 1) contains a vertex of out-degree exceeding r, hence we have an
upper bound on the number of vertices of out-degree at most r and can repeat the probabilistic
argument to get a similar result.

• The probabilistic proof, with no real essential change, can handle simultaneously in-degrees and
out-degrees, establishing the following.

Theorem 7.8 There exists an absolute constant c so that the following holds for every positive
integer k. Let T = (V,A) be a tournament with minimum out-degree at least 2k + c

√
k and

minimum in-degree at least 2k + c
√
k. Then there is a balanced partition V = V1 ∪ V2 of V so

that every vertex has at least k out-neighbors in V1 and in V2, and every vertex has at least k
in-neighbors in V1 and in V2.

8 Further remarks

We have shown in Section 7, using probabilistic arguments, that every tournament whose minimum
out-degree is sufficiently large as a function of k has a partition of the vertices into two sets of nearly
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equal sizes so that each vertex has at least k out-neighbours in each set. The bound we give on
this function is asymptotically best possible. After the completion of this paper we learned from the
authors of [18] that they have independently proved the existence of such a function. Their proof is
also probabilistic, but the bound they get for the function is weaker, roughly twice our bound.

A digraph is k-out-regular if all out-degrees are k. As mentioned in the introduction, Thomassen
[17] showed that for every integer k ≥ 1 there exist k-out-regular digraphs with no even cycle. As
mentioned in [2], this implies that for every k there is an oriented graph with minimum out-degree
at least k which admits no splitting into two parts with every vertex having an out-neighbor in the
other part. On the other hand, as shown here and as mentioned above, such splittings always exist for
tournaments and for graphs with bounded independence numbers, provided the minimum out-degree
is large enough. It may be interesting to give additional natural classes of oriented graphs for which
such a splitting is possible, or, at least, for which it is possible to decide in polynomial time, if such a
partition exists.

Proposition 8.1 There exists a polynomial algorithm for deciding whether a 2-out-regular digraph
has a 2-out-colouring.

Proof: We define the non-oriented graph GD on V (D) with edge set {N+(x) : x ∈ V (D)}. The
result follows from the fact that a 2-out-regular digraph D has a 2-out-colouring if, and only if, the
graph GD defined above is bipartite. This can be checked in linear time. �
.

As mentioned in the introduction, there is a polynomial algorithm for deciding whether a digraph
D has a 2-partition (V1, V2) such that each of D〈Vi〉, i = 1, 2 have out-degree at least one. It was
shown in [5] that, despite Thomassen’s examples mentioned above, it is also polynomial to decide
whether D has a 2-partition so that D〈V1, V2〉 has minimum out-degree at least 1. So, given that
2-out-colouring is NP-complete, it is natural to ask about the complexity of deciding whether D has
a 2-partition such that D(V1, V2) and D〈V1〉 both have out-degree at least 1, but we do not require
this for D〈V2〉. The following result shows that this is also NP-complete.

Theorem 8.2 It is NP-complete to decide whether a given digraph D has a 2-partition (V1, V2) so
that D(V1, V2) and D〈V1〉 both have minimum out-degree at least one.

Proof: Call a 2-partition (V1, V2) nice if D(V1, V2) and D〈V1〉 both have minimum out-degree at
least one. Let X denote the digraph on 6 vertices {a, b, v, v′, v̄, v̄′} and the following 12 arcs
{ab, ba, av′, bv̄′, vv′, v′v, v̄v̄′, v̄′v̄, vv̄, v̄v′, v′v̄′, v̄′v}. It is not difficult to check that X has a nice 2-
partition and that for every such partition (V1, V2) we have v, v′ ∈ V1 and v̄, v̄′ ∈ V3−i for i = 1 or
i = 2 and both are possible. Now let F be an instance of NAE-3-SAT with variables x1, x2, . . . , xn
and clauses C1, C2, . . . , Cm. Form a digraph R = R(F) as follows: take n copies X1, X2, . . . , Xn of X
and give the vertices in the ith copy subscript i, i.e. in Xi the vertex vi corresponds to the vertex v.
Associate the vertices vi, v̄i of Xi with the variable xi and its negation x̄i, respectively. Now, for each
clause Cj we add two new vertices dj , cj , the arc djcj and three arcs from cj to those vertices in the X
copies that correspond to the literals of Cj . Hence, if Cj = (x4 ∨ x̄6 ∨ x8}, then we add the three arcs
cjv4, cj v̄6 and cjv8. This completes the description of R. As the vertices dj , j ∈ [m] have out-degree
one, they must all belong to V2 in any nice 2-partition and this forces all the vertices c1, c2, . . . cm
to belong to V1 for all nice 2-partitions. Assume now that R has a nice 2-partition (V1, V2). By the
remark above, each vertex cj belongs to V1 and hence must have an out-neighbour in both sets and
it is easy to check that if we set xi to be true whenever vi ∈ V1 and false otherwise, we obtain a
truth assignment satisfying one or two literals of every clause. Conversely, given a truth assignment
φ satisfying at least one but never three literals of any clause, we obtain a nice 2-partition by putting
{d1, . . . , dm} in V2, {c1, c2, . . . , cm} in V1, for each i ∈ [n] putting vi ∈ V1 and v̄i ∈ V2 if φ(xi) =′ True′

and vi ∈ V2 and v̄i ∈ V1 if φ(xi) =′ False′ and finally distributing the rest of the vertices of the X
copies in V1, V2 (as we know we can). �

18



References

[1] N. Alon. Disjoint directed cycles. J. Combin. Theory Ser. B, 68(2):167–178, 1996.

[2] N. Alon. Splitting digraphs. Combin. Probab. Comput., 15:933–937, 2006.

[3] N. Alon and J.H. Spencer. The Probabilistic Method, Fourth Edition. Wiley, 2016.

[4] J. Bang-Jensen, S. Bessy, F. Havet, and A. Yeo. Bipartite spanning subdigraphs induced by
2-partitions, 2017, submitted.

[5] J. Bang-Jensen, S. Bessy, F. Havet, and A. Yeo. Out-degree reducing 2-partitions of digraphs,
2017, submitted.

[6] J. Bang-Jensen, N. Cohen, and F. Havet. Finding good 2-partitions of digraphs II. Enumerable
properties. Theoretical Computer Science, 640:1–19, 2016.

[7] J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications, 2nd Edition.
Springer-Verlag, London, 2009.

[8] J. Bang-Jensen and F. Havet. Finding good 2-partitions of digraphs I. Hereditary properties.
Theoretical Computer Science, 636:85–94, 2016.

[9] J. Bang-Jensen and F. Havet. Tournaments and semicomplete digraphs. In J. Bang-Jensen and
G. Gutin, editors, Classes of directed graphs, chapter 2. Springer monographs in Mathematics,
Springer Verlag, London, 2018.

[10] J. Beck. Roth’s estimate of the discrepancy of integer sequences is nearly optimal. Combinatorica,
pages 319–325, 1981.

[11] P. Heggernes and J.A. Telle. Partitioning graphs into generalized dominating sets. Nordic J.
Comput., 5:128–142, 1998.

[12] L. Lovász. Coverings and coloring of hypergraphs. Congr. Numer., 8:3–12, 1973.

[13] J.W. Moon. On subtournaments of a tournament. Can. Math. Bull., 9:297–301, 1966.

[14] T.J. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th Annual ACM
Symposium on Theory of Computing (STOC 10), pages 216–226, New York, 1978. ACM.

[15] J. H. Spencer. Six standard deviations suffice. Transactions of the Amer. Math. Soc., 289:679–706,
1985.

[16] C. Thomassen. Disjoint cycles in digraphs. Combinatorica, 3(3-4):393–396, 1983.

[17] C. Thomassen. Even cycles in directed graphs. Eur. J. Combin., 6(1):85–89, 1985.

[18] D. Yang, Y. Bai, G. Wang, and J. Wu. On splitting digraphs. European Journal of Combinatorics,
71:174 – 179, 2018.

19


