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Abstract

Given a graph H, we denote by C(n,H) the minimum number k such that the following holds.

There are n colorings of E(Kn) with k-colors, each associated with one of the vertices of Kn, such

that for every copy T of H in Kn, at least one of the colorings that are associated with V (T ) assigns

distinct colors to all the edges of E(T ).

We characterize the set of all graphs H for which C(n,H) is bounded by some absolute constant

c(H), prove a general upper bound and obtain lower and upper bounds for several graphs of special

interest. A special case of our results partially answers an extremal question of Karchmer and

Wigderson motivated by the investigation of the computational power of span programs.

1 Introduction

Consider the following question, motivated by an extremal problem suggested by Karchmer and

Wigderson, see [6]. Given a fixed graph H, let C(n,H) denote the minimum number k such that

there is a set of n colorings {fv : E(Kn) → [k] : v ∈ V (Kn)}, with the following property. For every

copy T of H in Kn, there is a vertex u ∈ V (T ) so that fu is a rainbow coloring of E(T ), that is, no

two edges of T get the same color by fu. A set of colorings that satisfies this condition is called an

(n,H)-local coloring. Determine or estimate the function C(n,H). Note that each coloring in the set

above does not have to be a proper edge coloring.

For example, if T is a path with 2 edges, two colors are sufficient for every n. Indeed, simply define

fv(uw) = 1 if v ∈ {u,w}, and fv(uw) = 2 otherwise. Obviously, this is a legal local coloring, and

therefore we conclude that C(n, P2) = 2 for all n ≥ 3. As we show in this short paper, for almost

every graph T , every (n, T )-local coloring requires a number of colors that grows as n grows. In fact,

even the path P3 of 3 edges requires more than a constant number of colors.

Motivation. Karchmer and Wigderson [5] defined the Span Program computational model. This is

a linear algebra computational model. The program is defined by a set of vectors A over GF2, where
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each vector is marked with a literal. Every input of the program corresponds to the subset of vectors

of A whose marking literals have value 1 in the given input, and the input is accepted if and only if this

subset spans some fixed vector, say the all-ones vector. It turns out that this model is stronger than

other known models like Switching Networks and DeMorgan Formulas (see [4]), and therefore lower

bounds for the minimum possible size of Span Programs that compute explicit Boolean functions are

desirable.

The Fusion Method of Karchmer and Wigderson [5], [6] enables one to prove lower bounds for

this model using certain extremal results. With this motivation in mind, Wigderson suggested in [6]

three problems. One of them is the following (also suggested as a research problem in [4], Chapter 16,

Problem 9).

Problem 1.1 Let k be the minimum number for which the following holds. There exist n colorings

c1, c2, . . . , cn of the n-cube {0, 1}n in k colors such that for every triple of distinct vectors x, y, z there

is a coordinate i on which not all three vectors agree and the three colors ci(x), ci(y), ci(z) are pairwise

distinct. Determine or estimate the smallest number k for which such a collection of colorings exist.

In [5] it is shown that k does have to grow with n, proving that it is at least Ω( log log∗ n
log log log∗ n), where

log∗ n is the minimum number m so that starting with n one gets a number that does not exceed 1

by iteratively applying the function log2(x) m times. As a special case of our results we obtain a far

better lower bound, proving that for the path with 3 edges P3, every (n, P3)-local coloring requires

Ω(( logn
log logn)1/4) colors. It is easy to see that this lower bound holds for the number of required colors in

the problem above as well, even if one considers only vectors of Hamming weight 2. Indeed, colorings

of all vectors with Hamming weight 2 can be interpreted as colorings of all edges of the complete

graph in the obvious way, and if these colorings satisfy the requirement in the problem for any triple

of vectors of Hamming weight 2, then the same set of colorings forms an (n,H)-local coloring for all

graphs H with exactly three edges, including P3. Unfortunately, it does not seem that this improved

bound yields any new results for span programs.

Our Results. Our first result characterizes the set of all graphs H for which C(n,H) is bounded

by some absolute constant that depends only on H. To this end, we define 2-locally large graphs, and

show that C(n,H) ≤ c(H) for every n if and only if H is not 2-locally large. This implies the following

somewhat surprising corollary dealing with graphs that are not 2-locally large.

Theorem 1.2 For a fixed graph H there is a constant c(H) so that C(n,H) ≤ c(H) for every n if and

only if H contains at most 3 edges and H is neither P3 nor P3 together with any number of isolated

vertices. Moreover, in all these cases C(n,H) ≤ 5 for every n.

We next consider upper bounds. We start with a simple general upper bound for every fixed

graph H, obtained by applying the local lemma. this shows that for every fixed graph H, C(n,H) is

sublinear in n.
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Theorem 1.3 Let H be a fixed graph with r vertices. Then C(n,H) = O(n
r−2
r · r4).

Note that the most difficult case here is when H is a complete graph on r vertices, though this

general approach improves the bound for sparser graphs only by a constant that depends on r.

We also provide a simple explicit construction for the case H = P3. This construction is summa-

rized in the following proposition.

Proposition 1.4 There is an explicit construction showing that C(n, P3) ≤ 2d
√
n e.

In the last part of this work we obtain lower bounds for several graphs, including a (logn)Ω(1)

lower bound for C(n,H) for H = P3, for any star with t ≥ 4 leaves, and for any graph consisting

of t ≥ 4 independent edges. This implies a similar lower bound for any fixed graph with sufficiently

many edges.

Theorem 1.5 Let Pt denote the path with t edges, It the graph consisting of t independent edges and

St the star with t edges. The following lower bounds hold.

1. C(n, P3) = Ω(( logn
log logn)1/4).

2. C(n, I4) = Ω(n1/6) and C(n, It) = Ω(n1/4) for t ≥ 5.

3. C(n, S4) = Ω(n1/4) and C(n, St) = Ω(n1/3) for t ≥ 5.

4. C(n, P7), C(n, P8) = Ω(n1/6) and C(n, Pt) = Ω(n1/4) for any fixed t ≥ 9.

A simple modification of our proof also yields a (log n)Ω(1) lower bound for C(n, Pk) for each

k ∈ {4, 5, 6}. Observe that if H ′ ⊂ H is a subgraph of H on the same set of vertices then every lower

bound for C(n,H ′) implies the same lower bound for C(n,H). As every large enough graph H (in

terms of the number of edges) contains a star with 4 edges or 4 independent edges, and as it is possible

to deal with isolated vertices in these cases, one can prove an nΩ(1) lower bound for any fixed graph

with sufficiently many edges. This is stated in the following.

Theorem 1.6 For any graph H with at least 13 edges there is a constant b = b(H) > 0 so that

C(n,H) = Ω(nb).

2 Preliminaries

Let Kn denote the complete graph on n vertices, and K
(t)
n the hypergraph containing all subsets of

size t of [n]. In the course of the proofs we will apply the following hypergraph Ramsey result for

3-uniform hypergraphs, due to Erdős and Rado [3].

Theorem 2.1 There is an absolute constant c such that if n > 22ck log(k)r
the following holds. For

every k-coloring of E(K
(3)
n ) there is a set T ⊆ V (K

(3)
n ) of size r, such that {A ∈ E(K

(3)
n ) : A ⊂ T} is

monochromatic.
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Given a graph G, we denote by ∆(G) the maximum degree of a vertex in G. A proper edge coloring

of a graph G is a mapping ϕ : E(G) → [k] such that every two adjacent edges get distinct colors.

The edge chromatic number (or chromatic index) of any simple graph G is the minimum k for which

such a coloring exists. Vizing’s Theorem (see, e.g., [2]) states that the edge chromatic number of any

simple graph G is either ∆(G) or ∆(G) + 1.

3 Graphs requiring a bounded number of colors

Our goal in this section is to prove Theorem 1.2. We start with some auxiliary definitions.

Let H be a fixed graph on r vertices, and let σ : V (H)→ [r] be a permutation. Roughly speaking,

H is 2-locally large if for every vertex v there are two edges that look the same with respect to σ and

v. More formally, for every vertex v ∈ V (H), define the following five types of edges.

1. T 1
v = {(u, v) ∈ E(H) : σ(u) > σ(v)}.

2. T 2
v = {(u, v) ∈ E(H) : σ(u) < σ(v)}.

3. T 3
v = {(u1, u2) ∈ E(H) : σ(v) < σ(u1) < σ(u2)}.

4. T 4
v = {(u1, u2) ∈ E(H) : σ(u1) < σ(v) < σ(u2)}.

5. T 5
v = {(u1, u2) ∈ E(H) : σ(u1) < σ(u2) < σ(v)}.

Thus there are two types of edges that are incident to v, backward edges and forward edges (with

respect to σ). In addition, there are three types of non-incident edges, again with respect to σ. There

are edges before v, edges after v, and edges that cross v.

Definition. A graph H on r vertices is 2-locally large if there is a permutation σ : V (H)→ [r] such

that for every v ∈ V (H), at least one of the sets T 1
v , . . . , T

5
v has at least two elements.

We can now state the main result of this section.

Theorem 3.1 Let H be a fixed graph. Then C(n,H) ≤ c(H) for every n if and only if H is not

2-locally large. In this case C(n,H) ≤ 5 for all n.

Before presenting the proof of this theorem, we turn to list the graphs which are not 2-locally large.

It is obvious that every graph with at least 6 edges is 2-locally large. A path of length 3, denoted

by xyzw is also 2-locally large by letting σ(x) < σ(z) < σ(y) < σ(w). It is also easy to prove by

inspection that every graph with at most 3 edges besides the path P3 is not 2-locally large. We next

claim that actually every graph with at least 4 edges is 2-locally large.

Proposition 3.2 Let H be a graph with at least 4 edges. Then H is 2-locally large.

Proof. It is sufficient to prove the assertion for graphs with exactly 4 edges and no isolated vertices,

as the property of being 2-locally large is maintained under addition of edges or isolated vertices.

Consider the following cases.
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• H has 4 independent edges, denoted by (u1, u2), (u3, u4), (u5, u6), (u7, u8). In this case let σ(ui) <

σ(uj) for every i < j and we are done.

• H is the union of two paths with two edges each. Denote these paths by u1u2u3 and v1v2v3. Then

by taking σ(ui) < σ(vj) for every 1 ≤ i, j ≤ 3, we get that every vertex has two indistinguishable

edges.

• H is the union of a path with two edges, denoted by xyz with 2 independent edges, denoted by

(u1, u2) and (u3, u4). In this case let σ(x) < σ(y) < σ(z) < σ(u1) < σ(u2) < σ(u3) < σ(u4) and

we are done.

• H contains a connected component with 3 edges and a single independent edge (u1, u2). In this

case the connected component is either a path of length 3 (which is 2-locally large), a triangle or

a star with 3 leaves. In the last two cases we let σ(u1) = 1, σ(u2) = |V (H)| and by symmetry it

is easy to see that for every mapping of the vertices of the connected component and for every

vertex v we have |(T i
v) ∩ E(H)| > 1 for some i.

• H is connected (and has 4 edges). In this case H contains a path of length 3 or a star with 4

leaves, and in the last case every embedding will suffice.

2

Proof of Theorem 1.2. By Theorem 3.1 C(n,H) grows as n grows if and only if H is 2-locally

large, and otherwise it is bounded by 5. By Proposition 3.2 these graphs are exactly all graphs with

at least 4 edges and P3. Theorem 1.2 follows. 2

Proof of Theorem 3.1. We start by proving that for every graph H that is not 2-locally large,

C(n,H) is bounded by 5. Indeed, let Kn be the complete graph on n vertices, and fix an arbitrary

mapping σ : V (Kn)→ [n]. For every vertex v ∈ Kn, we let fv(xy) = i if and only if xy ∈ T i
v.

Let T be a subgraph of Kn isomorphic to H. Since T is not 2-locally large, there is a vertex

v ∈ V (T ) such that |(T i
v) ∩ E(H)| ≤ 1 for every i, and hence fv(e1) 6= fv(e2) for every e1, e2 ∈ E(T ),

as required.

Suppose now that H is 2-locally large. Let σ : V (Kn) → [n] be an arbitrary bijection, and let

f1, . . . , fn : E(G)→ [k] be n colorings, one for each vertex. We define a coloring of K
(3)
n , the complete

3-uniform hypergraph, which is defined with a slight abuse of notation on the same set of vertices as

Kn. For every three vertices u1, u2, u3 ∈ V (Kn), with σ(u1) < σ(u2) < σ(u3) we define the coloring of

the hyperedge (u1, u2, u3) as the following ordered nine-tuple:

[fu1(u1u2), fu1(u1u3), fu1(u2u3), fu2(u1u2), fu2(u1u3), fu2(u2u3), fu3(u1u2), fu3(u1u3), fu3(u2u3)].

This is a coloring of E(K
(3)
n ) with k9 colors. By Theorem 2.1, if n > 229ck

9 log kr
, there is a

monochromatic set of vertices Q of size r (namely, all 3-edges that are contained in Q have the same
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color). Consider a copy T of H in the vertices of Q such that for every vertex v in T , there is 1 ≤ i ≤ 5

such that |(T i
v) ∩ E(H)| > 1 (observe that there is such a copy since T is 2-locally large).

We complete the proof by showing that T does not admit a rainbow coloring fv for any v ∈ V (T ).

Take a vertex v ∈ V (T ). Let e1, e2 ∈ E(T ) such that e1, e2 ∈ T i
v for some 1 ≤ i ≤ 5. Since the

two hyperedges that contain v, e1 and v, e2 are colored the same, we conclude that fv(e1) = fv(e2).

Therefore, every vertex v ∈ T has two edges which get the same color, and we conclude that Kn does

not admit an (n,H)-local coloring by k colors, as required.

Note that the above proof shows that for every fixed H which is 2-locally large, C(n,H) ≥
cH( log logn

log log logn)1/9. 2

It is worth noting that our approach cannot give lower bounds better than Ω((log log n)1/9), even

if the correct behavior of the Ramsey number for 3-uniform hypergraphs is the known lower bound

for it rather than the known upper bound.

4 Upper bounds

In this section we prove a simple upper bound on C(n,H) for every H, and also provide an explicit

construction for the specific case of H = P3.

Proof of Theorem 1.3. Clearly it is enough to prove the theorem for the case that H is a complete

graph on r vertices, as if fv assigns pairwise distinct colors to the set of edges of Kr, it also gives

distinct colors for every subgraph of Kr.

Let k = n
r−2
r · r4. For every v ∈ V (G), e ∈ E(G), let fv(e) be uniformly distributed among the k

possible colors, independently of the other choices. We will prove that this random coloring is good

with a positive probability by applying the symmetric case of the Local Lemma (see, e.g., [1], Chapter

5).

Indeed, given a fixed graph T that is isomorphic to H, and a vertex v ∈ V (T ), the probability that

two edges in T get the same color in fv is clearly bounded by(
r
2

)
· (
(
r
2

)
− 1)

2k
≤ r4

8k
.

Denote by A(T ) the event that all the colorings fv, for every v ∈ V (T ), do not assign pairwise

distinct colors to all edges in E(T ). Since the colorings are chosen independently, we conclude that

Pr[A(T )] ≤ ( r4

8k )r.

Observe that each event A(T1) is mutually independent of all other events A(T2) besides those for

which T1, T2 share at least one edge, and therefore at least two vertices. Thus, for every T , A(T ) is

independent of all but at most
(
n−2
r−2

)
< nr−2 other events. We have

nr−2 · ( r
4

8k
)r · e < 1.

Hence, by the Local Lemma (see, e.g., [1], Chapter 5), we get that with positive probability none

of the events A(T ) occurs, and hence a good coloring exists. 2
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We next show an explicit construction for the case of H = P3. This explicit construction is slightly

better than the randomized one (by a constant factor).

Proof of Proposition 1.4. We will find a set of n colorings of the edges of Kn by 2d
√
n e colors,

such that in each copy of P3 at least two of the vertices assign distinct colors to all edges. By

Vizing’s theorem, Kn admits an n-edge coloring ϕ, where no two adjacent edges get the same color.

Denote these colors by 1, 2, . . . , n, and let s = d
√
n e. Clearly, for every 1 ≤ q′ < q′′ ≤ n, we have

dq′/se 6= dq′′/se or q′ mod s 6= q′′ mod s.

We next define fv(ab) for every v ∈ V (Kn) by a pair < x, y > with x ∈ {0, 1} and y ∈ [s] =

{1, 2, . . . , s} as follows. The first coordinate determines whether ab is incident with v or not (that is,

x = 1 if either a = v or b = v, and x = 0 otherwise). Let r = ϕ(ab). For the second coordinate,

if x = 1 we define the second coordinate of fv(ab) as y = dr/se, and if x = 0 we define it as y = r

mod s.

Let abcd be a copy of P3 in Kn. Then fb(ab), fb(bc) 6= fb(cd) and fd(ab), fd(bc) 6= fd(cd), as their

first coordinates differ. Now, let r1 = ϕ(ab) and r2 = ϕ(bc). Since ϕ is a legal edge coloring, r1 6= r2

and therefore dr1/se 6= dr2/se or r1 mod s 6= r2 mod s. Therefore fb(ab) 6= fb(bc) or fd(ab) 6= fd(bc)

and we get at least one good coloring of abcd. The same argument shows that also either fa or fc

defines a good coloring of abcd, and the proposition follows. 2

5 Lower bounds

In this section we obtain several lower bounds which are significantly better than the general lower

bound that follows from the proofs of Theorem 1.2 and Theorem 3.1.

We start with a (log n)Ω(1) lower bound for H = P3.

Proof of Item 1 in Theorem 1.5. Let Kn be the complete graph on n > k(k2+1)2 +k2 +2 vertices,

and let Y be an arbitrary set of vertices of size k2 + 1 and X = V (Kn) \ Y . Fix a coloring fv of the

edges of Kn for every v ∈ V (Kn). For every vertex x ∈ X, define a vector with |Y |2 coordinates, by

letting x[u1, u2] = fu1(xu2) for every u1, u2 ∈ Y . By the pigeonhole principle, there are two vertices

x1, x2 ∈ X such that the vector corresponding to x1 equals that corresponding to x2. By applying

again the pigeonhole principle, there are two vertices y1, y2 ∈ Y such that fx1(x2y1) = fx1(x2y2) and

fx2(x2y1) = fx2(x2y2). It follows that the path x1y1x2y2 does not have a rainbow coloring. Therefore,

if there are good colorings f1, f2, . . . , fn for Kn then n < k(k2+1)2+k2+2 and hence k = Ω(( logn
log logn)1/4),

as required. 2

We proceed with an auxiliary lemma that will be used in proving lower bounds for the other cases.

Lemma 5.1 Let {fv : v ∈ V (K
(t)
2n )} be a set of 2n colorings of V (K

(t)
2n ) with k colors. Suppose that

for every e ∈ E(K
(t)
2n ) there is a vertex v ∈ e such that fv assigns distinct colors to all the vertices of

e.
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1. If t = 4 then k ≥ (1− o(1))n1/3.

2. If t ≥ 5 then k ≥ (1
2 − o(1))n1/2.

Proof. Let A,B ⊆ V (K
(t)
2n ) be a partition of the vertices into two disjoint sets of size n. For every

a ∈ A, the vertices of B are partitioned into at most k sets according to their color in fa. We proceed

by counting the number of pairs of elements in B that are colored the same by some vertex in A (with

multiplicities). By convexity, every vertex a ∈ A contributes

k∑
i=1

(
|f−1

a (i)|
2

)
≥ k ·

(
n/k

2

)
=
n2

2k
· (1− k/n).

Therefore, there is a pair of vertices b′, b′′ ∈ B that are colored the same by at least

n3

2k
(|B|

2

) · (1− k/n) ≥ n

k
− 1

members of A.

Suppose that t = 4. If k < n1/3(1 − o(1)) we conclude that there is a set A′ ⊆ A of size k2 + 1

and two elements b′, b′′ ∈ B such that for every a ∈ A′ we have fa(b′) = fa(b′′). By the pigeonhole

principle, among the elements of A′ there is a set A′′ of size k + 1 whose members are mapped to the

same value by fb′ . Similarly, there are two elements from A′′, denoted by a∗ and a∗∗ that are mapped

to the same value by fb′′ , and we conclude that the set b′, b′′, a∗, a∗∗ does not admit a good coloring,

and therefore k ≥ n1/3(1− o(1)) as required.

Suppose, now, that t ≥ 5 and k < 1
2 · n

1/2(1 − o(1)). Then there is a set A′ of size 4k + t + 1

and two elements b′, b′′ ∈ B such that for every a ∈ A′ we have fa(b′) = fa(b′′). Applying iteratively

the pigeonhole principle, we get that there is a set X ′ of 2k+t
3 triplets of elements in A′, where the

members of each triple have the same fb′ image, and there is a set X ′′ of 2k+t
3 triplets of elements in

A′ so that the members of each triple have the same fb′′ image. Therefore there are two triplets, one

from X ′ and one from X ′′ that intersect, denote them by (x′1, x
′
2, x
′
3) (from X ′) and (x′1, x

′′
2, x
′′
3) (from

X ′′). Without loss of generality assume that x′2 6= x′′2. If t = 5, we get that the set b′, b′′, x′1, x
′
2, x
′′
2 does

not admit a good coloring and we are done. If t > 5, add to this set t− 5 arbitrary elements from X ′,

and again we get a set of size t that does not admit a good coloring. Therefore k ≥ 1
2 · n

1/2(1− o(1))

and the lemma follows. 2

We proceed with the proofs of the remaining items of Theorem 1.5.

Proof of Item 2 in Theorem 1.5. Let Kn be the complete graph on n vertices, and suppose

for simplicity that n is even. Let (v1, v2), (v3, v4), . . . , (vn−1, vn) be n/2 independent edges. Fix a set

of colorings fv1 , . . . , fvn with k colors such that for every copy of It there is a vertex in that copy

that assigns distinct colors to all edges of this copy. Consider the complete hypergraph K
(t)
n/2, where

each vertex is associated with one of the n/2 independent edges. Every vertex x ∈ V (K
(t)
n/2) that
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corresponds to an edge (v2i−1, v2i) defines a coloring of V (K
(t)
n/2) with k2 colors, as the combination of

fv2i−1 and fv2i . By the definition of local coloring, for every e ∈ E(K
(t)
n/2) there is v ∈ e that gives all the

vertices in e distinct colors. Thus by Lemma 5.1 k2 ≥ n1/3(1− o(1)) (if t = 4) and k2 ≥ n1/2(1
2 − o(1))

(if t ≥ 5), and the result follows. 2

Proof of Item 3 in Theorem 1.5. Fix a set of n colorings of Kn such that for every star St, there

is a vertex that assigns distinct colors to all edges of the star. Fix an arbitrary vertex x ∈ V (Kn), then

by the pigeonhole principle there is a set S ⊆ V (Kn) of size (n − 1)/k such that fx(xu) is the same

for every u ∈ S. Consider the complete hypergraph K
(t)
(n−1)/k, where each vertex is associated with

one of the vertices of S, and define a set of (n − 1)/k k-colorings {gv : v ∈ S} of the hypergraph by

gv(u) = fv(xu). By definition, for every e ∈ K(t)
(n−1)/k there is v ∈ e that gives distinct colors for all the

vertices of e, and thus by Lemma 5.1 we have k ≥ (1−o(1))(nk )1/3 (if t = 4) and k ≥ (1/2−o(1))(nk )1/2

(if t ≥ 5). Hence we get k = Ω(n1/4) in the first case and k = Ω(n1/3) in the second case, as required.

2

Finally, we get a bound for the case of a path of length at least 7 as an immediate corollary.

Proof of Item 4 in Theorem 1.5. Every path of length t contains a spanning subgraph consisting

of dt/2e independent edges. Therefore, the desired result follows from Item 2. 2

Proof of Theorem 1.6. By Vizing’s Theorem, any graph H with at least 13 edges contains either

a vertex of degree at least 4 or 4 independent edges. Therefore, it contains a spanning subgraph

consisting of a vertex of degree 4 and a set of some r isolated vertices, or a spanning subgraph

consisting of 4 independent edges and a set of q isolated vertices. In the first case we fix r vertices

v1, . . . , vr and another vertex x, and apply the pigeonhole principle to find a set of (n − r − 1)/kr

vertices uj 6= {x, v1, . . . vr}, so that for each vertex vi, fvi(xuj) is constant for all uj . We then apply

the argument in the proof of Item 3 to the star consisting of all edges xuj . The second case is similar.

We first fix q vertices vi and find a set of n−q
2kq independent edges on the other vertices that are colored

the same by each vertex vi. We then apply the argument in the proof of Item 2 to this set. 2

6 Concluding remarks and open questions

We introduced the notion of (n,H)-local colorings and studied various general and concrete bounds

on C(n,H)- the minimum number of colors that are required such that there are n colorings of Kn

so that for every copy of H, one of the vertices assigns distinct colors to all edges of that copy. This

generalizes and partially answers a question of Karchmer and Wigderson.

We characterized the (small) family of graphs that require a constant number of colors. It would

be interesting to decide whether every graph apart from the members of this set requires a polynomial

number of colors. We can strengthen the assertion of Theorem 1.6 and show that it holds with the

same b for every H. More precisely, there are absolute positive constants b and c such that for any

9



graph H with at least c edges there is a constant a(H) > 0 so that C(n,H) ≥ a(H)nb for every n. We

omit the detailed argument.

The problem of improving the lower bound for the case of H = P3 is interesting as well, and

will improve the lower bound for the Karchmer-Wigderson question. Also, it would be nice to obtain

better upper bounds by exhibiting (probabilistic or explicit) colorings.

Finally, there are gaps between the upper and lower bounds of C(n,H) for almost every H, and

closing the gap in each of the considered cases might need additional ideas. In particular, it would be

nice to decide if for every ε > 0, there is an r = r(ε) so that C(n,Kr) ≥ n1−ε for all sufficiently large

n.
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[3] P. Erdős and R. Rado, Combinatorial theorems on classifications of subsets of a given set, Proc.

London Math. Soc. (3) 2 (1952), 417–439.

[4] S. Jukna, Extremal combinatorics with applications in computer science, Springer, 2001.

[5] M. Karchmer and A. Wigderson, On span programs, Proc. of the 8th annual symposium on

structure in complexity, 1993, 102–111.

[6] A. Wigderson, The Fusion Method for Lower Bounds in Circuit Complexity, Combinatorics,
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