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Abstract. Let G be a graph on n vertices, with maximal degree d, and not containing K1,k as an induced
subgraph. We prove:

(1) λ(G) ≤ (2− 1
2k−2

+ o(1))d

(2) η(I(G)) ≥ n(k−1)
d(2k−3)+k−1

.

Here λ(G) is the maximal eigenvalue of the Laplacian of G, I(G) is the independence complex of G, and
η(C) denotes the topological connectivity of a complex C plus 2.

These results provide improved bounds for the existence of independent transversals in K1,k-free graphs.

1. The maximum Laplace eigenvalue of K1,k-free graphs

Let G = (V,E) be a connected graph on the set of vertices V = {1, 2, . . . , n} with maximum degree d.
The Laplacian of G is the n by n matrix L = (Lij) where Lii = di is the degree of the vertex i, Lij = −1
if ij ∈ E and Lij = 0 if i ̸= j, ij ̸∈ E. Let λ = λ(G) denote the largest eigenvalue of L. It is easy to prove
and well known that λ(G) ≤ 2d, and equality holds iff G is d-regular and bipartite. If G contains no induced
copy of K1,k this estimate can be improved, as stated in the next theorem.

Theorem 1.1. Let G = (V,E) be a (simple) graph with maximum degree d containing no induced copy of
K1,k. Let t(d, k) denote the minimum possible number of edges of a graph on d vertices with no independent

set of size k. Then λ(G) ≤ 2d− t(d,k)
d−1 .

Note that by Turán’s Theorem t(d, k) = (1 + o(1)) d2

2k−2 , where the o(1)-term tends to zero as d tends to

infinity, and thus for large d the above theorem provides an upper bound of [2 − 1
2k−2 + o(1)]d for λ(G).

Note also that this is not very far from being tight. Indeed, consider a graph H ′ obtained from a (k − 1)
regular bipartite graph H by replacing each vertex u of H by a clique Vu of size s and by replacing each edge
uv of H by a complete bipartite graph connecting each vertex of Vu with each vertex of Vv. This graph is
d = ks − 1 regular and contains no induced K1,k. The vector assigning value 1 to each vertex of H ′ that
belongs to Vu for some u in the first color class of H, and value −1 to each vertex of H ′ that belongs to Vv for
some v in the second color class of H is an eigenvector of the Laplacian of H corresponding to the eigenvalue
ks− 1 + (k − 1)s− (s− 1) = (2k − 2)s > [2− 2

k ]d.

Proof of Theorem 1.1: Let G = (V,E) be a graph with maximum degree d and no induced copy of K1,k,
and let λ be the largest eigenvalue of the Laplacian L of G. Put V = {1, 2, . . . , n} and let (x1, x2, . . . , xn)
be an eigenvector for the eigenvalue λ, where

∑n
i=1 x

2
i = 1. Therefore Lx = λx and xtLx = λ∥x∥22. It

is easy to check that xtLx =
∑

ij∈E(xi − xj)
2. Writing di for the degree of vertex number i, we have∑

ij∈E(x
2
i + x2

j ) =
∑n

i=1 dix
2
i . Combining these, we get:
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2d−λ = (2d−λ)
n∑

i=1

x2
i =

n∑
i=1

(2d− 2di)x
2
i +

n∑
i=1

(2di −λ)x2
i =

n∑
i=1

(2d− 2di)x
2
i +

∑
ij∈E

[2x2
i +2x2

j − (xi − xj)
2].

Therefore

(1) 2d− λ =

n∑
i=1

(2d− 2di)x
2
i +

∑
ij∈E

(xi + xj)
2.

Let T be the set of triangles in G. For each triangle T in G on the vertices i, j, q define

S(T ) = (xi + xj)
2 + (xj + xq)

2 + (xq + xi)
2.

Clearly

S(T ) = x2
i + x2

j + x2
q + (xi + xj + xq)

2 ≥ x2
i + x2

j + x2
q.

Fix a vertex i of G, and let N = N(i) be the set of its di neighbors. Since G contains no induced copy of
K1,k the induced subgraph of G on N contains no independent set of size k and thus spans at least t(di, k)
edges. It follows that i is contained in at least t(di, k) triangles of G. We thus conclude that

(2)
∑
T∈T

S(T ) ≥
n∑

i=1

t(di, k)x
2
i .

On the other hand, since G has maximum degree d, every edge is contained in at most (d− 1) triangles,
and therefore

(3)
∑
T∈T

S(T ) ≤ (d− 1)
∑
ij∈E

(xi + xj)
2.

By (2) and (3)

(d− 1)
∑
ij∈E

(xi + xj)
2 ≥

n∑
i=1

t(di, k)x
2
i ,

and therefore, by (1),

2d− λ ≥
n∑

i=1

[2(d− di) +
t(di, k)

d− 1
]x2

i ≥
n∑

i=1

t(d, k)

d− 1
x2
i =

t(d, k)

d− 1
,

here we used the fact that 2(d − di)(d − 1) ≥ t(d, k) − t(di, k) for all di ≤ d. One way to verify that this
inequality holds (with room to spare) is as follows. Let T (d, k) be the complement of the Turan graph, having
d vertices and t(d, k) edges (so, T (d, k) is the union of k − 1 disjoint cliques). Observe that T (di, k) is an
induced subgraph of T (d, k), which has t(d, k) edges. Therefore one can get T (d, k) from T (di, k) by adding
vertices one by one, where each new vertex is adjacent to a subset of the existing ones, and hence the number
of edges added per added vertex never exceeds d− 1 ≤ 2(d− 1). This completes the proof. �

2. The connectivity of the independence complex of a K1,k-free graph.

A simplicial complex C is called (homotopically) k-connected if for every −1 ≤ j ≤ k, every continuous

function f : Sj → ||C|| can be extended to a continuous function f̃ : Bj+1 → ||C|| (here ||C|| is the underlying
space of the geometric realization of C). Intuitively, this means that there is no hole of dimension k + 1 or
less, where a “hole of dimension d” is an image of Sd−1 that is not filled (it is the missing filling that is
of dimension d). The connectivity η(C) of C is the largest k for which C is k-connected, plus 2 (this differs
from the ordinary definition of connectivity, in which the 2 is not added. The addition of 2 simplifies the
statements of the theorems). Another version of connectivity is the homological connectivity: ηH(C) is the
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maximal k such that Hi(C) = 0 for all i ≤ k − 2. It is known that ηH(C) ≥ η(C) (see, e.g., [12]), and that
they are equal if η(C) ≥ 3 (the latter follows by a theorem of Hurewicz, [12]).

The complex of independent sets of vertices in a graph G is denoted by I(G). In [2] the following lower
bound on ηH(I(G)) was proved:

Theorem 2.1. ηH(I(G)) ≥ |V (G)|
λ(G) .

This yields, among other things, the following:

Corollary 2.2. For any graph G with maximum degree d, ηH(I(G)) ≥ n
2d .

The corollary was proved in [11] by simpler methods, and for homotopic η it was proved in [4].

Combining Theorem 1.1 with Theorem 2.1 yields lower bounds on ηH(I(G)) for any K1,k-free graph G.
These bounds can be improved:

Theorem 2.3. If k > 2 and G is a K1,k-free graph on n vertices with maximum degree d, then ηH(I(G)) ≥
n(k−1)

d(2k−3)+k−1 .

This was proved in [7] for k = 3, namely for claw free graphs. The present proof is shorter.

The proof requires some preliminaries. For a graph G and a vertex v ∈ V (G) we denote by G−v the graph
obtained from G by the removal of v and the edges adjacent to it, and by G ≀v the graph G−v−N(v), where
N(v) denotes the set of neighbors of v. Then I(G ≀ v) = linkI(G)(v) (namely, the complex consisting of those
sets whose union with v belongs to I(G)). A standard application of the exactness of the Mayer-Vietoris
sequence yields:

Lemma 2.4. For any complex C and vertex v ∈ V (C)
ηH(C) ≥ min(ηH(C − v), ηH(linkC(v)) + 1).

Here is a short explanation why this is true. Given two complexes A and B (each considered as a set of
edges, that in this context are usually called ‘simplices’), the Mayer-Vietoris sequence is a naturally defined
sequence of homomorphisms

. . . → Hn+1(A ∪ B) → Hn(A ∩ B) → Hn(A)⊕Hn(B) → Hn(A ∪ B) → Hn−1(A ∩ B) → . . .

The Mayer-Vietoris theorem (to be found in any standard textbook on algebraic topology, like [12, 13]) is
that this sequence is exact. This means that if two terms (groups) that are two apart are null, then so is the
term (group) between them. In particular, if Hn(A)⊕Hn(B) = 0 and Hn−1(A∩B) = 0 then Hn(A∪B) = 0.
In terms of connectivity, this means:

(4) ηH(A ∪ B) ≥ min(ηH(A), ηH(B), ηH(A ∩ B) + 1).

Let C = I(G), A = C − v and B = linkC(v) ∗ {v} (here “*” denotes the join operation, so B = linkC(v) ∪
{I + v | I ∈ linkC(v)}). Then A ∩ B = linkC(v). Clearly, C = A ∪ B. Since B is contractible to v, we have
ηH(B) = ∞, and hence the lemma follows from (4).

By the lemma, for any graph G and vertex v ∈ V (G) the following is true: :

(5) ηH(I(G)) ≥ min(ηH(I(G− v)), ηH(I(G ≀ v)) + 1).

A lower bound on ηH obtained from this inequality can be formulated in terms of a game between two
players, CON and NON, on the graph G. CON wants to show high connectivity, NON wants to thwart this
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attempt. At each step, CON chooses a vertex v of the graph remaining at this stage, the starting point being
the graph G. NON can then either remove the offered vertex from the graph (we call such a step “deletion”),
or remove it and its neighbors (we call such a step “explosion”). The payoff of a game to CON is the number
of explosions, or ∞ if there appears at some stage an isolated vertex. We define Ψ(G) to be the maximum,
over all strategies of CON, of the minimal payoff. The bound on η is then stated as:

Theorem 2.5. ηH(I(G)) ≥ Ψ(G).

Remark 2.6. A similar result, using another segment of the Mayer-Vietoris sequence, was proved by Meshu-
lam. For an edge e = uv denote by G ≀ e the graph (G ≀ u) ≀ v.

Theorem 2.7. [11] For any edge e:

ηH(I(G)) ≥ min(ηH(I(G− e)), ηH(I(G ≀ e)) + 1).

This means that in the above game one can also offer NON edges, alongside vertices. There is no example
known in which it is provably not enough to offer CON edges to obtain the best bound. Thomassé and Rao
[14] gave an example in which it is not enough to use vertex offers.

Proof of Theorem 2.3. By (the trivial part of) Brooks’ theorem, for every induced subgraph K of G we

have α(K) ≥ |V (K)|
d+1 . Let u be a vertex of degree d, and let N be its neighborhood. Choose inductively

vertices v1, . . . , vd in N , so that vi has maximal degree in Gi = G[N − {vj | j < i}]. Since G is K1,k-free,
α(G[N ]) < k, and hence by the observation above

(6) degGi(vi) ≥
d− i+ 1

k − 1
− 1.

Play now the game by offering NON one by one the vertices zi = vd−i+1. Not wishing to isolate u, NON
will explode one of them, say zp. Writing i = d−p+1, by (6) degGi(zp) ≥ d−i+1

k−1 −1 = p
k−1 −1. The number

of vertices removed before the explosion is p− 1, and the number of vertices removed by the explosion is at
most d + 1, but of those degGi

(vi) were removed before the explosion. Thus the total number of vertices
removed is at most

d+ 1 + p− 1− (
d− i+ 1

k − 1
− 1)

Since p ≤ d, this is not more than 2k−3
k−1 d + 1. We have thus forced NON to perform one explosion, and

paid the price of removal of at most 2k−3
k−1 d+1 vertices. Repeating this procedure until the graph is exhausted

(or an isolated vertex appears) shows that Ψ(G) ≥ n(k−1)
d(2k−3)+k−1 . �

Conjecture 2.8. If G = (V,E) is K1,k-free and has maximum degree d then ηH(I(G)) ≥ |V |
d+k−1 .

If true, then this conjecture is sharp when d is divisible by k − 1, as shown by taking G to be a Turán
graph, the complement of the disjoint union of d

k−1 + 1 cliques of size k − 1. Here ηH(I(G)) = 1, namely

I(G) is disconnected.

Theorem 2.9. Conjecture 2.8 is true for line graphs of simple graphs, with k = 3, namely if G is the line
graph of a simple graph H then

ηH(I(G)) ≥ |V (G)|
∆(G) + 2

.

Proof. Let A be the E(H) × V (H) incidence matrix of H, where V (G) = E(H) = {e1 . . . , en}. Then AAT

is the adjacency matrix of G, plus 2I. Hence L(G) = D − AAT + 2I, where D is the diagonal matrix with
Dii = degG(ei). Since AAT is positive semi definite, this implies that λ1(L(G)) ≤ ∆(G) + 2, which by
Theorem 2.1 proves the desired result. �
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Remark 2.10. The entire discussion can be carried out also in homotopic terms. For this purpose we have to
prove Lemma 2.4 also for homotopic η, namely:

Lemma 2.11. For any complex C and vertex v ∈ V (C)
η(C) ≥ min(η(C − v), η(linkC(v)) + 1).

To make this less of a miracle, let us present the idea of a proof, with no claim to rigor. A function between
two geometric realizations of simplicial complexes is called simplicial if it maps simplices to simplices, and
its restriction to every simplex is linear. Let k = min(η(C − v), η(linkC(v)) + 1). It is known that to prove
η(C) ≥ k it suffices to show that every simplicial map f from a triangulation T of S = Sk−2 to ||C|| is
extendable to the ball Bk−1. It is possible to show that in fact it is enough to prove this for f that is injective
on every simplex. We shall show that f can be continuously extended to a function from some triangulation
T ′ of Bk−1 whose boundary is T , to ||C||. Let vi (i = 1, . . . ,m, where possibly m = 0) be the vertices of T
mapped by f to v. Intuition tells us that the link of vi in T is an image of Sk−3, and indeed this is true if T
is a PL (piecewise linear) triangulation, i.e. has a subdivision isomorphic to a subdivision of the boundary
of a simplex. Hence by the assumption that η(linkC(v)) ≥ k − 1 it follows that there exists a filling Li of
linkT (vi) in linkC(v). The union of all these Li, together with S \

∪
i≤m linkS(vi), is an image of Sk−2 in

C − v. By the assumption that η(C − v) ≥ k it follows that this union can be filled in C − v. Together with∪
i≤m Li ∗ vi this forms a filling of S in C.

3. Applications to independent transversals

Let G = (V,E) be a graph with maximum degree d and let V = V1 ∪V2 ∪ . . .∪Vm be a partition of V into
pairwise disjoint sets. An independent transversal in G with respect to this partition is an independent set
of G containing exactly one vertex in each Vi. In [8] it was proved that if |Vi| ≥ 2d for all i ≤ m then there
exists an independent transversal (in [6] it was proved before that |Vi| ≥ 25d suffices). In [10] the following
topological version of Hall’s theorem was proved:

Theorem 3.1. If ηH(I(G[
∪

i∈I Vi])) ≥ |I| for every I ⊆ [m] then there exists an independent transversal.

This improved upon the homotopic version of this theorem (namely, with η replacing ηH), that was proved
in [5]. Theorem 2.1 yields that if the largest eigenvalue of the Laplacian of every induced subgraph of G is
bounded by h, then sets Vi of size h suffice. Theorem 1.1 therefore implies that for graphs that contain no
induced copy of K1,k sets Vi of size (2 − 1

2k−2 + o(1))d suffice. The combination of Theorems 3.1 and 2.3
provides the better:

Theorem 3.2. If G is K1,k-free and |Vi| ≥ d(2k−3)+k−1
(k−1) then there exists an independent transversal.

Remark 3.3. An anonymous referee kindly provided also a combinatorial proof of this result. The topological
proof has some advantage, however: it can be applied to a situation in which any matroid M and a graph
G share the same vertex set. In the setting of independent transversals M is a partition matroid. In [1]
a generalization of Theorem 3.1 was proved: a sufficient condition for the existence of a base of M that is
independent in G is that for every set X of vertices η(I(G[X])) ≥ ρ(M.X) where M.X is the contraction of
M to X. Plugging in the bound above proves a generalization of Theorem 3.2.

Theorem 2.1 can be applied to line graphs of r-uniform linear hypergraphs (that is, hypergraphs in which
no two edges share more than one common vertex). For such line graphs, the most negative eigenvalue of
the adjacency matrix is at least −r, as the adjacency matrix can be written as BBT − rI, where B is the
incidence matrix of the hypergraph. This, therefore, implies, by the above reasoning, that any partition
into sets Vi of size at least d + r, where d is the maximum degree of the line graph, admits an independent
transversal. In particular this applies to any partition of the triangles of a Steiner Triple System on n vertices
(and n(n − 1)/6 triangles) into sets of size at least 3n/2 + O(1). It seems plausible that the constant 3/2
here can be reduced, possibly even to 1/2. A similar question regarding line graphs of simple graphs is worth
studying as well.
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We close this short paper with two questions.

(1) (Improving the estimate in Theorem 1.1) Is it true that in a K1,k-free graph with maximum degree d
the maximum Laplace eigenvalue is no larger than (2− 2

k +o(1))d? As mentioned after the statement
of Theorem 1.1, this estimate, if correct, is tight.

(2) Do the results that follow for the existence of independent transversals for K1,k-free graphs hold
also for graphs that contain no induced copy of Kk,k? In [3] it was shown that for such graphs

η(I(G)) ≥ |V (G)|
2d−1 , implying that if V (G) is partitioned into sets of size 2d − 1 then there exists an

independent transversal.
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