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Abstract

Combinatorial techniques play a crucial role in the investigation of problems in Informa-
tion Theory. We describe a few representative examples, focusing on the tools applied, and
mentioning several open problems.

1 Introduction

Combinatorial ideas play a prominent role in the study of problems in Information theory. Indeed,
the whole theory can be developed using a combinatorial approach, as done, for example, in [12].
In this brief survey we discuss several examples in which tools from Combinatorics and Graph
Theory are applied in the investigation of problems in Information Theory. The combinatorial
approach seems especially powerful for tackling problems in zero-error information theory which
deals with scenarios in which no positive probability of error is tolerated. Problems of this type are
discussed in a significant number of papers starting with [23], and are also the focus of the present
short paper. This is not meant to be a comprehensive treatment of the subject, but hopefully
provides an interesting description of several intriguing information theoretic results obtained by

combinatorial reasoning.

2 The Shannon Capacity of graphs

For an undirected graph G = (V, E), let G denote the graph whose vertex set is V" in which
two distinct vertices (u1,ug,...,uy) and (v1,vs,...,v,) are adjacent iff for all i between 1 and n
either u; = v; or uv; € E. The Shannon capacity ¢(G) of G is the limit lim,, o (a(G""))'/", where
a(G"™) is the maximum size of an independent set of vertices in G”". This limit exists, by super-
multiplicativity, and it is always at least a(G). (It is worth noting that it is sometimes customary
to call log ¢(G) the Shannon capacity of G, but we prefer to use here the above definition, following
Lovész [19].)

The study of this parameter was introduced by Shannon in [23], motivated by a question in
Information Theory. Indeed, if V' is the set of all possible letters a channel can transmit in one
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use, and two letters are adjacent if they may be confused, then «(G") is the maximum number of
messages that can be transmitted in n uses of the channel with no danger of confusion. Thus ¢(G)
represents the number of distinct messages per use the channel can communicate with no error

while used many times.

There are several known upper bounds for the Shannon capacity of a graph. The most effective
one is a geometric bound proved in [19], which is called the Lovasz #-function. Other bounds appear
in [23], [16], [1].

The (disjoint) union of two graphs G and H, denoted G + H, is the graph whose vertex set is
the disjoint union of the vertex sets of G and of H and whose edge set is the (disjoint) union of the
edge sets of G and H. If G and H are graphs of two channels, then their union represents the sum
of the channels corresponding to the situation where either one of the two channels may be used,
a new choice being made for each transmitted letter.

Shannon [23] proved that for every G and H, ¢(G + H) > ¢(G) + ¢(H) and that equality holds
if the vertex set of one of the graphs, say G, can be covered by a(G) cliques. He conjectured that
in fact equality always holds. In [1] it is proved that this is false in the following strong sense.

Theorem 2.1. For every k there is a graph G so that the Shannon capacity of the graph and
— — — log k

that of its complement G satisfy ¢(G) < k,c(G) < k, whereas ¢(G + G) > W) sogiost gnd the

o(1)-term tends to zero as k tends to infinity.

The proof, which contains an explicit description of G, is based on some of the ideas of Frankl and
Wilson [14], together with the basic approach of [16] and [2]. The main idea is to prove an algebraic
upper bound for the Shannon capacity of a graph in terms of the dimension of an appropriately
defined space of multivariate polynomials, and use this bound with polynomials over a field of one
characteristic for the graph, and over a field of another characteristic for its complement. As shown
in [1], the idea of using different fields is crucial here, and one cannot deduce the result using other
known bounds like the §-function.

The above counter-intuitive example is extended in [7], where it is shown that for every F,
a family of subsets of [¢], it is possible to assign a channel C; to each sender i € [t], such that
the capacity of a group of senders X C [t] is high iff X contains some F' € F. This corresponds
to a case where only privileged subsets of senders are allowed to transmit in a high rate. The
basic approach in the proof is similar to the algebraic one in [1], but requires some additional
combinatorial arguments.

The behavior of the Shannon capacity of graphs in general is far from being well understood.
Even the capacity of small, simple graphs, like the cycle of length 7, is not known (see [11] and
some of its references for the known estimates on the capacity of odd cycles of length exceeding 5).
As shown in [6], the sequence (a(G”\"))Y/™, whose limit is the Shannon capacity ¢(G), can be very
complicated, exhibiting a large number of jumps. It is not known if the maximum possible value
of the Shannon capacity of a graph whose independence number is 2 is bounded by an absolute
constant. This is equivalent to a well studied Ramsey-theoretic question about the asymptotic
behavior of the maximum possible number of vertices in a complete graph whose edges can be
colored by k colors with no monochromatic triangle (see [13], [3]).

Another interesting open problem is whether for every € > 0 and every n > ng(e) there exists



a graph G on n vertices satisfying a(G) < n® and ¢(G) > n'=¢. The asymptotic behavior of the
expected value of the Shannon capacity of the random graph G(n,0.5), which is known to be at
most O(y/n), as shown in [17], and at least Q(logn), as this is the typical independence number,
is also open, and it seems plausible to conjecture that it is ©(logn). The maximum possible value
of the Shannon capacity of the disjoint union of two graphs, each of capacity k is also unknown.

This maximum is at least k$2(logk/loglogk)

, by the results of [1] mentioned above, but it is not even
known that it is bounded by any function of k. Finally, it is not known if the problem of deciding

whether the Shannon capacity of a given input graph exceeds a given value is decidable.

3 Multiple instances

There are several examples of communication problems in which the number of bits that have to be
transmitted per instance for multiple independent instances decreases dramatically as the number
of instances increases. Several examples of this type are given in [3], based on properties of the
so-called Witsenhausen rate of a graph, introduced in [25]. Here we describe a few more recent
examples.

3.1 Mail order and multiple product lines

In this short subsection we describe a simple yet intriguing result from [22], where the author applies
the existence of expanders, which are sparse pseudo-random graphs, to describe an interesting result
in which communication can be saved when several independent tasks are combined. For simplicity
we describe only a very special case which captures the essence of the argument.

The problem was first considered in [24], its worst case version is analyzed in [22]. Consider
a mail-order firm that sells m-different shirts. Assume, further, that each potential customer is
interested in £ of the m shirts, and wants to get one of them, having no preference between those £.
The firm is interested in the minimum number of bits it should get from a customer, in order to be
able to mail him one of the shirts he likes. We assume here that every subset of £ of the shirts may
be the desired set of some customer. It is not difficult to see that there is a valid protocol enabling
the customer to transmit only [logy(m — ¢ 4+ 1)| bits. Indeed, he simply sends the number of the
first shirt among the first m — £ + 1 ones that appears in his set of desired shirts. Moreover, this is
optimal. This is because if there are at most m — ¢ distinct transmissions that the company may
get from any customer, then there are at most m — £ shirts that it can mail in response. Thus, a
customer interested only in £ of the shirts that are not being sent in any of these responses will not
get a shirt from his desired list, which is impossible, establishing the required lower bound.

Suppose, now, that the mail order firm expands into two product lines, and starts to sell pants
as well. There are m kinds of pants, and each customer likes ¢ of them, and wants to get one of
those he likes. Thus, each customer now wants to get one of his favorite £ shirts, and one of his
favorite ¢ pants, where we assume no relation between the two sets. How many bits should the
customer send? To be specific, consider only one representative case, when, say, ¢ = n/4. Obviously
one can use the same protocol separately for each product, sending a total of 2[logy(m — ¢ + 1)]
bits. It is also clear that [logy(m — ¢+ 1)] is a lower bound, as the communication problem for one



of the products requires that many bits. Which of these two bounds is closer to the best possible
solution? Somewhat surprisingly it turns out that there is a protocol whose performance is close to
the lower bound. The crucial observation here is to use expanders. In the particular example given
here, we need a sparse bipartite graph with m vertices in each of its two color classes S, P, where
|S| = |P| = m, so that between any two subsets X C S and Y C P, with |X| = |Y| =¥ (= n/4),
there is at least one edge. It is known (c.f., e.g., [5], Chapter 9) that there are such graphs with less
than 64m edges. Fix such a graph, and view S as the set of shirts and P as the set of pants. If the
preferred set of ¢ shirts of a customer is X and the preferred set of pants is Y, with | X| = |Y| = ¢,
then he can simply transmit the label of an edge connecting X and Y. The number of bits required
is thus less than [logy(64m)], which is only the number required for one product plus a small
constant number of bits.

3.2 Broadcasting with side information

The following variant of source coding, called Informed Source Coding On Demand was proposed
by Birk and Kol [10]. A sender S wishes to broadcast a word x = z1x5...1,, where z; € {0,1}!
for all 4, to m receivers Ry, ..., R,,. Bach R; has some prior side information, consisting of some of
the blocks ;, and is interested in a single block z ;. The sender wishes to transmit a codeword
that will enable each and every receiver R; to reconstruct its missing block zy ;) from its prior
information. Let 3; denote the minimum possible length of such a binary code. The objective is
to study the possible behavior of the numbers (§; for various scenarios. For simplicity we consider
here only the case t = 1, although the case of bigger values of ¢, treated in [4], is also interesting.

The motivation for informed source coding is in applications such as Video on Demand. In such
applications, a network, or a satellite, has to broadcast information to a set of clients. During the
first transmission, each receiver misses a part of the data. Hence, each client is now interested in
a different (small) part of the data, and has a prior side information, consisting of the part of the
data he received [26]. Note that the assumption that each receiver is interested only in a single
block is not necessary. Indeed, one can simulate a receiver interested in r blocks by r receivers,
each interested in one of these blocks, and all having the same side information.

The problem above generalizes the problem of Index Coding, which was first presented in [10],
and later studied in [8] and [20]. Index Coding is equivalent to a special case of the problem above
in which m =n, f(j) = j for all j € [m] = {1,...,m} and the size of the data blocks is t = 1.

It is natural to describe the above source coding problems in terms of a certain hypergraph.
Define a directed hypergraph H = (V,E) on the set of vertices V' = [n]. Each vertex i of H
corresponds to an input block z;. The set E of m edges corresponds to the receivers Ry, ..., Ry,.
For the receiver R;, E contains a directed edge e; = (f(j), N(j)), where N(j) C [n] denotes the
set of blocks which are known to receiver R;. Clearly the structure of H captures the definition
of the broadcast setting. Let §1(H) denote the minimal number of bits required to broadcast the
information to all the receivers when the block length is ¢ = 1.

We are interested in the asymptotic behavior of the number of bits that have to be transmitted
when we consider parallel instances. Let k - H denote the disjoint union of k copies of H. Define
Bf(H) := pi(t - H). In words, B} represents the minimal number of bits required if the network



topology is replicated ¢ independent times. Such a scenario can occur when the topology is standard
(resulting, for example, from using a common application or operation system). Therefore it is
identical across networks, albeit with different data. A simple sub-additivity argument shows that
the limit .

(H) . Bi(H)

= inf
t—o0 t

exists.

Let H = ([n], E) be a directed hypergraph for a broadcast network, and set ¢ = 1. It is
convenient to address the more precise notion of the number of codewords in a broadcast code
which satisfies H. We say that C, a broadcast code for H, is optimal, if it contains the minimum
possible number of codewords (in which case, 51 (H) = [logy |C|]). We say that two input-strings
z,y € {0,1}" are confusable if there exists a receiver e = (i,J) € E such that x; # y; but z; = y;
for all 5 € J. This implies that the input-strings z, y can not be encoded with the same codeword.
Let v denote the maximal cardinality of a set of input-strings which is pairwise unconfusable. The
following result, proved in [4], relates 5* and ~.

Theorem 3.1. Let H and v be defined as above. The following holds for any integer k:

() s (2) s

where C is an optimal code for k- H. In particular, *(H) = lim

k—o0

ﬁl(k}f.H) =n —log, 7.

A surprising corollary of the above theorem is that §* may be strictly smaller (and in fact even
much smaller) than (1. Indeed, as §* deals with the case of disjoint instances, it is not intuitively
clear that this should be the case: one would think that there can be no room for improving upon
B1(H) when replicating H into ¢ disjoint copies, given the total independence between these copies
(no knowledge on blocks from other copies, independently chosen inputs). Note that even in the
somewhat related Information Theoretic notion of the Shannon capacity of graphs (corresponding
to channel coding rather than source coding), though, as described in the previous section, the
capacity of a disjoint union may exceed the sum of the individual capacities, it is easy to verify
that disjoint unions of the same graph can never achieve this. The following theorem demonstrates
that the possible gap between (1(t- H)/t and (1(H) can be very large: in fact, 5* may be bounded
while (7 is arbitrarily large:

Theorem 3.2. There exists an explicit infinite family of broadcast networks for which *(H) < 3
is bounded and yet $1(H) is unbounded.

The proofs combine properties of graph powers (specifically, the results of [21] and [9] on the
chromatic numbers of the so called OR powers of a graph) with results about integral and fractional
colorings of Cayley graphs, and about the chromatic numbers of Kneser graphs (see [18], [15]). More
details can be found in [4].



4 Conclusions

Combinatorics is a powerful tool for tackling problems in Information theory. We have seen a
few examples that illustrate this phenomenon; the study of the Shannon capacity of a graph, the
investigation of a broadcasting problem with side information, and that of the potential merits of
encoding multiple independent messages in certain scenarios.

Tools and techniques from Discrete Mathematics appear in the study of numerous additional
problems in Information theory, and in particular play a crucial role in the theory of Error Cor-
recting Codes.

The reverse direction, that is, that of applying information theoretic tools in the derivation of
combinatorial results, is also a fruitful, active direction, which is not discussed here, and can be
the topic of a similar article.
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