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Abstract

Let d ≥ 1 and s ≤ 2d be nonnegative integers. For a subset A of vertices of the
hypercube Qn and n ≥ d, let λ(n, d, s, A) denote the fraction of subcubes Qd of Qn

that contain exactly s vertices of A. Let λ(n, d, s) denote the maximum possible
value of λ(n, d, s, A) as A ranges over all subsets of vertices of Qn, and let λ(d, s)

denote the limit of this quantity as n tends to infinity. We prove several lower and
upper bounds on λ(d, s), showing that for all admissible values of d and s it is larger
than 0.28. We also show that the values of s = s(d) such that λ(d, s) = 1 are exactly
{0, 2d−1, 2d}. In addition we prove that if 0 < s < d/8, then λ(d, s) ≤ 1 − Ω(1/s),
and that if s is divisible by a power of 2 which is Ω(s) then λ(d, s) ≥ 1 − O(1/s).
We suspect that λ(d, 1) = (1+ o(1))/e where the o(1)-term tends to 0 as d tends to
infinity, but this remains open, as does the problem of obtaining tight bounds for
essentially all other quantities λ(d, s).

1 Introduction
Let Qn be the hypercube of dimension n whose vertices are identified with n-
component binary vectors. For a subset A of vertices of Qn and d ≤ n, let
λ(n, d, s, A) denote the fraction of subcubes Qd of Qn that contain exactly s vertices
of A. Let λ(n, d, s) denote the maximum possible value of λ(n, d, s, A) as A ranges
over all subsets of vertices of Qn, and let λ(d, s) denote the limit of this quantity as
n tends to infinity. It is easy to see that the limit exists, and is the infimum over n of
λ(n, d, s) as for any fixed d, s the function λ(n, d, s) is monotone non-increasing in n.

The problem of determining or estimating the quantities λ(n, d, s) and λ(d, s) is
motivated by the questions and results of Goldwasser and Hansen on counting struc-
tural configurations in hypercubes [9], as well as by the results on edge-statistics in
graphs by Alon, Hefetz, Krivelevich, and Tyomkyn [1], Kwan, Sudakov, and Tran
[12], Martinsson, Mousset, Noever, and Trujic [13], and Fox and Sauermann [7].
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Clearly λ(d, s) = λ(d, 2d − s) and λ(d, 0) = 1. In addition, if s = 2d−1, then we
see that λ(d, s) = 1 by taking all vertices of the hypercube with even number of
ones. To state our results, define the generalized Johnson’s Graph J(4s, 2s, s) whose
vertex set is the set of 2s-element subsets of a 4s-element set, in which two vertices
are adjacent if and only if the corresponding sets intersect in exactly s elements.
Let ω(s) = ω(J(4s, 2s, s)) denote the clique number of J(4s, 2s, s). It is easy and
known that ω(s) ≤ 4s− 1 with equality if and only if a Hadamard matrix of order
4s exists, see for example Godsil and Royle [8]. We first state our upper bounds
on λ(d, s). We use the notation t(n, k) for the number of edges in the Turán graph
T (n, k), that is, the complete k-partite n-vertex graph with parts that are as equal
as possible. Denote the density t(n, k)/

(
n
2

)
by π(n, k).

Theorem 1. Let s and d be integers. Then λ(d, s) = 1 if and only if s ∈ {0, 2d, 2d−1}.
If 1 < s < 2d−1, then

λ(d, s) ≤ λ(d+ 2, d, s) = π(d+ 2, ω(s)) ≤
(
1− 1

4s− 1

)(
1 +

1

d+ 1

)
.

In particular, λ(d + 2, d, s) = 1 iff d + 2 ≤ ω(s). When s = 1, we have λ(d, 1) ≤
λ(d+ 2, d, 1) = π(d+ 2, 3) for d < 6, and λ(d+ 2, d, 1) = 3/4 otherwise.

Note that the general upper bound implies in particular that if s is not large,
say, 0 < s < d/8, then λ(d, s) ≤ 1− Ω(1/s).

Next we provide the lower bounds that are described probabilistically. Let cd

denote the probability that a random d by d binary matrix whose rows are random
independent non-zero vectors of Fd

2 is nonsingular (in F2). It is easy and well known
that cd =

∏d−1
i=1 (1−

2i−1
2d−1

), which is roughly 0.289 for large d.

For 1 ≤ k ≤ d, let c(d, k) denote the probability that a random (d − k) by d

binary matrix whose columns are uniform random vectors in Fd−k
2 is of rank d− k

(over F2). It is a bit better to take here too only nonzero random column vectors,
but to simplify the computation we consider this slightly suboptimal version. By
choosing the rows (not the columns) of the matrix one by one ensuring that each
row does not lie in the span of the previous ones it is easy to see that

c(d, k) =

d−k−1∏
i=0

(
1− 2i

2d

)
.

Note that this quantity is larger than 1− 1
2k

.
The first simple lower bound in the theorem below appears in the recent paper

Goldwasser and Hansen [9], we include the proof here for completeness. Note that
this lower bound approaches e−1 ≈ 0.37 as d tends to infinity.

Theorem 2. For any integer d ≥ 2, λ(d, 1) ≥
(
1− 2−d

)2d−1. For all admissible
d and s, λ(d, s) ≥ cd. Moreover, for every s of the form s = 2k · j, where j is an
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odd integer, which satisfies 0 < s ≤ 2d−1, λ(d, s) ≥ c(d, k). In particular, for any s

which is a power of 2, λ(d, s) ≥ 1− 1
s .

Remark 1. Here we summarise the best bounds we know on λ(d, 1) when d = 2, 3, or
4. We have that λ(2, 1) ≥ c2 = 2/3 from Theorem 2. Observe that λ(d, 1) ≥ 2/(d+1)

by the following construction. The Hamming weight of a binary vector is its number
of 1’s. For a fixed d, let A be the set of all vertices in Qn with Hamming weight
divisible by d+1. A copy of a Qd-cube contains precisely one vertex in A if and only if
the smallest Hamming weight of any of its vertices is congruent to 0 or 1 (mod d+1).
Together with upper bounds established by Baber [3] using the Flag Algebra method,
we have the following estimates for d = 2, 3, and 4: 2/3 ≤ λ(2, 1) ≤ 0.68572,
0.5 ≤ λ(3, 1) ≤ 0.61005, and 0.4 ≤ λ(4, 1) ≤ 0.60254.

The proofs of the main results are given in Section 2. Section 3 contains some
simple number theoretic consequences. In Section 4 we consider an approximate
version of the problem. The final Section 5 contains some concluding remarks and
open problems.

Throughout this note we call each of the 2n−d
(
n
d

)
d-dimensional subcubes of Qn

a d-cube or a copy of Qd. The k−th layer in the hypercube is the set of all vertices
of Hamming weight k.

2 Proofs of the main results
Proof of Theorem 1. As already mentioned it is clear that λ(d, s) = 1 for s ∈
{0, 2d−1, 2d}. We first show the converse: if λ(d, s) = 1 then s ∈ {0, 2d, 2d−1}.

Consider a prime p > 2d, suppose λ(d, s) = 1 and take a huge n ≫ p and a
subset A of vertices of Qn so that every copy of Qd contains exactly s vertices of A.
By a simple iterated application of the hypergraph Ramsey theorem, there is a copy
Q of Qp in which every layer is either fully contained in A or contains no vertices of
A. See, for example, the Layered Lemma in [2] which is exactly this statement. Let
T ⊂ {0, 1, . . . , p} be the set of all indices of the layers of Q that are fully contained
in A. Note that Q has exactly 2p−ds vertices of A (as it consists of 2p−d pairwise
disjoint copies of Qd). Therefore

s2p−d =
∑
i∈T

(
p

i

)
. (1)

If T is empty then s = 0, so assume T is nonempty. Consider three possible cases
based on whether 0 and/or p are in T . If neither 0 nor p are in T , then the right
hand side of (1) is divisible by p, which is impossible as the left hand side is not. If
both 0 and p are in T , then the right hand side of (1) is 2 (mod p). By Fermat’s lit-
tle Theorem in this case s2p−d = 2 (mod p) = 2p (mod p), so s = 2d (mod p) and
as p > 2d and p > s this gives s = 2d. Finally, if exactly one of {0, p} is in T , then
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the right hand side of (1) is 1 (mod p), so in this case s2p−d = 1 (mod p) = 2p−1

(mod p) and thus s = 2d−1 (mod p) so s = 2d−1, completing the proof of the first
part of the theorem.

For general upper bounds, we first consider λ(d + 2, d, s). The result will then
follow by averaging. Note that each d-cube in Qd+2 can be uniquely described by
the binary vectors that have prescribed values in some two positions, called fixed
positions, and running through all possible 2d binary vectors on the remaining vari-
able positions. The total number of copies of Qd in Qd+2 is 4

(
d+2
2

)
.

Consider a set A of vertices in Qd+2 and let M = MA be an |A| × (d+2) binary
matrix whose rows are the elements of A. We shall call a copy of Qd good if it
contains exactly s vertices from A, and call it bad otherwise. For each pair i, j,
1 ≤ i < j ≤ d + 2 let M(i, j) be the |A| × 2 sub-matrix of M whose columns are
columns i and j of M . A copy Q of Qd with fixed positions i and j is good if and
only if there are exactly s rows of M(i, j) that match the values in the two fixed
positions of Q.

Thus M(i, j) contributes to four (out of possible four) good Qd’s with fixed po-
sitions i, j if and only if M(i, j) has exactly s rows equal to each possible binary
vector of length two. In particular, if M contributes to four good Qd’s, then M has
4s rows and |A| = 4s. Otherwise M(i, j) contributes to at most 3 good Qd’s.

Case 1. |A| ̸= 4s.
By the previous paragraph in this case λ(d+ 2, d, s, A) ≤ 3/4.

Case 2. |A| = 4s.
If M has a column i with number of zeros not equal to 2s, then M(i, j) contributes
at most 2 good Qd’s, for any j ̸= i. Let columns i and j have exactly 2s zeros each.
Then M(i, j) contributes 4 good Qd’s if and only if these columns have exactly s

positions in which both of them are zero, i.e., correspond to an edge of the general-
ized Johnson’s graph J(4s, 2s, s). Otherwise M(i, j) contributes no good Qd’s.

Consider a complete edge-weighted graph G with vertex set [d+2], whose vertices
correspond to columns of M and edges get a weight corresponding to the number
of good Qd’s contributed by the respective pairs of columns. Thus λ(d+ 2, d, s, A)

is at most the total weight of G divided by 4
(
d+2
2

)
.

Assume that there are k columns of M with exactly 2s zeros each. Without loss
of generality these are the first k columns. We see that the edges of weight 4 in G cor-
respond to a blow-up of a subgraph of J(4s, 2s, s). Since ω(J(4s, 2s, s)) = ω(s), the
total weight of edges contributed by the first k vertices of G is at most 4t(k, ω(s)).
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All edges incident to [d + 2] \ [k] have weight at most 2. Since the density of any
non-trivial Turán graph is at least 1/2, the average weight of an edge induced by
[k] is at least 2. Thus increasing k does not decrease the total weight of G, that
stays at most 4t(d + 2, ω(s)). Note that this value is attained by a matrix with
d+ 2 columns having 2s zeros each and corresponding to the vertices of a clique in
J(4s, 2s, s), each repeated an almost equal number of times.

Combining Case 1 and Case 2, we have that

π(d+ 2, ω(s)) ≤ λ(d+ 2, d, s) ≤ max{3/4, π(d+ 2, ω(s)}.

Clearly ω(1) = 3 and ω(s) > 3 for s ≥ 2. Thus in particular λ(d+2, d, 1) ≤ 3/4,
for d > 6. Note that π(d+2, ω(s)) > 3/4 if s > 1 or if (s = 1 and d < 6). Moreover,
when A is the set of all vertices in Qd+2 of Hamming weight d + 1 or 0, we have
λ(d + 2, d, 1, A) = 3/4. Thus λ(d + 2, d, 1) = 3/4 for d ≥ 6. This concludes the
proof.

Proof of Theorem 2. In order to lower bound λ(n, d, 1), consider a random set A of
vertices in Qn obtained by choosing each vertex randomly and independently with
probability 2−d. The probability that a copy of Qd contains exactly one vertex of
A is 2d ·2−d ·(1−2−d)2

d−1, and the desired result follows by linearity of expectation.

For proving a lower bound for λ(n, d, s), let B be a random d by n binary ma-
trix whose columns are independent uniformly chosen random nonzero vectors in
Fd
2. Define a coloring of the vectors in Fn

2 viewed as the vertices of Qn by coloring
each vector x by its syndrome Bx ∈ Fd

2. If a set S of d columns of B forms a
basis, then the 2d vertices of each of the 2n−d copies of Qd with any fixed values
outside the columns of S get all the 2d possible colors. Therefore, for every fixed
choice of s of these colors, the set A of all vertices with these colors has exactly s

vertices of each of the subcubes corresponding to such nonsingular sets of columns
S. The expected fraction of such sets S is cd of all

(
n
d

)
d-tuples of columns, and

therefore there exists a choice of B for which there are at least that many sets S.
This completes the proof of the second lower bound.

Note that the subcubes that have exactly s vertices of the set A above are de-
termined by the sets of their free coordinates, and not by the values of the fixed
coordinates. This is a property that, while not needed here, may be helpful for some
further applications.

The proof of the last part is very similar to the one above. Let B be a random
d− k by n binary matrix whose columns are independent uniformly chosen random
vectors in Fd−k

2 . Define a coloring of the vectors in Fn
2 viewed as the vertices of Qn

by coloring each vector x by its syndrome Bx ∈ Fd−k
2 . If a set S of d columns of B
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spans Fd−k
2 , then the 2d vertices of each of the 2n−d d-subcubes corresponding to any

fixed choice of the values of the coordinates not in S get each of the 2d−k possible
colors exactly 2k times. Therefore, for every fixed choice of j of these colors, the
set A of all vertices with these colors has exactly 2k · j = s vertices of each of the
subcubes corresponding to such spanning sets of columns S. The expected fraction
of such sets S is c(d, k) of all

(
n
d

)
d-tuples of columns, and therefore there exists

a choice of B for which there are at least that many sets S. This completes the
proof.

We remark that for small values of d the inequality λ(n, d, s) ≥ c(d, k) can
be significantly improved to c∗(d, k) defined similarly by restricting the random
columns of the matrix to nonzero vectors. For example, if d = 3 and s = 2, then
k = 1 and the lower bound c∗(3, 1) is 8/9, whereas c(3, 1) = 21/32. As d tends to
infinity these two lower bounds converge to the same value.

3 Number theoretic consequences
Recall that a layer in Qn is a maximal set of vertices with the same Hamming weight.
Consider a layered set A of vertices in Qn, that is a set of vertices that contains
either all or none of the vertices of each layer. Then the number of vertices of A in
each copy of Qd is a sum of binomial coefficients

(
d
i

)
for some values of i. If all copies

of Qd have the same number, s, of vertices from A, we have λ(n, d, s, A) = 1 and
our results provide some simple properties of binomial coefficients. The proof of the
following proposition does not involve hypercube statistics, we include it here as the
argument is direct, short and simple. Theorem 4 is a generalisation of Proposition
3 and its proof does use hypercube statistics.

Proposition 3. For integers k, a, d, with 0 ≤ a < k, 2 < k ≤ d, let q(a, k, d) be the
sum of the binomial coefficients

(
d
i

)
over all i, i ≡ a (mod k). Then, for any such

fixed d and k, the k numbers q(a, k, d), 0 ≤ a < k are not all equal.

Proof. Let w be a primitive root of unity of order k. Then

q(a, k, d) =
1

k

k−1∑
i=0

w−ia(1 + wi)d,

see for example [4, 10]. Let v be the vector of length k with coordinates (1 + wi)d,
i = 0, . . . , k − 1, and let A be the k × k Fourier matrix (w−ia)0≤i,a<k. If all the
numbers q(a, k, d) are equal then Av is a multiple of the constant vector. Since A is
a nonsingular matrix and A times the vector (1, 0, . . . , 0) is the vector (1, 1, . . . , 1)

this implies that v must be a multiple of the vector (1, 0, . . . , 0). But this is not the
case for k > 2 (note that it is the case for k = 2).

Theorem 4. Let d and k be positive integers, and let T be a subset of Zk (the
integers modulo k). For each element a in Zk define q(a) = q(d, k, a, T ) =

∑
i

(
d
i

)
6



where i ranges over all numbers between 0 and d for which (i+ a) mod k lies in T .
If all numbers q(a) are equal then their common value is 0, 2d−1, or 2d. Moreover,
the only possibilities are T = Zk or its complement T = ∅, or k even and T either
all even residues modulo k or its complement, i.e., all odd residues modulo k.

Remark 2. Proposition 3 follows from Theorem 4 by taking T = {0} ⊂ Zk. Indeed,
assume that all the numbers q(a, k, d) are the same, say equal to x. By Theorem
4, x ∈ {0, 2d, 2d−1}. However, the sum of these numbers is xk and this is the total
number of elements of Qd, that is xk = 2d. Since k > 2, this is a contradiction.

Proof. Consider a prime p > max(2d, k), denote the common value of q(a) by s,
and choose a subset A of Qp by including in it exactly all layers b so that b (mod k)

lies in T . Then every subcube Qd in this Qp contains exactly s vertices of A, so Qp

contains s2p−d vertices of A, and Theorem 1 (and its proof) imply that s is either
0 or 2d, or 2d−1.

To prove the “moreover" part (which was the reason to take p > k, not only
p > 2d, we allow k here to be larger than 2d), note that if s = 0 then T is empty,
if s = 2d then T = Zk, so assume s = 2d−1. Consider the set A defined as before
but now we take it in a bigger cube Qn (n ≫ p). Every copy of Qp in Qn contains
now s times 2p−d = 2p−1 vertices of A, which is 1 modulo p. Therefore, for every i,
layer i is contained in A if and only if layer i+p is not contained in A (since exactly
one of the two binomial coefficients

(
p
0

)
= 1 and

(
p
p

)
= 1 should contribute to the

number of vertices in the cube Qp that lies in layers i, i+ 1, . . . , i+ p).
This means that if a ∈ Zk lies in T then a + p (mod k) does not, and (a + 2p)

(mod k) is again in T . For odd k, 2p is relatively prime to k, so this will give that
T is either empty or Zk (which is not the case we are considering). So k is even
and a lies in T iff a+ p does not. As p is relatively prime to k this shows that T is
either all even or all odd residues modulo k, completing the proof.

4 Approximate hypercube statistics
Consider a positive integer d. We know exactly for what values of s = s(d), λ(d, s) =
1. These are s ∈ {0, 2d, 2d−1}. We say that the real value x ∈ (0, 1) is approximately
good if for any sufficiently large d and every n > d, there is a subset A of vertices in
Qn such that each copy of Qd contains x2d(1 + o(1)) elements of A, where the o(1)

tends to zero as d tends to infinity.

Theorem 5. Any fixed real number x ∈ (0, 1) is approximately good.

Proof. Approximate x by a rational ℓ/k so that |x− ℓ/k| = o(x). Note that for any
fixed k, as d tends to infinity ke−d/(10k2) = o(x).

Let A be a subset of vertices of the cube Qn consisting of all layers that modulo
k belong to some fixed set P of ℓ elements of Zk. Define q(a, k, d) to be the sum
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of the binomial coefficients
(
d
i

)
over all i, i ≡ a (mod k), as in the previous section.

Then each copy of Qd has
∑

y∈P q(a+ y, k, d) elements of A, for some integer a.
Since q(a, k, d) = 1

k

∑k−1
i=0 w−ia(1 + wi)d, for the primitive root of unity w of

order k, separating the term i = 0 and using the triangle inequality, we have

|q(a, k, d)− 1

k
2d| ≤ (2− 1

4k2
)d ≤ 2de−d/(10k2).

Note that the constants 4 and 10 here are not optimal and we make no attempt to
optimize them.

Therefore, for each copy Q of Qd

||A ∩Q| − ℓ

k
2d| ≤ k2de−d/(10k2) ≤ o(x2d).

Since by our choice of the approximation ℓ/k

| ℓ
k
2d − x2d| ≤ o(x2d)

the desired result follows.

Remark 3. • For x = 1/3 the set A consisting of every third layer of Qn con-
tains either ⌊2d/3⌋ or ⌈2d/3⌉ points in each copy of Qd, showing that in this
specific case the approximation obtained is as strong as possible. Note also
that for the unique odd value s ∈ {⌊2d/3⌋, ⌈2d/3⌉} this shows that λ(d, s) ≥
2/3 − o(1) with the o(1)-term tending to 0 as d tends to infinity. This is a
better lower bound than the one provided by Theorem 2 for this case.

• As is the case with all the questions here, the behaviour is very different than
the one with the analogous questions about edge statistics in graphs: trying to
maximize the number of induced subgraphs on d vertices in a large graph that
span exactly (or approximately) s edges. Here, by Ramsey’s theorem, there are
always such induced subgraphs that span either 0 or

(
d
2

)
edges, so no nontrivial

approximation to s is possible if we want it to hold for all induced subgraphs
on d vertices.

5 Concluding remarks
We considered the hypercube statistics problem expressed in the numbers λ(d, s).
We proved for a given d that λ(d, s) = 1 iff s ∈ {0, 2d, 2d−1} and that for other
values of s, λ(d, s) is at most 1−Ω(1/s) as d grows. We also showed that for those
s that are divisible by a high power of 2 the lower bound on λ(d, s) is close to the
above upper bound. The following question remains open.

Question. What is the infimum of λ(d, s) over all admissible values of d and s? Is
it cd(1 + o(1)) for large d?
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By the probabilistic argument described in the second section, we know that
λ(d, s) is at least cd, which is larger than 0.28 for all d, s. However, we lack compara-
ble upper bounds. In particular we suspect that for large d, λ(d, 1) = (1+o(1))1/e ≈
0.37, where the o(1)-term tends to 0 as d tends to infinity, but can only prove a
weaker upper bound. One way to upper bound λ(d, 1) is to use a tight bound for
λ(d+2, d, 1). Together with Huy Pham we observed that a better way is to use the
fact that the function λ(d, 1) is monotone decreasing in d. Therefore, the known
0.60254 upper bound for λ(4, 1) (obtained by Baber using the Flag Algebra method)
provides the same upper bound for all d ≥ 4. The monotonicity follows from the
fact that for every n > d > 1, λ(n, d, 1) ≤ λ(n− 1, d− 1, 1). Indeed, if A is a subset
of Qn so that a λ(n, d, 1) fraction of the d-subcubes contain exactly one point of
A, there is a coordinate i so that at least λ(n, d, 1) fraction of the d-subcubes in
which i is one of the free coordinates contain exactly one point of A. Without loss
of generality assume that i = n. Let A′ be the set of all binary vectors v of length
n− 1 so that A contains exactly one of the two vectors v0 and v1. Therefore, A′ is
a subset of the cube Qn−1 on the coordinates {1, 2, . . . , n− 1}. It is clear that the
fraction of (d− 1)-cubes of Qn−1 that contain exactly one point of A′ is at least the
fraction of d-subcubes on Qn in which n is a free coordinate, that contain exactly
one point of A. This implies that λ(n−1, d−1, 1) ≥ λ(n, d, 1), implying the desired
monotonicity.

Our proof of the general upper bound involved a careful analysis of the (d+ 2)-
cubes and averaging. We observe that the upper bound in (d + 2)-cubes for s > 1

is achieved by configurations with exactly 4s vertices of A. One could then upper
bound the fraction of (d+2)-cubes containing exactly 4s elements, and possibly also
iterate the argument. However, this approach only gives a modest improvement of
the upper bound.

Recall that if λ(d, s) = 1 then s ∈ {0, 2d, 2d−1}. If s = 0 there is a unique set A

in Qn such that λ(n, d, s, A) = 1, namely the empty set. Similarly, for s = 2d, the
only such set A is the set of all vertices of Qn. If s = 2d−1 and d = 1, there are two
possible sets A such that λ(n, d, s, A) = 1, the one consisting of all vertices of even
Hamming weight and the one consisting of all vertices of odd Hamming weight. If
s = 2d−1 and d > 1, there are more than two such sets. Indeed, one can start
with the set A consisting of all vertices of even Hamming weight which satisfies
λ(n, d, s, A) = 1. Next, consider an (n − d + t)-subcube Q, for some t ∈ [d − 1],
and replace A with its complement in this subcube. Let B be the resulting set of
vertices. For any d-cube Q′, Q ∩Q′ is a subcube of dimension at least t. Since any
subcube of dimension at least one has exactly half of its vertices in A, it follows that
the number of vertices of B in Q′ is still exactly 2d−1. With certain restrictions,
this process can be repeated to get additional sets A that work.

When s = 2d, it is clear that λ(d, s) = 1 by taking all the vertices in a ground hy-
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percube. However, the problem of finding the largest possible value of λ(n, d, 2d, A)
becomes non-trivial if we restrict the setting to the case when the size k of A is
prescribed. This problem is a generalisation of the classical isoperimetric problem
originally considered for d = 1 that counts the largest number of edges induced by
k vertices in Qn. It was solved by Hart [11], as well as by quite a few others. Hard-
stun, Kratochvíl, Sunde, and Telle [15], see also Simon [14] and Bollobás and Leader
[5], extended this problem to general d and proved that for |A| = k, λ(n, d, 2d, A) is
maximised by the set A of k binary vectors that represent the first k non-negative
integers.

Remark 4. Motivated by our paper, Budnár and Pikhurko determine in [6] the
precise values of λ(d, s) for three pairs (d, s) where λ(d, s) ̸= 1. Using the Flag
Algebra method they prove that λ(3, 2) = 8/9, λ(4, 2) = 264/343 and λ(4, 4) =

26/27. Rahil Baber (personal communication) was able to re-prove these results
using the Flag Algebra method with his code. At the moment these are the only
pairs (d, s) for which λ(d, s) is not 1 and is known precisely. In all three cases the
lower bounds are the ones described in the proof of Theorem 2 here and the remark
following it.
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