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Abstract

For a graph property P consider the following computational problem. Given an input graph
G, what is the minimum number of edge modifications (additions and/or deletions) that one
has to apply to G in order to turn it into a graph that satisfies P? Namely, what is the edit
distance ∆(G,P) of a graph G from satisfying P. Clearly, the computational complexity of
such a problem strongly depends on P. For over 30 years this family of computational problems
has been studied in several contexts and various algorithms, as well as hardness results, were
obtained for specific graph properties.

Alon, Shapira and Sudakov studied in [3] the approximability of the computational problem
for the family of monotone graph properties, namely properties that are closed under removal
of edges and vertices. They describe an efficient algorithm that achieves an o(n2) additive
approximation to ∆(G,P) for any monotone property P, where G is an n-vertex input graph,
and show that the problem of achieving an O(n2−ε) additive approximation is NP -hard for
most monotone proeprties. The methods in [3] also provide a polynomial time approximation
algorithm which computes ∆(G,P)±o(n2) for the broader family of hereditary graph properties
(which are closed under removal of vertices). In this work we introduce two approaches for
showing that improving upon the additive approximation achieved by this algorithm is NP -
hard for several sub-families of hereditary properties. In addition, we state a conjecture on the
hardness of computing the edit distance from being induced H-free for any forbidden graph H.

1 Introduction

In a graph modification problem one is asked what is the minimum number of modifications that
need to be applied to an input graph in order to attain some property. The problems vary in the
desired property and the type of modifications that are allowed. In a vertex-modification problem,
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one is allowed to add/remove vertices from the input graph. In an edge-modification problem the
edge set of the graph is modified, i.e. edges can be added or removed. More restricted problems are
edge-deletion (completion) in which one is only allowed to remove (add) edges from (to) the input
graph. In their collection of NP problems, Garey and Johnson [19] mentioned 18 different types of
vertex and edge-modification problems. In this work we focus on edge-modification problems. For
a graph property P, the edit distance of a graph G from the property P is denoted by ∆(G,P),
which is exactly the desired output of the edge-modification problem for P.

The study of edge-modification problems is motivated by applications in several fields and hence
they were extensively studied in the past 30 years. Some of the important applications of com-
puting ∆(G,P) for appropriately defined properties P include Numerical Algebra [26], Molecular
Biology (see [14], [20] and [22]), Circuit Design [16], Machine Learning [11] and other combinatorial
optimization problems. Nevertheless, it can be observed that in almost all the applications the
focus is on graph properties that are hereditary, namely closed under removal of vertices (equiva-
lently, closed under taking induced subgraphs). Let us briefly demonstrate some results which were
obtained along the years:

• It has been shown that various edge-deletion problems for specific monotone graph properties
are NP -hard, see e.g. Yannakakis [29], Asano and Hirata [10] and Asano [9].

• Natanzon, Shamir and Sharan [24] studied the hardness of the edge-modification / deletion
/ completion problems for a few natural hereditary graph properties, such as being Chordal,
Perfect, and Comparability. They showed that some of the modification problems are NP -
hard to approximate within some constant multiplicative factor, and yet give a polynomial
approximation algorithm within a constant multiplicative factor for any hereditary property
defined by a finite set of forbidden induced subgraphs.

• Clustering problems motivated the study of computing the edit distance of a graph from being
a disjoint collection of cliques. This is equivalent to being induced K1,2-free, and sometimes
referred to as Cluster graphs. This problem was also shown to be NP -hard to compute ([27],
see also [11]).

However, the arguments in most of the afore mentioned proofs, as well as others not discussed here,
are ad-hoc.

A monotone graph property is closed under removal of edges and vertices, hence for a monotone
graph property the edge-deletion and edge-modification problems coincide. In [3], Alon, Shapira
and Sudakov provide the first result which holds for a large family of graph properties, namely all
monotone graph properties. They describe, for every monotone graph property P and ε > 0, a
polynomial time algorithm for approximating the edit distance of a given input graph on n vertices
from P. The algorithm obtains an additive approximation within εn2 of the correct edit distance
(a formal and more general statement of this result will be given shortly). The authors of [3] also
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characterize the monotone properties for which this algorithm achieves essentially the best possible
additive approximation (see Section 4 for a comprehensive discussion of this result).

A slightly modified version of the algorithm in [3] provides an approximation algorithm for
edge-modification problems for the broader family of hereditary graph properties. A variant of the
following result also follows implicitly from the connection between testing and estimating of graph
properties which is established by Fischer and Newman in [17]1.

Theorem 1.1. ([3]) For any fixed ε > 0 and any hereditary property P there is a deterministic
algorithm that given a graph G on n vertices computes in time O(n2) an integer ∆ which satisfies

|∆−∆(G,P)| ≤ εn2 .

It is asked in [3] for which hereditary properties this algorithm achieves essentially the best
possible additive approximation. In other words, whether one can extend the characterization
given for monotone properties in [3] to all hereditary graph properties. In this work we give a
partial positive answer, focusing on some hereditary properties of the type being induced H-free,
denoted by P∗H . We prove that for some families of graphs H, any essential improvement upon the
additive approximation attained by Theorem 1.1 is NP -hard. To this end we explore two possible
approaches.

Our main approach is presented in the next section, where we consider the case of H being
a cycle. The proof consists of two stages: first proving hardness of the exact computation of
∆(G,P∗H), then amplifying the result to show the hardness of the additive approximation. In
Section 3 we generalize the amplification method for a much broader family of graphs. Section 4
consists of the discussion of the second approach which is based on the reduction methods of [3].
This approach, however, seems to be more limited than the other one. In Section 5 we present
some conjectures on the hardness of approximating ∆(G,P∗H) for any graph H.

2 Hardness of approximating ∆(G,P∗C`
)

The main result of this section is formulated as follows.

Theorem 2.1. It is NP -hard to approximate the distance ∆(G,P∗C`) within an additive error of
O(n2−η) for any positive η > 0 and ` ≥ 4.

Clearly the property P∗C` is hereditary, hence together with Theorem 1.1 this gives a nearly
tight bound on the additive approximation which can be achieved in polynomial time for these

1Fischer and Newman [17] show that if a graph property is testable, then one can also estimate a graph’s distance

from satisfying the property using a constant size sample of the graph. Together with the result of Alon and Shapira

[2] this shows that every hereditary property is estimable, and the sampling algorithm in fact provides a randomized

algorithm for estimating the distance from satisfying the property.
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properties (assuming P 6= NP ). The proof of the theorem consists of two main steps. In the first
one we show that computing the exact edit distance ∆(G,P∗C`) is NP -hard. The second step is an
amplification of the result, that is, reducing the exact computation of ∆(G,P∗C`) to the problem of
obtaining an additive approximation to it.

Recall that for a graph G = (V,E), a set of vertices X ⊆ V is a vertex cover of G is for every
edge xy ∈ E of the graph at least one of its endpoints belongs to the vertex cover: {x, y} ∩X 6= ∅.
Note that the complement of a vertex cover is an independent set in the graph. It is well known
that it is NP -Hard to find the size of the minimum vertex cover of an input graph G. Thus the
starting point of our reductions in this section is the problem of determining the size of a minimum
vertex cover in a graph.

Lemma 2.2. For any fixed ` ≥ 4, it is NP-Hard to compute for a given input graph G the distance
∆(G,P∗C`).

Proof. We establish a (mapping) reduction from minimum vertex cover as follows. Given a graph
G = (V,E) on |V | = n vertices and |E| = m edges, let k denote the size of a minimum vertex cover
for G. Our goal is to construct a graph G′ such that ∆(G′,P∗C`) = k. We obtain G′ from G as
follows.

We add a new vertex x which is connected to all the vertices in G, and replace any edge
of G by a path of length ` − 2 which connects its endpoints in G′. Therefore, in G′ there are
n′ = 1 + n+ (`− 3)m vertices and m′ = n+ (`− 2)m edges. We refer to the vertex x as the special
vertex, the vertices that correspond to the vertices of G as the old vertices and the inner vertices
of the paths (which replace the edges of G) as the new vertices in G′.

The first observation about G′ is that any copy of C` in G′ must contain x. Hence, given a
vertex cover of G, suppose we remove edges in G′ from x to all the members of the vertex cover.
In what is left, x is connected to a set of vertices which correspond to an independent set of G. It
now follows that none of the copies of C` in G′ survives, implying that ∆(G′,P∗C`) ≤ k.

On the other hand, consider a minimum set A of vertex pairs in G′, of size a = |A|, whose
modification destroys all the induced copies of C`. We claim that we can find a set B of at most a
edges that are incident to x such that its removal destroys all the copies of C` in G′. We construct
B from A as follows:

• If a pair in A consists of two new vertices which come from two different paths, then we do
not add it to B.

• If a pair in A consists of two new vertices which come from the same path, then we add xv

to B where v is one of the endpoints of that path.

• If a pair in A consists of a new vertex y and an old vertex v, then we add xv to B.
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• If a pair vu that consists of two old vertices belongs to A, then we add xv to B (arbitrarily
choosing either v or u).

• If a pair in A consists of the special vertex x and some new vertex y, then we add an edge xv
to B, where v is an old vertex which is one of the endpoints of the path to which y belongs.

• If a pair in A consists of x and an old vertex v, we simply add it to B.

This defines the treatment of all the possible pairs in A. Clearly, |B| ≤ |A| (note that several
different edges in A may correspond to the same edge in B). However, in any induced copy of C` in
G′, at least one of its vertex pairs appears in A. Hence, by our choice of B, that pair corresponds
to an edge in B which is contained in that C`. Therefore, by removing all the edges of B from
G′ indeed all the C`s are destroyed. In other words, removing at most a edges which are incident
to x indeed turns G′ into an induced C`-free graph. However, by the construction of G′, the set
of old vertices which are incident to those edges must establish a vertex cover in G (otherwise, an
uncovered edge in G would correspond to an induced copy of C` in G′ after the removal of B).
Thus, k ≤ a which proves the validity of the reduction.

�

Remark 2.3. It is not difficult to show that Lemma 2.2 holds also in the case ` = 3. This is
possible due to the result of Poljak [25] (see also Theorem 2.1 in [21]) who showed that computing the
minimum vertex cover is NP -hard also for triangle-free graphs. Thus, when starting the reduction
with a graph G which is guaranteed to be triangle-free, then all the triangles in G′ must contain the
special vertex x. Hence, again, a minimum set of edges whose modification destroys all the triangles
in G′ corresponds to a minimum vertex cover in the original graph G. However, the hardness result
for H = C3 also follows from [3] since triangle freeness is a monotone property.

Remark 2.4. Dinur and Safra [15] proved that approximating the size of a vertex cover within a
multiplicative factor of ≈ 1.36 is NP -hard. Their result implies by Lemma 2.2 that approximating
the edit distance of a graph from P∗C` within a multiplicative factor of ≈ 1.36 is NP -Hard. Note
that Theorem 1.1 provides an approximation algorithm with a multiplicative factor of (1 + ε) for
any positive ε, however this ratio only holds for dense graphs (namely graphs with Ω(n2) edges).

It should be noted that for the reduction of Lemma 2.2 the graph which is constructed is rather
sparse, having a linear number of edges. Thus, approximating its edit distance within an additive
factor of n2−η is trivial for 0 < η < 1. Our next step towards the proof of Theorem 2.1 is an
amplification of the above result. By appropriately blowing up the input graph, we are able to
enlarge the edge density of the graph together with the gap in the distance from P∗C` . To this
end we use a clique blow-up: each vertex in the graph is replaced by a cluster of vertices that
spans a clique, and every edge is replaced by a complete bipartite graph between the clusters which
correspond to its endpoints. The intuition behind the choice of this type of blow-up is provided in
Section 3.
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Proof of Theorem 2.1:
For any positive constant 0 < η < 1

4 , fix b = b(n, η) = n
1

2η2 . Our proof in this case is by a reduction
from computing the exact distance, which is NP -hard by Lemma 2.2. Given an input graph G,
assume that ∆(G,P∗C`) = k.

We construct a graph Gb which is the b- clique blow-up of G, that is a clique blow-up in which
each vertex in G is replaced by a cluster of b vertices in Gb.

Claim 2.5. ∆(Gb,P∗C`) = kb2.

Proof. First, suppose we modify in Gb the kb2 edges of the bipartite graphs that correspond to a
set of k edges in G whose modification makes G induced C`-free. Call this new graph G′b. Note that
also in G′b a pair of vertices in the same cluster have exactly the same set of neighbors (excluding
themselves). Hence, assume towards a contradiction, that G′b contains an induced C`. In this case,
each of its ` vertices comes from a different cluster. Therefore, such an induced copy of C` in G′b
implies that by taking the vertices in G that correspond to those ` clusters, it must also span a C`
which is an induced subgraph of the modified G. This leads to a contradiction, thus proving the
first direction, namely ∆(Gb,P∗C`) ≤ kb

2.

On the other hand, assume k′ = ∆(Gb,P∗C`) and that G′b is the closest induced C`-free graph to
Gb. Pick uniformly independently one vertex from each cluster in G′b. This is an induced subgraph
of G′b, and hence induced C`-free. The expected number of modifications (between Gb and G′b) that
are spanned by these vertices is at most k′/b2. By applying these modifications to G, one obtains an
induced C`-free graph. Thus some choice of such representatives shows that k = ∆(G,P∗C`) ≤ k

′/b2

which completes the proof of the claim. �

In Gb there are bn vertices, and hence the output of an algorithm achieving an additive approx-
imation of n2−η would give us d = ∆(Gb,P∗C`)± (bn)2−η = b2k ± (bn)2−η. However, for our choice
of b and a sufficiently large n, we get that the error term is at most

(bn)2−η = n
(1+ 1

2η2
)(2−η) = n

1
η2 n

2−η− 1
2η = b2o(1) <

1
2
b2 .

Therefore, in this case, kb2 can be determined from d, and hence also k. We conclude that a
polynomial time algorithm for finding such d would imply a polynomial algorithm for finding the
exact edit distance ∆(G,P∗C`). �

3 Robustness of the amplification method

As the proof for the case H = C` demonstrates, the hardness of approximation of ∆(G,P∗H) may
be proved in two steps. The first one showing that it is NP -hard to exactly compute the distance
∆(G,P∗H), where the second step is showing that an additive approximation can be utilized to
deduce the exact value of ∆(G,P∗H). In this section we analyze the robustness of the amplification
method which was used for the case H = C`. We show that it holds for a large family of (forbidden)
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graphs H. This, in turn, implies possible extension of the hardness of additive approximation as
detailed in Corollary 3.3.

The following definition will be very useful throughout our discussion. For any graph H define
a binary relation RH on its vertex set:

xRHy ⇐⇒ N(x) ∪ {x} = N(y) ∪ {y} ,

where N(x) denotes the neighbors of x in H. Note that for xRHy it is necessary that xy is an
edge of H. It is not difficult to verify that this is an equivalence relation. Let Ĥ be an induced
subgraph of H obtained by picking one vertex from each equivalence class of RH . Note that all
such choices result in graphs isomorphic to Ĥ. We use the following simple claim regarding Ĥ.
Recall that a clique blow-up of a graph G is obtained by replacing the vertices of the graph by
cliques, and replacing an edge by a complete bipartite graph between the cliques which correspond
to the endpoints of that edge.

Claim 3.1. If a graph G ∈ P∗
Ĥ

is induced Ĥ-free, and F is a clique blow-up of G, then F ∈ P∗H is
induced H-free.

Proof. Suppose V (F ) = V1 ∪ . . . ∪ Vn where each Vi is a clique blow-up of vertex i in G. Note
that in F , two vertices in the same Vi are connected and have the same set of neighbors. Assume
towards a contradiction that F contains an induced copy of H. Any pair of vertices from different
equivalence classes in H cannot appear in the same Vi. Now, if we take the induced copy of H in
F and pick one vertex from each Vi (or none if there are no vertices of H), we get a graph that
contains at least one member from each equivalence class of H, and thus contains Ĥ as an induced
subgraph. Since there is at most one member from each Vi, this is also an induced subgraph of G,
contradiction.

�

Note that Claim 3.1 does not necessarily assume that each vertex of G is replaced (i.e. blown-
up) by a clique of the same size. However, the cases which justify the discussion are the graphs H
that satisfy H = Ĥ. A special case of those graphs are the cycles C` of length ` ≥ 4 which were
discussed in the previous section. The generalized amplification result follows from the next claim.

Claim 3.2. Let H and G be arbitrary graphs, and assume H = Ĥ. Further assume k = ∆(G,P∗
Ĥ

),
and that F is a b-clique-blow-up of G. Then ∆(F,P∗H) = kb2.

Proof. First, suppose we modify in F the kb2 edges that correspond to a set of k edges in G which
makes G induced Ĥ free. The resulting graph is in fact a clique blow-up of some member in P∗

Ĥ
,

and by Claim 3.1 it is in P∗H . Thus ∆(F,P∗H) ≤ kb2.

On the other hand, suppose we modify s = ∆(F,P∗H) edges in F thus turning it into an
induced H-free graph denoted F ′. Pick uniformly independently one vertex from each blown-up
set in F ′. This is an induced subgraph of F ′, and thus it is induced H = Ĥ-free. The expected
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number of modifications that fall into this induced subgraph is at most s/b2. Hence for some
choice of representatives, viewing them as the vertices of G shows that k = ∆(G,P∗

Ĥ
) ≤ s/b2 which

completes the proof.

�

Claim 3.2 and the last part of the proof of Theorem 2.1 imply the following corollary.

Corollary 3.3. Assume a graph H satisfies

1. All the equivalence classes of RH are of size 1, namely H = Ĥ.

2. It is NP -hard to exactly compute ∆(G,P∗H).

Then for any positive η > 0, it is NP -hard to approximate ∆(G,P∗H) within an additive error of
n2−η.

Remark 3.4. At this point it should be noted that we could also define an equivalence relation in
which two vertices are related if they have the same set of neighbors and they are not connected.
This yields a similar amplification result on graphs in which no two vertices are related. Here
however this will be achieved by an independent set blow-up, that is a blow-up in which each vertex
is replaced by an independent set. Nevertheless, equivalently, this can be achieved by taking the
complement of H, and then using the relation RH as defined before.

4 Generalizing the hardness proofs from monotone to hereditary

properties

As noted before, Alon, Shapira and Sudakov [3] obtain a characterization of the monotone properties
for which the algorithm of Theorem 1.1 achieves essentially the best possible approximation as
follows:

Theorem 4.1. (Theorem 1.3 in [3]) Let P be a monotone graph property. Then,

1. If there is a bipartite graph that does not satisfy P, then there is a δ > 0 for which it is
possible to approximate ∆(G,P) to within an additive error of n2−δ in linear time.

2. On the other hand, if all bipartite graphs satisfy P, then for any δ > 0 it is NP -hard to
approximate ∆(G,P) to within an additive error of n2−δ.

In this section we discuss the possibility of extending the proof of Theorem 4.1 to obtain a
similar characterization for hereditary properties. Our emphasis here is on the reduction method
which was used in [3]. We thus start by sketching this method. We then outline a proof suitable
for hereditary graph properties, which basically follows the approach of [3]. Our final remarks here
concern the limitations of this method.
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4.1 The reduction for monotone properties

The proof of the first part of Theorem 4.1 follows from the results on the Turán numbers of bipartite
graphs. Let us elaborate on the method for proving part 2 in Theorem 4.1. Following the basic
approach of [1], a blow-up of a sparse instance to a problem is embedded in an appropriate dense
pseudo-random graph. The core of the proof is based on Theorem 4.2 below. Let H be an arbitrary
graph, and denote the graph property of excluding a (not necessarily induced) copy of H by PH .
The theorem shows that for any graph G with sufficiently large minimal degree, in order to make it
H-free in the most economical way, one needs to modify G so that it becomes almost r-colorable,
where χ(H) = r + 1. The theorem simultaneously extends the results of Erdős-Stone-Simonovits
(cf. [12] and [28]) and Andrásfai-Erdős-Sós [8].

Theorem 4.2. (part of Theorem 6.1 in [3], see also [7]) Let H be a graph of chromatic
number r + 1 ≥ 3. There are constants γ = γ(H) > 0 and µ = µ(H) > 0 such that if G = (V,E)
is a graph on n vertices of minimum degree at least (1− µ)n, then

∆(G,Pr,0)−O(n2−γ) ≤ ∆(G,PH) ≤ ∆(G,Pr,0)

where Pr,0 denotes the graph property of being r-colorable.

We now sketch the main ingredients of the reduction. LetM be an arbitrary monotone property,
and suppose H is a graph not satisfyingM with minimal chromatic number χ(H) = r+1 ≥ 3. The
reduction is from the problem of computing the (exact) edit distance of an input graph from being
r-colorable, which is known to be NP -hard for r ≥ 2. Hence, the instance is a graph G for which
one has to decide how many edges need to be removed in order to make it r-colorable. The input to
the edge-modification problem, F is roughly constructed by taking the “Boolean Or” of two graphs.
The first graph is a pseudo-random dense graph, with degrees (1 − µ)n. The second is a disjoint
union of r copies of a blow-up of the original graph by a polynomial factor. The “Boolean Or” of
the two graphs is obtained by identifying their vertices arbitrarily (the order has no significance,
as one of them is pseudo-random) and connecting two vertices if they are connected in at least one
of the graphs. Thus, each edge e of G results in F in a slightly higher edge density (1 instead of
1 − µ) of the bipartite graph between the clusters which correspond to the endpoints of e in G.
Theorem 4.2 implies that approximating the edit distance of F from M within at most n2−γ(H)

enables one to compute the exact number of edges that need to be removed from G in order to make
it r-colorable. Intuitively, this last observation follows from the fact that the closest graph in M
is essentially r colorable with equal sized sets. Therefore, the contribution of the pseudo-random
graph to the number of edges that need to be deleted is independent of the partition into r color
classes. Hence altogether the distance of F from M mainly depends on the distance of G from
being r-colorable.
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4.2 A method for reducing hereditary properties

We would like to borrow some ideas from the above method to establish a reduction for hereditary
properties. As we shall see shortly, most of the ingredients have to be modified. We first need to
extend the usual notion of graph coloring as follows.

Definition 4.3. For any pair of integers (r, s), such that r+s > 0, we say that a graph G = (V,E) is
(r,s)-colorable if there is a partition of V into r+ s (possibly empty) subsets I1, . . . , Ir, C1, . . . , Cs

such that each Ik induces an independent set in G, and each Ck induces a clique in G.

Thus, in particular, (r, 0)-colorable graphs are r-colorable graphs. We denote by Pr,s the graph
property comprising all the (r, s)-colorable graphs.

Going back to the reduction, we narrow our discussion to properties of the family P∗H , and
apply the following changes to the method of [3]:

• Let (r, s) be such that H is not (r, s) colorable. The reduction is from the problem of
determining what is the exact edit distance of an input graph from being (r, s)-colorable,
instead of the distance from being r-colorable. There is a simple reduction showing these
problems are NP -hard when max{r, s} ≥ 2 . 2 In addition, it is also needed in this case that
it is hard to compute the edit distance from having an (r, s)-coloring in which all color classes
have equal sizes. This slight refinement can be deduced by a straightforward reduction.

• The dense pseudo-random graph is replaced by a pseudo-random graph with edge density 1
2 .

• The “Boolean Or” operation is changed to adding/removing (pseudo-)random edges in order
to increase/decrease the edge density of the pseudo-random graph according to the input
graph. We consider a blow-up of the original graph G, identify its vertices with some vertices
of the pseudo-random graph, and then slightly decrease (increase) the edge-density between
clusters that correspond to vertices that are not connected (connected) in G. The modifica-
tions are applied so that the resulting graph is very close to the original pseudo-random graph,
that is, the number of changes applied to edges touching each vertex in the pseudo-random
graph is bounded by δn, where δ is a positive constant that depends on H.

Yet, the most important ingredient for proving the correctness of the above reduction is an extremal
result, analogous to Theorem 4.2. Roughly, it states that modifying the random graph into an
induced H-free graph in the most economical way is achieved by making it (r, s)-colorable. This
basic idea is illustrated in the following theorem for the particular case H = C4. Note that
P1,1 ⊂ P∗C4

.

2In any other case, namely max{r, s} ≤ 1, the problem is polynomial. For (1, 0) and (0, 1) this is trivial, while

for (1, 1) there is a simple polynomial time algorithm for computing the edit distance from being a split graph

((1, 1)-colorable), as described in [23].
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Theorem 4.4. ([6]) Let Ĝ be the closest graph in P∗C4
to G = G(n, 1

2), i.e. Ĝ satisfies ∆(G, Ĝ) =
∆(G,P∗C4

). Then, w.h.p., Ĝ is (1, 1)-colorable.

In a more general form of Theorem 4.4, C4 can be replaced by Kr+1(s + 1) - the complete
(r + 1)-partite graph with s + 1 vertices in each part, in which case Ĝ will be (r, s)-colorable. In
order to use the ideas of [3], Theorem 4.4 - which, in a sense, is an analog of Turán’s Theorem -
should be extended in the following ways:

• Theorem 4.4 holds even if one applies arbitrary changes to G, such that for any vertex v

in the graph, the number of modifications in edges touching v does not exceed δn for some
δ > 0. This may seem similar to the minimal degree restriction of Theorem 4.2.

• Replacing the random graph by a pseudo-random graph with edge density 1
2 , the above results

still hold. Hence, in this case the statement of Theorem 4.4 always holds (not just w.h.p.).

We note that the choice of G(n, 1/2) makes the proof of Theorem 4.4 possible, since fundamental
parts of the proof rely on the symmetry in the number of edge additions and deletions one has to
apply in order to turn a subgraph of G(n, 1/2) into either a clique or an independent set.

Recall that our construction results in a graph which is close to a pseudo-random graph, and
thus its edit distance from being induced H-free equals its distance from being (r, s)-colorable with
essentially equal sized sets. Therefore, similar to the argument for monotone properties, computing
an approximation of its distance from being (r, s)-colorable enables us to accurately compute the
distance of G from being (r, s)-colorable with equal sized sets. This therefore completes the sketch
of the reduction.

4.3 The limits of this approach

It is clear that following this method, the extent of the hardness results strongly depends on the
ability to generalize Theorem 4.4. So far, we were able to extend the reduction for properties P∗H
for a specific family of graphs, namely Kr+1(s+ 1) (max{r, s} ≥ 2). These graphs seem to capture
some special extremal properties which generalize the special role that the complete graphs play in
various Turán type problems.

On the other hand, it is observed in [6] that in some cases an extremal result of this type is
not possible. Namely, for some natural graphs H, there might be two graphs with a very different
structure which are essentially the closest graphs in P∗H to G(n, 1

2). Hence, it is not possible to relate
the edit distance from satisfying P to the edit distance from having some fixed structure (such as
being (r, s)-colorable), and this approach will not provide an appropriate reduction. Therefore the
extent of our approach here is limited.

A possible extension can be obtained by a similar reduction in which the starting point is a
pseudo-random graph with some edge density p 6= 1

2 . To this end, two steps have to be taken. The
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first is proving an analogue of Theorem 4.4 (with its extensions) for G(n, p) and other hereditary
properties. In other words, it may be possible that for any hereditary property there exist some
0 ≤ p ≤ 1 for which an analogue of the theorem holds. The second step is modifying the reduction
appropriately in order to obtain a reduction which suits this setting. However, both problems
seems to be difficult, and at the moment it seems that this approach is less promising than the one
discussed in the previous section.

5 Conjectures and concluding remarks

The first conjecture is the following:

Conjecture 5.1. For any graph H on at least 3 vertices, it is NP -hard to compute ∆(G,P∗H) for
an input graph G.

Recall that Lemma 2.2 proves this conjecture for any cycle. The NP -hardness of the edge
modification problem on Clique graphs [27] imply the same for P3 = K1,2. Nevertheless, let us
point out that the construction of Lemma 2.2 can be extended to show that for many other graphs
H a similar result holds. For instance, if H is a disjoint union of a cycle and a tree or when H is a
blow-up of a complete graph (where at least two vertices are replaced by independent sets of size
at least 2) and in particular when H is any complete bipartite graph Kp,q with min{p, q} ≥ 2.

The way to obtain this type of results is to construct a graph G′′ as follows. We start with
the graph G′ which is constructed in Lemma 2.2 from G, and then add an n2-clique blow-up of
H \ C` (i.e., the graph H from which ` vertices that span C` are removed). This blow-up should
be carefully connected to the vertices of G′ in a way that guarantees that (i) when removing edges
from G′ such that all the copies of C` are destroyed then all the copies of H in G′′ are destroyed,
and (ii) any copy of C` in G′ participates in n2 edge-disjoint copies of H in G′′. Therefore, we are
again guaranteed that the most economical way to destroy all the copies of H in G′′ is by removing
edges in G′ that correspond to a vertex cover of G.

Using Corollary 3.3 and assuming Conjecture 5.1, the hardness of obtaining additive approxi-
mation for various properties P∗H follows . Nevertheless, our main conjecture is much stronger, and
in fact we believe that an amplification is possible for every graph, namely:

Conjecture 5.2. For any graph H on at least 3 vertices, and any positive η > 0, it is NP -hard
to approximate the edit distance ∆(G,P∗H) for an input graph G on n vertices within an additive
error n2−η.

Note that when v(H) = 2 the problem is trivially polynomial. For v(H) = 3 this conjecture
follows for the triangle (and its complement) by the results of [3] and for K1,2 (and its complement)
by a combination of [27] and Corollary 3.3. Hence it follows for every graph on 3 vertices. We
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believe that combining arguments similar to those described in the previous couple of sections might
prove this conjecture.

It is far more complicated to decide if the above holds for other hereditary properties. Intuitively,
it seems plausible that for most of the hereditary properties Theorem 1.1 is essentially tight. This
coincides with the case of monotone properties, for which such a result is proved in [3]. There are
also various specific hereditary (non-monotone) such properties. One natural approach would be
to extend proofs for a single forbidden induced subgraph (like the properties we considered in this
work) to other hereditary properties which are defined by several forbidden induced subgraphs. On
the other hand, it is worth mentioning that forbidding several induced subgraphs might end up in
a more degenerate property for which determining the edit distance becomes easy. For instance, it
is known that split graphs are exactly the graphs that are induced {C4, C4, C5}-free ([18], see also
[21] pp. 151-152), where the computation of the exact edit distance from being a split graph can
be done in polynomial time (cf. [23]). Yet computing (or even approximating in an appropriate
sense) the edit distance from being induced H-free for any H ∈ {C4, C4, C5} is NP -hard.
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