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Abstract

We prove the following variant of Helly’s classical theorem for Hamming balls with a bounded
radius. For n > ¢ and any (finite or infinite) set X, if in a family of Hamming balls of radius ¢ in
X", every subfamily of at most 27! balls has a common point, so does the whole family. This
is tight for all |X| > 1 and all n > ¢. The proof of the main result is based on a novel variant of
the so-called dimension argument, which allows one to prove upper bounds that do not depend on
the dimension of the ambient space. We also discuss several related questions and connections to
problems and results in extremal finite set theory and graph theory.

1 Introduction

1.1 Helly-type problems for the Hamming balls

Helly’s theorem, proved by Helly more than 100 years ago (|Hel23]), is a fundamental result in discrete
geometry. It asserts that a finite family of convex sets in the d-dimensional Euclidean space has a
nonempty intersection if every subfamily of at most d + 1 of the sets has a nonempty intersection.

This theorem, in which the number d+1 is tight, led to numerous fascinating variants and extensions
in geometry and beyond (c.f., e.g., [Eck93, BK22| for two survey articles). It motivated the definition
of the Helly number h(F) for a general family F of sets. This is the smallest integer h such that
for every finite subfamily K of F, if every collection of at most h members in K has a nonempty
intersection, then all sets in K have a nonempty intersection. The classical Helly’s theorem asserts
that the Helly number of the family containing all convex sets in R¢ is d + 1. Another interesting
example of a known Helly number is due to Doignon [Doi73|: the Helly number of convez lattice sets
in the d-dimensional Euclidean space, that is, sets of the form C' N Z¢ where C is a convex set in R?,
is 2¢. A more combinatorial example is the fact that, given any tree 7' on more than one vertex, the
Helly number of the family of (the vertex sets of) all subtrees of T is 2.

In the space X™ for finite or infinite X, the Hamming balls are among the most natural objects to
study. The Hamming distance between p,q € X™, denoted by dist(p, q), is the number of coordinates
where p and ¢ differ, and the Hamming ball of radius t centred at x € X", denoted by B(x,t), is
the set of all points p € X™ that satisfy dist(p,z) < t. Since every Hamming ball of radius t equals
the whole space whenever n < ¢, we may and will always assume that n > ¢t + 1. Our main result
determines the Helly number of the family of all Hamming balls of radius ¢ in the space X", where X
is an arbitrary (finite or infinite) set.

Theorem 1.1. Let n >t > 0 and X be any set of cardinality | X| > 2. The Helly number h(n,t; X)
of the family of all Hamming balls of radius t in X™ is exactly 201
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Crucially, h(n,t; X) depends only on t. We note that the special case X = {0,1} of this theorem
settles a recent question raised in [RST24|, where the question was motivated by an application in
learning theory. See also [BHMZ20] for more connections between the Helly numbers and questions
in computational learning theory.

Another fundamental result in discrete geometry is Radon’s theorem [Rad21], which states that any
set of d+2 points in the d-dimensional Euclidean space can be partitioned into two parts whose convex
hulls intersect. This was first obtained by Radon in 1921 and was used to prove Helly’s theorem; see
also [Eck93, BK22|. Using our methods, we can prove the following strengthening of Theorem 1.1. As
we will explain below, it can be viewed as Radon’s theorem for the Hamming balls.

Theorem 1.2. Let n >t >0 and X be any set of cardinality | X| > 2. Suppose {Bqa}aca is a (finite
or infinite) collection of Hamming balls in X™ of radius t. Then, there exists A’ C A of size at most
271 such that (Nye s Ba = Nacar Ba-

The upper bound of the Helly number h(n,t; X) < 2! follows easily from this result. Indeed,
suppose Bi, ..., B,, are Hamming balls in X" of radius ¢ such that any collection of at most 2!*1 of
them has a common intersection. By Theorem 1.2, there exists I C [m] of size |I| < 2/*! such that
Ni—y Bi = (;e; Bi, which is nonempty. To explain its connection with Radon’s theorem, we briefly
discuss the notion of (abstract) convexity spaces.

An (abstract) convezity space is a pair (U,C) where U is a nonempty set and C is a family of subsets
of U satisfying the following properties. Both () and U are in C and the intersection of any collection
of sets in C is a set in C. One natural example is the standard Euclidean convexity space (R%,C%)
where C? is the family of all convex sets in RY. We refer the readers to the book by van de Vel [Vel93]
for a comprehensive overview of the theory of convexity spaces.

In a convexity space (U,C), the members of C are called convex sets. Given a subset Y C U, the
convex hull of Y, denoted by conv(Y'), is the intersection of all convex sets containing Y, i.e. the
minimal convex set containing Y. The Radon number of this convexity space (U, C), denoted by r(C),
is the smallest integer r (if it exists) such that any subset P C X of at least  points can be partitioned
into two parts Py and P such that conv(P;)Nconv(P,) # ). For instance, 7(C?) = d+2 for the family
of convex sets in R%. Tt is well-known that the Helly number is smaller than the Radon number if the
latter is finite; see [Lev51].

In our case, U = X", and Cp consists of all intersections of arbitrary collections of Hamming balls
of radius t. It is easy to check that (U,Cy) is a convexity space and that all Hamming balls of radius
at most t are contained in Cyy. We now argue that in (U, Cy), the Helly number is 2/7! and the Radon
number is 2071 + 1. By the above discussion, we already know that 7(Cg) > h(Cy) > h(n,t; X). In
addition, as we will see in Proposition 2.2, a simple ‘cube’ construction shows h(n,t; X) > 2!*1. Hence,
for our purpose, it suffices to prove that r(Cy) < 2! + 1. Now, let p1,p2,...,pm be m > 2F1 41
points in X™. Notice that for any set of points P C X™, conv(P) is the intersection of all Hamming
balls B(q,t) satisfying P C B(q,t), and that P C B(g,t) if and only if ¢ € mpEP B(p,t). So conv(P) is
the intersection of B(q,t)s over all ¢ € () p B(p,t). By Theorem 1.2, () B(pi,t) = (\;c; B(pi,t) for
some I C [m] of size at most 271, This means () # I # [m] and conv((p;)™;) = conv((p;)icr). Hence,
0 # conv((pi)igr) € conv((pi)it;) = conv((pi)ier), which implies conv((p;)i¢r) N conv((pi)ier) # 0.
This proves 7(Cy) < 2!+ 41, as desired.

In the original setting of convex sets in R%, the following two extensions of Helly’s theorem received
considerable attention. The fractional Helly theorem, first proved by Katchalski and Liu [KL79], states
that in a finite family of convex sets in RY, if an a-fraction of the (d + 1)-tuples of sets in this family
intersect, then one can select a [-fraction of the sets in the family with a nonempty intersection.
The Hadwiger—Debrunner conjecture, also known as the (p, ¢)-theorem, was first proved by Alon and



Kleitman [AK92|. It states that for p > ¢ > d+ 1, if among any p convex sets in the family, ¢ of them
intersect, then there is a set of Oy, ,(1) points in R? such that every convex set in the family contains
at least one of these points. See also [BK22| for more recent variants and extensions.

Fractional Helly theorems and (p, ¢)-theorems are also studied in general convexity spaces. It is
known that a finite Radon number implies the fractional Helly theorem [HL21]. Moreover, as long as
the convexity space has a finite Radon number and a fractional Helly theorem for ¢-tuples (for any
?), then the (p, ¢)-theorem holds for every p > g > ¢ [AKMMO02, HL21|. In the case of Hamming balls
of radius ¢, one can use these general results together with the fact that 7(Cg) = 2!+ 4 1 to obtain
the fractional Helly theorem, where (-tuples of Hamming balls are considered with ¢ > 2!*! and
the (p, q)-theorem where p > ¢ > £. Such results are very far from optimal. In Section 4.1, we will
give self-contained proofs to obtain much better dependencies on t. Interestingly, for both of them, if
| X | = 2, we only need the information on pairs of Hamming balls. On the other hand, if | X| = oo, we
need the information on (¢ + 2)-tuples of Hamming balls. In particular, the threshold for having both
theorems for Hamming balls (of radius t¢) is either 2 or ¢ + 2, much smaller than the corresponding
Helly number. This is very different from convex sets in R?, where the threshold for having both
theorems is d + 1, the same as the corresponding Helly number.

1.2 Algebraic tools and set-pair inequalities

The proof of Theorem 1.2 is based on a novel variant of the so-called dimension argument. Surprisingly,
this variant allows us to prove some upper bounds that do not depend on the dimension of the ambient
space. We believe that this may have further applications. For the special case of binary strings, that
is, | X| = 2, we prove a stronger statement using a probabilistic argument. For convenience, we define
the following two functions f(¢, X) and f'(¢, X).

Definition 1.3. Let t > 0 and X be any set of cardinality | X| > 2. Define

o f(t; X) to be the maximum m such that there exists n >t and ay, a9, ..., am,b1,b2,... by € X"
where dist(a;,b;) > t+ 1 for all i € [m] and dist(a;, b;) <t for all distinct i,j € [m];

o f'(t; X) to be the maximum m such that there exists n >t and ai,az, ..., am,b1,b2, ..., by € X"
where dist(a;, b;) > t+1 for alli € [m] and dist(a;, bj)+ dist(a;, b;) < 2t for all distinct i, j € [m].

The study of these functions can also be motivated by the well-known set-pair inequalities in ex-
tremal set theory. The set-pair inequalities, initiated by Bollobéas [Bol65|, play an important role
in extremal combinatorics with applications in the study of saturated (hyper)-graphs, 7-critical hy-
pergraphs, matching-critical hypergraphs, and more. See [Tuz94, Tuz96| for surveys. A significant
generalisation of Bollobas’ result is due to Fiiredi [Fiir84]. It states that if A, Ao, ..., A, are sets of
size a and By, Bo, ..., By, are sets of size b such that |A; N B;| < k for all i € [m] and |A; N B;| > k
for all 1 <14 < j < m, then m < (atb:k%), and this is tight. Using this result, one can give a short
argument that f(¢; X) is finite.

Proposition 1.4. Letn >t > 0 and X be any set of cardinality | X | > 2. Suppose ay,...,am,b1,... ,bm
are points in X" such that dist(a;,b;) > t+1 for alli € [m] and dist(a;, b;) <t for all1 <i < j <m.

Then, m < (2;:2) In particular, this means f(t; X) < (2;112)

Proof. For each i € [m], define two sets

A ={(l,a;p) : £=1,2,...,n} and B;:={(lbig):{=1,2,...,n}.



Since |A; N Bj| + dist(a;, b;) = n for all ¢,j € [m], we have that |4; N B;| < n—t—1 for all ¢ and
|A; N Bj| > n —t for all i < j. Then, the above result of Fiiredi witha =b=nand k =n—t—1

shows m < (22:?7(:::)1)) = (2552)7 as desired. This clearly implies that f(¢; X) < (Qtff) [ |

We note that any upper bound for f(¢; X) implies the same bound in Theorem 1.2 (and hence for
the Helly number h(n,t; X)); see Proposition 2.1 for a short argument. Hence, Theorem 1.2 follows
from the following result.

Theorem 1.5. f(t; X) = 21 for every t > 0 and every set X with | X| > 2.

In the binary case, we prove the following under the additional condition X = {0,1} (i.e. |X]| = 2).
Interestingly, this additional condition turns out to be necessary as f’(¢t; X) > 3! whenever | X| > 3;
this will be discussed in Theorem 3.3.

Theorem 1.6. f/(¢;{0,1}) = 2!*! for every t > 0.

Both proofs of Theorems 1.5 and 1.6 work in the more general setting where we assume dist(a;, b;) >
t + s (for some s > 1) instead of dist(a;,b;) > t + 1, and also dist(a;, b;) < t whenever ¢ # j. For
simplicity, we denote f(t,s; X) and f'(t,s; X) as the largest sizes of the corresponding families. And
our proof shows that f(t,s; X) < 25/V, s s and f/(t,s;{0,1}) < 2045 /V, 1, 5, where

PR () d is odd
ST + (k) diseven

We note that V,, 4 is the size of the Hamming ball in {0,1}" of radius % if d is odd and of the
union of two Hamming balls in {0, 1}" of radius % — 1 whose centres are of Hamming distance 1 if
d is even. Interestingly, V,, 4 is also known as the maximum possible cardinality of a set of points of
diameter at most d — 1 in {0,1}"; see [Kat64, Kle66, Bez87]. Additionally, when d is odd, 2"/V,, 4
is the well-known Hamming bound for the maximum possible number of codewords in a binary error
correcting code (ECC) of length n and distance d. Binary ECCs, which are large collections of binary
strings with a prescribed minimum Hamming distance between any pair, are widely studied and
applied in computing, telecommunication, information theory and more; see [MS77a, MS77b|. Indeed,
ECCs naturally define a;s and b;s in Definition 1.3. As we will show in Section 3, the existence of
ECCs that match the Hamming bound (the so-called perfect codes) and their extensions imply that
f(t,s;X) = f'(t,5{0,1}) = 275 /Vi45 s when s € {1,2}, or s € {3,4} and ¢ + 4 is a power of 2,
or s € {7,8} and ¢t = 16. This will be shown using the well-known Hamming code [Ham50| and
the Golay code [Gol49]. In addition, the famous BCH codes discovered by Bose, Chaudhuri and
Hocquenghem [Hoc59, BRC60] imply that our bounds are close to being tight for every fixed s, that
iS, f(t7 53 X) = @s(2t+s/‘/t+s,s) and f/(tv 55 X) = 98(2t+8/%+8,8)'

Another well-known result in extremal set theory due to Tuza |Tuz87| states that if (A;, B;)I",
satisfies ;N B; = 0 for i € [m] and (4;NB;)U(A;NB;) # 0 for distinct 4, j € [m], then 37, plil(1—
p)!Bil <1 forall 0 < p < 1. This also has various applications; see [Tuz94, Tuz96]. When |A;| +|B;| =
t + 1 for all 4, this result implies m < 2!*! which is tight. Theorem 1.6 generalises this by taking
A ={k e n]:a;r, =1} and B; := {k € [n] : b, = 1}: if |A;AB;| > t+1 for all i € [m] and
|A;AB;| + |A;AB;| < 2t for all distinct 4,7 € [m], then m < f/(¢;{0,1}) = 2!71. Here, we do not
require A; and B; to be disjoint and write AAB := (A\ B) U (B\ A) for the symmetric difference of
A and B.

Finally, let us mention briefly that Theorem 1.5 motivates the study of a natural variant of the
Prague dimension (also called the product dimension) of graphs. Initiated by NeSetfil, Pultr and

Vnd =

)

(1)



R6dl [NP77, NR78|, the Prague dimension of a graph is the minimum d such that every vertex is
uniquely mapped to Z¢ and two vertices are connected by an edge if and only if the corresponding
vectors differ in all coordinates, i.e, it is essentially the minimum possible number of proper vertex
colourings of G so that for every pair u,v of non-adjacent vertices there is at least one colouring in
which w and v have the same colour. This notion has been studied intensively, see, e.g., [LNP80,
Alo86, ER96, Fiir00, AA20, GPW23|.

The rest of this paper is organised as follows. In Section 2 we prove the main result Theorem 1.5.
We also show that any upper bound for f(¢; X) implies the same bound in Theorem 1.2. Section 3
deals with binary strings and briefly discusses the behaviour of f/(¢; X) when |X| > 2. We also discuss
the connection to error correcting codes and another set-pair inequality. In Section 4 we investigate
several variants and generalisations of the main results, including a fractional Helly theorem, a (p, q)-
theorem, a variant of the Prague dimension of graphs, and a generalisation of f(¢; X) to sequences of
sets. Finally, we conclude with some remarks and open problems in Section 5.

2 General strings

We begin by showing that Theorem 1.2 follows from Theorem 1.5.

Proposition 2.1. Let n > t > 0 and X be any set of cardinality | X| > 2. Suppose {Bu}taca is a
(finite or infinite) collection of Hamming balls in X™ of radius t. Then, there exists A" C A of size
|A'| < f(t; X) such that (Ve Ba = Nacar Ba-

Proof. We first show that (),c4 Ba = (Naea, Ba for some subset Ag C A of size [Ag| < (itjlz)
2t+2

Indeed, suppose that this is not the case. Then, we can select a sequence of m = ( A ) + 1 Hamming
balls By, By, ..., By, in {Ba}aea such that (,.; Bj € [;; Bj for all i > 1. For each i € [m], take a;
to be the centre of B; and b; to be an arbitrary point in (;_; B;j \ [);<; Bj- By definition, we know
that b; ¢ B; for all i € [m]| and b; € B; for all 1 < j < i < m. In other words, dist(a;, b;) > ¢+ 1 for
all i € [m] and dist(a;,b;) <t for all 1 < j < i < m. By Proposition 1.4, m < (2t+2), contradicting
our choice of m.

By the above discussion, it suffices to consider the case |A| is finite, in which case we can simply
write {Ba}aca to be {Bi,...,By}. Now, consider any minimal collection of Hamming balls (in X"
of radius t) B = {Bi, Ba,..., By} such that (") B; # (;c; Bi for any I C [m] of size at most
f(t; X). This means m > f(¢; X) and (); B; # (), ; Bi holds for all j (using that B is minimal). So,
for each j € [m], there exists b; € [, ,; Bi \ [); Bi- In addition, let a; be the centre of B;. Then,
dist(ai, b;) > t + 1 for all 4 and dist(a;,b;) < t for all i # j. Hence, m < f(t; X), contradicting
m > f(t; X). This completes the proof. |

As discussed in Section 1.1, any upper bound in Theorem 1.2 also implies the same upper bound
for h(n,t; X), so Proposition 2.1 implies that

hn,t; X) < f(t; X) < f/(t; X).

Here, the second inequality holds by definition.

Next, we show that h(n,t; X) > 21+ (the lower bound in Theorem 1.1), and hence for f’(t; X) >
f'(t; X) = 2+ (the lower bounds in Theorems 2.4 and 3.1). The construction is given by [RST24].
Basically, one can consider all Hamming balls in {0, 1}!*! (assuming X = {0,1} and n = ¢+ 1), which
have the form {0,1}*!\ p for a single point p. We note that this construction corresponds to that of
convex lattice sets [Doi73] by taking the convex hull in R+,



Proposition 2.2. h(n,t; X) > 21 for any n >t and any set X of cardinality | X| > 2.

Proof. We may assume n =t + 1 as h(n,t; X) > h(t + 1,t; X) and that 0,1 € X. Consider all 2¢+!
Hamming balls B(a,t) where a € {0,1}'"!. Tt suffices to show that any 2*1 — 1 balls intersect while
all of them do not. Observe that B(a,t) = {0,1}'"1\ {@} where @ € {0,1}'*! is given by flipping all
coordinates of @, i.e. changing 0 to 1 and changing 1 to 0. Therefore, for any ¢ = 21 — 1 vectors
ai,-..,ag € {0,131 the intersection ﬂle B(a;,t) contains all but at most £ < 2*! elements in
{0,1}*1. This means that any 2/*! — 1 such Hamming balls intersect. On the other hand,

N Ban= () ({ou*\@)={1*\ |J {a=0

aef{0,1}t+1 a€f{0,1}t+1 ae{0,1}t+1
i.e. all the 2t*! balls do not intersect. [ |

The rest of this section contains the proof of the upper bound of Theorem 1.5, and thus also of
Theorem 1.1. To this end, we need the following properties of V, 4.

Claim 2.3. V,, g > 2V;,_1 41 for 2 < d < n and this is an equality if d is even. In particular,
Vid = 9d—1 foralll <d<n.

Proof. If d = 2k for some k € {1,2,..., L%J}, then

st n—1 it | 21 n—1 it |
Vn,d=Z(.)+( )z ( ) >+ < . )+< )=2 ( . >=2Vn_1,d_1-
—\i k—1 P 1 — ) k—1 P 1

If d =2k —1 for some k € {2,3,..., L"‘HJ}, then

y =y _2k—2 S I >2k—2 ey
n’d_; i) ; { * k—1) — ¢4 i + k—92) n—1,d—1-

Here, we used (Zj) > 2(2:2) as k < "TH

Given the first inequality, V,, ¢ > 2V;,_19-1 > -+ > 2d_1Vn_d+171 =291 as desired. |
We now show the upper bound of Theorem 1.5 by the following more general result.

Theorem 2.4. Letn >t > 0,m > 1, and X be nonempty. Suppose ai,ao,...,am,b1,b2,...,b, € X,
and assume that for each i € [m], dist(a;,b;) =t + s; for some s; > 1, and dist(a;,b;) < t for all
distinct i,j € [m]. Then,

m
V;S+si,si
D <1 (2)
i=1
In particular, f(t; X) <27 and f(t,s;X) < 2875 /Viiss if si > s for all i € [m].

Proof. First, suppose we have proved Eq. (2). Then, Claim 2.3 implies 1 > m 2571 /218 > i /201
i.e. m <271 Hence, f(t; X) < 271 Similarly, if s; > s for all i € [m], using Claim 2.3, we acquire
1 2 Z:il V;r-os-lsfl 2 m- ‘/t+s,s/2t+sa Le.m S 2t+8/‘/t+s,s- SO, f(t, S5 X) S 2t+8/‘/t+s,s-

In the rest of the proof, we establish Eq. (2). The proof is algebraic and uses a novel variant of
the dimension argument which provides a dimension-free upper bound. Without loss of generality,




assume X C R. For each ¢ € [m], denote D; := {k € [n] : a; # b; 1} and d; to be the largest element
in D;. Then, |D;| = dist(a;,b;) =t + s;. In addition, we call a pair (I, I2) of sets compatible with i if

s; +1

<
I CD;, [l| >t+ , I Cn)\D; or I CD;\{d}, |I] =t+§z, I, C [n]\ D;.

In other words, I1 C D; and I C [n] \ D; such that |I| >t +s;/2 and |I;| =t + s;/2 only if d; ¢ I.
For every i € [m] and every such pair (11, I2), define a polynomial on x € R™ by

fnn@) = [ @r-ar) [] (@e—bix)

kelUly kGDi\Il

Recall Eq. (1). The number of pairs compatible with 4 is Vt+5i75i2”_(t+5i). Thus, it suffices to show
that all such f;;, ;,s are linearly independent. Indeed, since every f; ;, ;, is a multilinear polynomial
on n variables, the linear independence implies 37| Vi, 5,27 %) < 27 which implies Eq. (2).

To show linear independence, for each ¢ € [m| and each (I, I2) compatible with i, we take any
T = x5 1, € R" such that

Qi k ke Di \ I
T = bi,k keliorke [n] \ (Dl U IQ) (3)
any value # b, k € I>.

We also need the following ordering over all subsets of [n]: for distinct subsets E,F C [n], define
E < Fif |[E| <|F|or |E|=|F| and max(E \ F) > max(F \ E). We also write £ < F'if E < F of
E = F. Tt is easy to check that < induces a total order of all the subsets of [n]. Now, we state the
crucial claim for the evaluations of f; ; 5,5 (on x; 1, 1,8).

Claim 2.5. Leti,j € [m|. If (I, 12) be compatible with i and (Jy,J2) be compatible with j, then
(1) fori=j, we have f; ; 5, (i 1r,) # 0 if and only if Iy = J1 and Jo C Iy;
(ii) for i # j, we have f; 5 1,(®i1, 1,) 7 0 implies (D; \ J1) U Ja < (D; \ 1) U L.

Proof. Write x = =z, ;, ;, for simplicity. First, consider ¢ = j. Since a; = b; , for all k € J C [n]\ D;,

fj,Jl,JQ(~Ti,11,12) = fi,Jl,JQ($) = H (xk:_ai,k) H (-rk_bi,k) = H (xk_ai,k) H (xk_bi,k)-

keJ1UJa k‘EDi\J1 keJi k‘E(Di\Jl)UJQ
This means that
fj,JLJQ(:E) 75 0 & i 75 Qi k Vk e Jp and i 75 bi,k vk € (Dl \ Jl) U Jo.

By the definition of z = z; 1, 1, (Eq. (3)), we know that xj, = a;, for all k € D; \ I and x), = b; j, for
k € I and for k € [n]| \ (D; U I2). So, if f; s, j,(x) # 0, then
(Di \ 11) NnJy = @,Il N (D@ \ Jl) =0 and ([n] \ (Dz U IQ)) NJo = 0.

This means Iy = J; and Jy C I>. On the other hand, if Iy = J; and Jy C I3, using that zj # b; , for
all k € Iy, it is easy to see that f; ;, 5, (z) # 0. This proves (i).
For (ii), suppose f; ;, s,(x) # 0. The goal is to show (D; \ J1) U Jy < (D; \ I1) U I. The fact that

Finn@ = ] @e—aw) [ (@x—0b) #0

keJ1UJs keDj\J1



implies xy, # a;, for all k € J; U Jo. By Eq. (3),
zp=b;p forall kel:=LU([n\(D;UL)).

Hence, b; # ajy for all k € (J1 U Ja) N 1. As a consequence, dist(b;,a;) > [(J1 N J2) NI|. By
assumption, dist(b;,a;) <t, so [(J1UJ2)NI| <t
Observe that [n] \ I = (D; \ I1) U I5. Then, we know

[N+ 1ol = [J1U o = [(JLUJ2) NI+ [(J1 U ) N ([n] \ D) < t+ [[n] \ I| = t+[(Di\ 1) ULz . (4)
This means |Jo| < —|Ji|+t+[(D; \ I1) U Iz|. Moreover, as |D;| =t +s; and |Ji| > t+s;/2, we have
[(Dj\ J1) U Jo| = [Djf =[] + [Jo| < (E+455) = 2[ I + ¢+ [(Di\ 1) U L[ < [(Di\ 1)U L[ (5)

If [(D;\ Ji)UJo| < |(D;\ I1) U I|, then (Dj \ Ji1) U Ja < (D; \ I1) U Iy, and we are done.
From now on, let us assume that |(D; \ J1) U Jao| = [(D; \ I1) U I2|. For simplicity, write

FE = (DJ \ Jl) UJy and F := (Dz \ Il) U Is.

As |E| = |F|, our goal is to show that E' # F and max(E \ F) > max(F' \ F). By the derivation of
Eq. (5), |E| = |F| if and only if Eq. (4) is an equality and that |Ji| = ¢t + s;/2. In particular, the
former implies |(J1 U J2) N ([n]\ I)| = |[n] \ I, so

F = (Di\.[l)UIQ = [n]\]g J1 U Jo;
the latter implies J; C D; \ {d;}. Also, recall that d; ¢ Jo. This shows E # F because
dj ¢ F but dj € (D;\ J1)UJy = E.

Now, suppose for contradiction that max(F'\ E) > max(E\ F). By the above discussion, d; € E\ F,
so max(F' \ E) > d;. In addition, we know

FCJiuJy C (Dj \ {d]}) UJy and dj = maX(Dj).

This means max(F' \ E) € Jo C E, which is impossible. Therefore, max(E \ F) > max(F \ E) must
hold. In other words, (D;\ J1)UJy =E < F = (D; \ I1) U I3, as desired. [

We now complete the proof by showing that all the f;;, ;s constructed for i € [m] and (I, I2)
compatible with ¢ are linearly independent. Suppose that F := Z(Ml’h) Cj.1y,0515,0,,0, 18 the zero
polynomial, where c¢; ;, ;, € R for every j € [m] and every (Ji,J2) compatible with j. It suffices to
prove ¢; 5.5, = 0 for all (j,Ji,J2). If not, we pick a triple (¢,I1,I5) with ¢, ;, # 0; if there are
multiple such (i, I1, Is)s, pick the one that minimises (D; \ I1) U I5 in the total order <; if there is still
a tie, then pick any of them.

Take x = x, ;, 1, and consider an arbitrary triple (j, J1, Jo) with ¢; ;, s, fj., .5, (x) # 0. If i = j, then
Claim 2.5(i) implies J; = I; and Jo C I5. Due to the minimality of (D; \ I1) U Is, ¢j g, J, # 0 implies
Jo = I, so (i,[l,fg) = (], Ji, JQ). If ¢ # j, Claim 2.5(ii) implies that (Dj \ Jl) UJdy < (Dz \Il) U Is.
Again, the minimality of (D;\ I1) U Iy implies ¢;; ;, = 0. But this is impossible as we assumed
Ciay,ay fiva 0o () # 0. Altogether, ¢; ;, s, fis, 5,(x) # 0 implies that (4,11, I2) = (4, J1, J2). In addition,
Claim 2.5(i) asserts f; ;, r,(x) # 0. So,

0=F(z)= Z Cioy i 1,00 (T) = Ciy iy [y 1, (2),
(4,71,92)

which shows ¢; ;, ;, = 0. This contradicts our assumption ¢; ;, ;, # 0. We conclude that ¢; ;, ;, = 0 for
all (i, 11, I2), and this shows the linear independence of all f; ;, r,s. [ |



3 Binary strings

This section deals with binary settings, e.g. X = {0,1}. In this case, we can prove a stronger result
(Theorem 1.6) where the condition dist(a;,b;) < t,dist(a;,b;) < t is replaced by that dist(a;, b;) +
dist(a;,b;) < 2t. As mentioned in Section 2, the lower bound of Theorem 1.6 follows from Proposi-
tion 2.2. For the upper bound, we provide a probabilistic proof that is simpler than that of Theo-
rem 2.4.

Theorem 3.1. Let n >t > 0. Suppose ai,a2,...,Qm,b1,ba, ..., by € {0,1}" satisfy, for all i € [m],
dist(a;, b;) =t + s; for some s; > 1, and dist(a;, b;) + dist(a;,b;) < 2t for all distinct i,j € [m]. Then,

m

V;H»si,si
D gt <L (6)
=1

In particular, f'(t;{0,1}) < 21 and f'(t,5;{0,1}) < 2175 /Viys s if s; > s for all i € [m].

Proof. Given Eq. (6), the derivation of the bounds for f’(¢;{0,1}) and f’(¢,s;{0,1}) is the same as
that in the proof of Theorem 2.4, so we omit it here.

The goal is to prove Eq. (6). For each 4, denote D; := {k € [n] : a; # b1} and d; := max(D;).
Then, |D;| = dist(a;,b;) = t + s;. Now, sample a string «, uniformly in {0,1}". For each i € [m],
let Dij(a) :== {k € D; : a, = a;;}. Denote & to be the event that either |D;(a)| > t + *HL, or
|Di(a)] =t + % and d; ¢ Di(ar). Note that [D;(a)| > ¢ + % in both cases and Pr[&] = Viqs, 5, /205
in view of Eq. (1). We conclude the proof by showing Claim 3.2. Once this is shown, Eq. (6) follows

immediately, since
m m

‘/t"rsiysi
1>Pri§U---U&,] = ZPr[&] = Z S
=1 =1
Claim 3.2. The events £1,&s,...,Enm are pairwise disjoint.

Proof. Suppose for contradiction that & and &; are not disjoint for some 1 < i < j < m. Let
a € & NE;, and write Dy == D; \ D; and Dj; := D; \ D;. By the definition of D; and Dj,

aip =bix V¢ Dy, ajp=1—by VkeD;

and
ajvk:b]}k \V/k¢D], aj,kzl—bj,k VkEDj.

This means a; j, # b;, while a; = b;j, for all k € D;; = D; \ D;. Hence, every k € D;; contributes
one to the sum dist(a;, b;) + dist(b;, a;). Similarly, every k € Dj; also contributes one to this sum.
Altogether, restricted to the index set D;; U Dy,

b

diSt(ai‘DijUDji’ j + dlSt(b,L‘ = |DZ]’ + |Dﬂ| (7)

|DijuDji) D;;UD;;’ a; {DijuDji)
Write g := |D; N Dj|. Then, |D;j| =t+s; — g,|Dji| =t +s; — g, and Eq. (7) implies
diSt(ai.bj) + dist (b, aj) > ’D”| + ‘D]Z| =2t +s; + 55 — 2g.
By assumption, 2t > dist(a;, bj) + dist(b;, aj) > 2t + s; + 55 — 2g, s0 2g > s; + 5.
The second step is to consider the contribution from k € D; N D;. Denote D := D;(a) N Dj(cr) C
D; N Dj. Observe that a;, = a;, = ai # b; = bj for k € D. So, restricted to the index set D,

dist(a;

D bj ’D) —+ dlst(bl

il ) = 2|D|. (8)
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To lower bound |D|, note that a € & N &E; implies |D;(a)| >t + % and |D;(a)| >t + 2. Write
J 2 J 2

D; = Dl(a) N (Dz N D]) and D; = Dj(a) N (Dz N D])

We know
[D{| = 1Di(e) N (DN Dy)| = [Dife) \ Dyl 2t + 5~ (t+si—g) =g - 5 ;
D)1= 1Dy(@) 1 (D30 D) = Dy @)\ Dyl > 14 5~ s —g) =g~ 2
Observe that Dj, D’ C D; N Dj, so Eq. (9) further implies
|D| = |D; N Dj| = |Dj| + | Dj| — | D; U Dj]
sits (10

S; S
> D +1D;| = IDiNDjl 29— 5 +9—5 —9=9— —

We note that the RHS of Eq. (10) is non-negative because 2g > s; + s;. Using Eqs. (7), (8) and (10),

2t > dist(ai, b]) + diSt(bi, aj)

> dist(a;] + dist (b + dist(a;

s bj‘D) + dist(b;

DijuDji’aj}DijuDji) D7aj’D)

>|Dij| + |Djil + 2|D| = (t+si —g) + (t + 85 — g) + 29 — (s; + s;) = 2t.

b
D;;uD;; DijuDji)

This being an equality implies that Eq. (10) is an equality, so
D;U D} = D;N D;.

Moreover, Eq. (10) being an equality means that both inequalities in (9) must be equalities, thereby
Sj

5

By the definition of & and &;, we know d; ¢ D;(a) and d; ¢ Dj(a). But D;; C Do), so d; ¢
D;j = D; \ Dj. In other words, d; € D; N D;. Similarly, d; € D; N D;. Taken together, we have
d;,d; € D; N Dj;. But recall that d; is the maximum element in D; and d; is the maximum element
in Dj, so d; and d; must be the same, i.e. d; = d; = max(D; N Dj). On the other hand, D} C D;(«)
does not contain d; and D C D;(«) does not contain dj, so d; = d; ¢ D; U D’;. This is impossible, as
we also know D) U D;- = D; N Dj. Therefore, & and £ must be disjoint for every 1 <i<j<m. W

s,
Di; C Di(a), Dj; € Dj(ar), |Di(x)] =t+ 51 and |Dj(a)| =t +

Next, we discuss the tightness of Theorems 2.4 and 3.1. For 1 < d < n, an (n,d) error correcting
code (ECC) is a collection of binary strings (codewords) of length n with all pairwise distances at least
d. Write A(n,d) for the maximum possible size of such collections. Taking n =t + s, every a; to be
one of the codewords and every b; to be the opposite string of a;, we see that

dist(ai, b)) =t+s Vi and dist(a;, bj) =t + s —dist(a;,a;) <t Vi # j.
This shows that the strings a1, a9, ..., am,b1, b2, ..., by € {0,1}" satisfying

dist(a,-,bi) =t+s Vi and diSt(ai,b]’) <t Vi 7& j
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generalises the ECCs, i.e. f/(t,s,{0,1}) > A(t + s,s). Moreover, as discussed in Section 1.2, our
upper bound f’(¢,s;{0,1}) < 2’”””/VH&S is precisely the Hamming bound for ECCs when s is odd.
Thus, we can use perfect codes (ECCs that match the Hamming bound) and their extensions (add a
parity bit so that the length and the distance increase by one while the number of codewords stays
the same) to show that our bound on f’(,s,{0,1}) is tight (and the same also holds for f(t,s, X)).
More precisely,

o f'(t,5,{0,1}) = 2!! for s € {1,2}. We can take the trivial ECC, all binary strings of length
t + 1. There are 2!™! of them and the pairwise distances are at least one. So, f'(t,1,{0,1}) =

A(t+1,1) = 2!, Adding a parity bit to all these strings, the pairwise distances are at least 2.
So, f'(t,2,{0,1}) = A(t +2,2) = 21,

o f'(t,5,{0,1}) = %t_:: when s € {3,4} and t + 4 is a power of 2. When ¢ + 4 is a power of 2, we
2

take the Hamming code [Hamb50|: % binary strings of length ¢ + 3 and pairwise distances at
2t+3

least 3. This shows that f'(t,3,{0,1}) = A(t + 3,3) = $577. Adding a parity bit to all these
strings, the pairwise distances are at least 4. So, f'(t,4,{0,1}) = A(t+4,4) = %%j.

e f/(16,7;{0,1}) = f'(16,8;{0,1}) = 2048. Here, we take the Golay code [Gol49]: 2048 binary
strings of length 23 whose pairwise distances are at least 7. This, as well as its extension, implies

F/(16,7:{0,1}) = f/(16,8;{0,1}) = 2048.

In addition to the perfect codes, we also consider the Bose-Chaudhuri-Hocquenghem codes (BCH
codes) [Hoc59, BRC60]: there are Q5(2!%%/(t + s)*) binary strings of length ¢ 4+ s where the pairwise
distances are at least s whenever s is odd. Based on the previous discussion, the BCH codes, together
with their extensions, show that for every fixed s,

f(t, S5 X) = O (2t+8/%+s,s) and f/(t, S5 X) = O (2t+s/%+s,s)-

We also note that our probabilistic proof of Theorem 3.1 relies crucially on the fact that each
coordinate has two possible values (0 or 1). A similar proof by sampling o € X™ appropriately works
for general Xs but only gives an upper bound of | X |**!. This is not a coincidence: when | X| € {3,4},
unlike f(t; X) = 21, we can prove that f/(t; X) = ©(3?).

Theorem 3.3. 3! < f/(t; X) < 3! for every t > 0 and every set X of size 3 or 4.

Proof. For the lower bound, it suffices to prove it for X = Z/3Z. Consider all strings s in (Z / 3Z)t+1
such that s1+---+s;41 = 0, and let a1, . . ., a,, be any enumeration of them. We know m = 3! because
for any fixed si,...,s;, there exists a unique s;11 € Z/3Z such that s; + -+ + s;41 = 0. For each
i € [m], define b; € (Z/BZ)tJrl by putting b; , = a; r+1 for every k € [t+1]. Clearly, dist(a;,b;) =t+1
for all ¢ € [m], and for any 7 # j, it holds that

dist(ai,bj) —|—dist(bi,aj) = Hl <k<t+4+1: Qg k % ajk+ 1}‘ + ’{1 <k<t+1: ajr+1 =+ aj’kH
=t+1+ {k Dk = ang}.

Since fozll aj = ',5;;11 ajr = 0, a; and a; can share at most ¢ +1—2 =t — 1 coordinates. Therefore,
dist(a;, b;) + dist(a;j,b;) <t+ 1+t —1=2t. This shows that f’(¢; X) > 3.

We now prove the upper bound. Suppose n > t and aj,as,...,6m,b1,b2...,bp, € X" with
dist(a;,b;)) > t+ 1 for ¢ € [m] and dist(a;,b;) + dist(a;,b;) < 2t for ¢ # j. For every k € [n],
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sample independently and uniformly a subset X} C X of size 2. Then, for each i € [m], define two
strings a;, b; € {0,1}™ by taking

a;,k = ]lai,kEXi and bg,k = ﬂbi,kexi Vk € [n].

Denote I := {i € [m] : dist(aj,b;) > ¢+ 1}. Observe that dist(a;,b}) < dist(a;,b;) for any distinct

i,j € I. We know |I| < f'(¢;{0,1}) = 2!*1 by Theorem 1.6. Moreover, since | X| € {3,4}, whenever
@ik 7 ik,

Pr [a}, # b)) = 2(1X| - 2)/(‘)2(') 2

This means Pr[i € I] > (2/3)!! for each i € [m], and hence E[I| > m(2/3)!*!. Taken together,
m(2/3) < E|I| < 281 so m < 3t [

We remark that for general X, a similar argument by sampling X € (LlX)\(/Zj) shows 3¢ < f/(t; X) <

X100 ™\ do not know which of these bounds is cl he truth
TIXT/2TIXT2T . We do not know which ot these bounds 1s closer to the truth.

3.1 A set-pair result

As mentioned in Section 1.2, Fiiredi [Fiir84| proved that if A, Ag,..., A, are sets of size a and
By, By, ..., By, are sets of size b such that |4; N B;| < k for i € [m] and |A; N Bj| > k for distinct
i,j7 € [m], then m < (“Zb__k%), and this is tight. In the same paper, he raised the question of
understanding the largest possible size of a family (A;, B;), such that |A;| = a, |B;| = b, |A;iNB;| < ¢
for all i € [m] and |A;NB;j| > k, (where k > £ are given) for all distinct ¢, j € [m]. Fiiredi’s result shows
that this maximum is exactly (“Zb__e%) in the case k = (. For the general case, Zhu [Zhu95| showed

the answer is at most min( (“J;b:k%) / (Z:ﬁ), (anlfk%) / (Z:g)), and this is tight if there is a collection A
of subsets of U := [a + b — 2/], each with size a — ¢, such that every subset of U with size a — k is
contained in exactly one member of A, or there is a collection B of subsets of U with size b — ¢, such
that every subset of U with size b — k is contained in exactly one member of B. These collections are
called designs or Steiner systems. A famous result of Keevash [Keel4| asserts their existence when
one of a — £, b — /¢ is sufficiently larger than the other and certain natural divisibility conditions hold;
see also [GKLO23].

In fact, with a slight change of his argument, we can show the answer is at most (a“_J’Ziﬁfy) / [(G;E) (b;z)]
for every z,y > 0 with x +y = k — ¢. This is better than Zhu’s original bound by a factor
of exp(O(k — ¢)) when, say, a — ¢ = b—{ > k — (. Indeed, by the general position and the
dimension reduction arguments, used in [Fiir84, Zhu95|, we can essentially assume ¢ = 0 (with
a—{,b— Lk —{replacing a,b,k), so x +y =k, A; N B; = 0 and |A; N B;| > k. For each i € [m],
we build (;) (z) pairs of sets based on (A4;, B;) by shifting, in all possible ways, an z-element subset
X C A; from A; to B;, and a y-element subset Y C B; from B; to A;. This gives m(g) (z) pairs
(AFY,BXY) with |[AYY | =a—2+y,|BX | =b—y+z, 4" NB*" = 0. In addition, whenever
k—|Y|=|X| <|X'| =k—]|Y’|, one can check that AX" N BX" % () (unless X = X’ and Y = Y”)
and A" N B]}-(I’Yl # (. Ordering all pairs (A", B*") by |X|, we can apply the skew version of the
set-pair inequality ([Lov77, Lov79|) to conclude that m(?) (Z) < (af;b_y), as desired.

Moreover, Theorem 3.1 provides the following variation of Fiiredi’s question, where instead of
|A;| = a,|B;| = b, we only require |4;| + |B;| = s.
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Theorem 3.4. Let s > k> >0 and m > 0. Suppose Ay, As, ..., Anm,B1,Bs,..., By are sets such
that |A;| + |B;| = s for all i € [m], |A; N B;| < £ for all i € [m] and |A; N Bj| + |B; N A;| > 2(k+1)
forall1 <i < j<m. Then,

9s—2(—1
Nk—C (s—20-1\"
Yico 75 )
Proof. Suppose all sets are subsets of [n] for some n € N. For 1 <i < m, let a; € {0,1}" be the

indicator vector of A;, i.e. a; = lLiea, for every k € [n]; similarly, let b; € {0,1}" be the indicator
vector of B;. Then, for i # j,

m < f'(s = 2(k+1),2(k + 1) = 2;{0,1}) <

dist(ai,bi) = ‘AZ| + |Bl’ — Q‘Al N Bl| >s—2
dist(ai,bj) + dist(bi,aj) = ‘AZ‘ + ‘BJ’ — 2’Ai N Bj’ + ’Bz‘ + ‘AJ‘ — Q‘Bi N Aj‘ < 2s — 4(k + 1).

By Theorem 3.1, m < f’ (s —2(k+1),2(k — ¢+ 1);{0, 1}) According to Claim 2.3 and Eq. (1), this
is at most
28—2K 28—25—1 25—2[—1 =

Vicorgh2er2 Vemzer2k-2001  SF 0 (P72

Note that this bound is close to being tight when s —2¢ > k —/¢. In this case, we can take the BCH
code of length s — 2¢ — 1 and pairwise distances at least 2k — 2¢ + 1. Appending to each codeword
a parity bit, we get Q(2572¢/(s — 2¢)k=*) binary strings of length s — 2/ and pairwise distances at
least 2k — 20 4+ 2. Now, take A; C [s — 2/] to be the set corresponding to each codeword joined with
{-1,-2,...,—¢} and B; := ([s —2()\ A;)) U{-1,-2,...,—¢}. Then, |A;| + |Bi| = s,|AiN B;| = ¢ for
i € [m] and |A; N Bj| + [A; N B;| > 20+ 2(k — £+ 1) = 2k + 2 for i # j, forming the desired family.

4 Related questions

4.1 The fractional Helly theorem and the (p,¢)-theorem for Hamming balls

In this section, we establish the fractional Helly theorem and the (p, ¢)-theorem for Hamming balls of
radius ¢. For both of them, we only need the information about pairs of Hamming balls when X is
finite, and the information about (¢ + 2)-tuples of Hamming balls when X is infinite. Notably, both
constants 2 and ¢ + 2 are optimal, much smaller than the Helly number h(n,t; X) = 2t*1. Moreover,
all bounds in Theorems 4.1 and 4.2 are independent of n.

We say a point hits a Hamming ball if the ball contains this point, and a set of points hits a
collection of Hamming balls if every ball contains some point in this set.

Theorem 4.1. Let m > 1,n >t > 0, X be a nonempty set and By, ..., By be Hamming balls of
radius t in X".

(1) If X is finite and, for some o > 0, at least a(m) (unordered) pairs of the Hamming balls intersect,

2
then some point in X™ hits an Q(aZ\XVt/(it))-fmction of these Hamming balls;

(2) If, for some a > 0, at least oz(tfg) unordered (t + 2)-tuples (where tuples have distinct entries)

of the Hamming balls have a common intersection, then some point in X™ hits an Q(o/(e(t +
1))t+1)—fmction of these Hamming balls.

Theorem 4.2. Letm > 1,n >t > 0,p > q > 2, and X be a nonempty set. Let By, Bo,..., By, be
Hamming balls of radius t in X™, where out of any p balls, q of them have a common intersection.
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(1) If X is finite and q¢ < t + 1, then there exist plqt|X|t2=9200) points in X™ hitting all these
Hamming balls;

(2) If ¢ >t + 2, then there exist O(e*'p*1) points in X™ hitting all these Hamming balls.

Remark 4.3. We first note that in part (1) of both results, it is important that n does not appear
in the bounds. Otherwise, we can simply take a random point in X™ in Theorem 4.1(1) and take
all points in X™ in Theorem 4.2(1). Hence, it is necessary to require information on the pairs of
Hamming balls. Moreover, t + 2 is also tight for part (2) of both results. To see this, think of X = N
andn = t+1. Consider m Hamming balls centred at (1,...,1),(2,...,2),...,(m,...,m), respectively.
One can check that any t + 1 Hamming balls have a common intersection. However, any point in X"
hits at most t of these Hamming balls, and we need at least m/t points in X™ to hit all these Hamming
balls. This shows that Theorem 4.1(2) and Theorem 4.2(2) require information on the (t + 2)-tuples
of Hamming balls.

We first give a simple proof for Theorem 4.1(1). To this end, we need the following lemma, whose
proof is delayed.

Lemma 4.4. Letn >t > 9§ > 0, X be a finite nonempty set, and a,b € X™. Then, there is a set
of at most (%ﬁt_}‘s)|X|t_‘S points in X™ hitting all the Hamming balls B(p,t) with p € X™ satisfying
dist(a, p) < min(dist(a,b),2t — ) and dist(b,p) < 2t.

We remark that when t = §, we do not require | X| < co because then, all B(p,t)s under consider-
ation contain point a.

Proof for Theorem 4.1(1). We may assume « > 12/m and m > 12 as otherwise the statement is
trivial. For each ¢ € [m], write a; for the centre of the Hamming ball B;. Construct a graph G with
vertex set V(G) = [m] where i and j are adjacent if B; and Bj intersect, i.e. dist(a;, a;) < 2t. Starting
from G, by iteratively deleting vertices of degree smaller than «(m — 1)/2 as long as there are such
vertices, we arrive at an induced subgraph G’ of G. By assumption, ¢(G) > a("y) = m - a(m —1)/2.
This means G’ is not empty and hence, the minimum degree of G’ is at least a(m—1)/2 > am/3 (using
m > 12). Fix any vertex u € V(G'). The number of paths uvvw in G’ is at least am/3 - (am/3 —1) >
a?m? /12, using o > 12/m.
An (ordered) triple of distinct vertices (x,y,z) € V(G')? is said to be good if

dist(az, ;) < min (dist(az, ay),2t) and dist(ay,a;) < 2t

We note that this is the same condition as in Lemma 4.4 with ¢ = 0 and a,, ay, a, in place of a, b, p,
respectively. Observe that for every path uwvw in G,

o if uw ¢ FE(G), then dist(ay, ay) < 2t and dist(ay, ay) < 2t < dist(ay, ay), so (u, w,v) is good,;

o if uw € E(G), then dist(ay, ay) < 2t,dist(ay, ay) < dist(ay, aw) < 2t (so (u,w,v) is good) or
dist(ay, aw) < 2t, dist(ay, ay) < dist(ay, ay) < 2t (so (u, v, w) is good).

Enumerating over all paths of length 2, there are at least a?m? /24 good triples (u, v, w) with the fixed
u (as each good triple is counted at most twice). By the pigeonhole principle, there exist v € [m]
and W C [m] such that |W| > a?m/24 and (u,v,w) is good for all w € W. Then, Lemma 4.4 with
0 =0,a = ay,b = a,,p = a, guarantees (4tt) | X |t points in X™ hitting every B, w € W. Therefore,

some point among these (%)X |[* points hits at least M(ﬁfﬁ = Q(a?m|X|7/ (%)) Hamming balls,
t

as desired. [ |
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We now provide the following definitions that are useful in the proof of Theorem 4.1(2) and of
Theorem 4.2.

Definition 4.5. Let m > 0,n >t > 0, let X be a nonempty set, and ay,...,a,, € X™. Define
o(ai,...,am;t) to be the size of the largest K C [n] such that for some w € X", dist(w )+
|K| <t for alli € [m]. Define p(ai,...,am;t) = —00 if no such K ezists.

a;

xer @i e

Given the w and K in this definition, one can freely change the coordinates of w indexed by
k € K while maintaining w € (", B(ai,t). Hence, p(a1,...,am;t) represents a certain ‘dimension’
of %, B(as,t): it is the dimension of the largest ‘affine subspace’ contained in (%, B(a;,t) which
has form {p € X" : py, = wi Vk € [n] \ K}.

We note that ¢(ai,...,ami15t) < @(a,...,am;t) <t, p(a;;t) =t and @(ay,...,an;t) > 0 if and
only if "%, B(a;,t) # 0. In addition, we can assume that wy € {a1k, a2k, ..., ami} for all k € [n]\ K
because otherwise, we should have considered K’ := K U{k}. This motivates the following definition.

Definition 4.6. Let m > 0,n > t > 0, let X be a nonempty set, and ay,...,an € X™. Define
W(a1,az,...,am;t) to be the set of w € (-, B(ai,t) where wy € {a1 k, a2k, ... ami} for all k € [n].

When it is clear from the context, we omit ¢ in ¢(-) and W(:). The following crucial property,
whose proof is delayed, shows how ¢(-) can be used to find a ‘small’ set hitting the Hamming balls.

Lemma 4.7. Let m > 1,n >t > 0, let X be any nonempty set, and ay,...,a, € X".
(1) W (a1, ...,am)| < (em)t;
(2) W{(ai,...,am) hits all B(a,t) where a € X™ satisfies p(a1,...,am,a) = @(ai,...,amy) > 0.
Now, we can prove Theorem 4.1(2) and Theorem 4.2.

Proof of Theorem 4.1(2). We may assume m > 2t without loss of generality. For each i € [m],
write a; for the centre of the Hamming ball B;. An unordered (t + 2)-tuple (iy,42,...,9¢42) € (tig)
is said to be good if B;, B;,, ..., B;,,, intersect. Find the largest £ € N such that there exist distinct

i1,12...,1¢ € [m] with the following properties.

o v(ai,) > p(ai,asy) > > @(ail,aiza--',%) > 0;

e There are at least tf;gg a(tTQ__Q) good tuples containing i1, ..., .
Note that ¢ > 1 because the pigeonhole principle implies that some iy € [m] lies in at least a( tTQ) % =

a(TJr_ll) good tuples. In addition, £ <t + 1 because

Oggp(ailw-'aaie) S@(ai1>-"7a'ie71)_1S@(ailv'-'vaizfz)_2§"' S@(ah)_(g_l):t_g"i'l'

Now, let I be the set of i € [m]\ {i1,...,i/} such that at least tjﬁja(?{f_}l) good tuples contain
i1,...,1¢ and i. We claim that |I| > a(m —¥€)/(t 4+ 2). We prove it by double-counting Z, the number
of good tuples containing i1, ...,7. By first enumerating i € [m] \ {i1,...,4/} and then good tuples
containing i1, . ..,4g,1 (so every good tuple is counted ¢ + 2 — ¢ times), we have

m—4{—1 t+2—40 (m—0—1
t+2-0)7Z <|I -l =) ————
(t+2-0) _||<t+1—€>+(m =73 a<t+l—€>

m—F0—1 t+2-—14 m—4L0—1
< e - _
_|I|<t+1—€>+ 12 om 6)(t+1—£>

m—4{—1 t+2—1¢ m—/f
|I‘(t+1—e>+ t+2 a<t+2—€>(t+2_€)'
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Moreover, our definition of i1, ...,i; guarantees Z > tf;j (tT;Ze
t+3—4 m—/ m—4£—1 t+2—/4 m—/{
_— t+2—-0)<|I _
t+2 a<t+2—£>(+' )—’|<t+1—£> t+2 a<ﬁ+2—£
. ¢ 1 .
This means |I| > t%(t%—z) (t+2— 6)/(7?“_4) = ¢g(m —{), as claimed.
By the maximality of ¢, we know that ¢(a;,, ..., ai,) = ¢(ai,...,a;,,a;) > 0foralli € I (otherwise
i1,...,4,7 is a longer sequence). Then, Lemma 4.7 guarantees a set of at most (ef)! points in X™
hitting every B;, i € I. By the pigeonhole principle, some point in X" hits at least |I|/(ef)! >

% = Q(am/(e(t + 1))"*1) of the Hamming balls (here, we used that m > 2t). [ |

),so

>u+2—@.

Proof of Theorem 4.2. We start with the common part of the proofs of both (1) and (2).

For each ¢ € [m], write a; for the centre of the Hamming ball B;. Denote A := {a1,a2,...,an}.
Recall that given any z1,x2, ...,z € X", ¢(z1,22,...,2z) > 0 if and only if ﬂle B(xz;,t) # 0. Find
the largest £ > 1 such that there exist x1,zo,...,2y € A with the following properties.

(i) For every 1 < iy <ip < --- <ig <, it holds that ﬂ?zl B(wg;,t) = 0:

(ii) for every 2 < k < gand 1 < i3 < iy < -+ < i < £ with ﬂf;ll B(xi;,t) # 0, it holds that
O(Tiy s Tigy - ooy Ty ) < P(Tiy, Tigy ooy Tip_y)-

We first note that ¢ is well-defined as one can take £ = 1,1 = a;. In addition, by our assumption,
out of any p Hammings balls among B1, Bs, ..., By, q of them intersect, so £ < p — 1.

Fix any a € A. The maximality of ¢ implies that o(x;,,%i,,...,7,_,,a) > 0 for some 1 < iy <
Qg < - < g1 < Llor 0 < (i, Tig, - -, Tiy, a) = O(Tiy, Tig, - .., T, ) for some 1 < k < ¢ —1 and
1<idy <ig < -+ <1 <L As a consequence, one of the following must hold.

(@) 0 < @(miy, Tig,s .y Tip,a) = O(Tiy, Tigy - - -, Ty, ) for some 1 < k < q,1 <ig <ig < -+ <ip <Y
(B) 0 < @(Tiy, iy, -+ Tig_y, @) < O(Tiy, Tiyy - -+ Tiy_y ) for some 1 <iig <dg < -+ <igg <A

We first deal with a € A satisfying («). For every ) # J C [{] of size at most ¢ — 1, let W, :=
W (xs, : j € J) (see Definition 4.6). By Lemma 4.7, |[W;| < (e|J|)" < (e(q — 1))t and W hits B(a,t)
whenever a € A satisfies () with J = {i1,42,...,i,}. Taking the union of all Wy, W := {J, W,
satisfies [W| < (p<—q1) (e(q — 1))t < (<pq) (e(q — 1))t and W hits B(a,t) whenever a € A satisfies ().

Now, suppose J = {i1 < iz < --- < i4_1} C [¢]. Consider Ay, the set of all a € A satisfying (3)
with 41,142,...,4g—1. We will propose a set Y; C X" that hits every B(a,t), a € A;. To this end, we
may assume ¢(Z;,, Tiy, - - -, i, ;) > 0 as otherwise A; = (). We also need the following estimate.

Claim 4.8. For every a € A, dist(a, W) := minyew, dist(a,w) < 2t+2 —q.

Proof. Since (i, xi,,...,7;,_,,a) > 0, there exists w € B(a,t) N ﬂjq;i B(w;,t). So we have
dist(w,a) < t and dist(w,z;;) < t for all j € [¢ — 1]. Let K be the set of k € [n] such that

Wi, & {Tiy ks Tig k- -+ Tig_y k). Then, dist(w)|, ., 24| ) + K| = dist(w,z;;) <t for all j € [g — 1].
Using (ii) and Definition 4.5, we acquire
(K| < @@y, Tig,y -, Tig_y) < 0(Tiy, Tigy o vy Wiy _,) =1 < <2 — 4.

Now, pick w’ € X" where w) = wy for £ € K¢ and wj, = wx;,; for k € K. It satisfies that
wy, € {Ziy ky Tig ks - - - Tiy_y k) for all k € [n] and

dist (w’, z;,) < dist(w’ ) + | K| = dist(w

e Lig| e e Lij KC) + ’K| = diSt(w’xij) <t

16



for all j € [¢ — 1]. In other words, w’ € ﬂ?;} B(z;;,t) and hence, w’ € Wj. So,
dist(a, Wy) < dist(a,w’) < dist(a, w) + dist(w,w') <t + | K| <2t +2 —q. [
Next, we generate x51,22,...,2 %, € Ay as follows.
e Pick any ;71 € A;.

e Having picked x71,272,..., 2 for some k > 1, if there exists a € A; with dist(a,z ;) > 2t for
all ¢ € [k], pick z k41 to be such a that maximises dist(a, Wy).

Clearly, among B(zs1,t), B(xj2,t),...,B(zk,,t), no two balls intersect, so k; < p. For every
w € Wy and every 1 < k < kj, let Y, be the set of points given by Lemma 4.4 (plugging a := w,

b:=xy and § = ¢ — 2); 50 |V | < (4tf22__qq)\X|t+2*q. We claim that

kg
Yy=|J | Yus

weWy k=1
hits every B(p,t), p € Aj. To show this, fix an arbitrary p € A;. According to the generation of
TJ1,%J2,- -, Tk, there exists k, € [ky] such that dist(p,zsx,) < 2t. We may take the minimum
such k,. Thus, dist(p,z ;) > 2t for all 1 <k < k,. But then, the procedure (in step k) also implies
dist(p, W) < dist(xj,, Ws). Taking w € W such that dist(p, W) = dist(p, w), we get
dist(p, w) = dist(p, W) < dist(z sx,, Ws) < dist(z sz, w).
Recall from Claim 4.8 that dist(p, w) = dist(p, W) < 2t + 2 — g. Taken together, we know
dist(w,p) < min(dist(w,zsx,),2t +2 —¢q) and dist(p, zsz,) < 2t.

By Lemma 4.4, Y,  hits B(p,t) and hence, Y} hits B(p,t). In addition,

kg

4t +2 — _ _ _

Y| < Z Z|Yw,k\ < !WJ!kJ<t , Q>|X|t+2 7 < <eq)tp20(t)‘X‘t+2 ngthO(t)|X|t+2 q
weWy k=1 t2-q

To complete the proof, we consider two cases. If 2 < ¢ < t+1. Either a € A satisfies («), so W hits
B(a,t), or a € A satisfies (3), so Y hits B(a,t) for some J C [{] of size ¢ — 1. Thus, Y := WU, Y;
is the desired set, whose size

p p - —
Y] < << q> (ela—1))" + (q 1) 20| X |12 = pigh| x|H2m1200),

This proves part (1) of this theorem.
If ¢ >t + 2, without loss of generality, we may assume that ¢ = t + 2. Note that all a € A satisfy
(). Indeed, a € A satisfying (/) is not possible, since then () and (ii) imply

0 < (p(xi1’$i27"-7xiq_1aa) < @(mipxiw"' 7l'iq—1) —-1< @(xi17$i27- . ~a$iq_2) —-2<--
< olay)—(g-1)=t—(¢g—1)=-1
In other words, ay,as,...,an all satisfy (o). By the former discussion, W hits every B;, i € [m],
where
p . ep q—1 . ep t+1 .

W\ < e(qg—1 §< > e(qg—1 :( ) e(t+1))" = O(e*pt*h).

wis (2 )eta-0) = (C25) fela- 1) = (G 25) (eler ) =0l
This proves part (2) of this theorem. [
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Proof of Lemma 4.4. Write P := {p € X" : dist(a, p) < min(dist(a,b), 2t — ), dist(b, p) < 2t}. We
may assume that P # () and that dist(a,b) > ¢ as otherwise every B(p,t), p € P, contains a. By
taking any p € P, we know dist(a, b) < dist(a, p) + dist(p, b) < 4t —§. Write D := {k € [n] : ar # b},
so |D| = dist(a,b) < 4t — 6. Let Y be the set of all y € X™ such that {k : yr # ai} is a subset of D
of size at most t — §; |Y| < (if;)\X\t_‘;. We prove that Y has the desired property, i.e. Y hits all
B(p,t),p € P.

To this end, fix any p € P. Writing D, := {k € [n] : ar # px}, it holds that |D,| = dist(a,p) <
min(|D|,2t — §) < |D|, thereby |DAD,| > 2|D, \ D|. Now, observe that by # pj, for all k € DAD,,.
This means 2|D, \ D| < |[DAD,| < dist(b,p) < 2t, which implies |D, \ D| < t. Then, take any
I C D, N D of size min(|D, N D|,t — §) and y € X" such that

_foar ken]\I
Y = pr kel

We know y € Y because {k : yp # ar} € I C D and it has size at most ¢ — J. In addition,
dist(y,p) = |Dp \ I|. If [I| =t — 0, then |D, \ I| = |Dp| — |I| <2t =6 — (t = §) = t; if |I| = |Dp, N D],
then |D, \ I| = |D, \ D| < t. In any case, dist(y,p) < t,ie. y € Y hits B(p,t). This completes the
proof. |

Proof of Lemma 4.7. Write W := W (a1, as,...,ay). For (1), we may assume W # () and m > 2
because W = {a1} when m = 1. For each k € [n], denote Vi, := {a1,a24,...,am}. Consider
>t dist(a;,w) for an arbitrary @w € W, which counts pairs (i,k) € [m] x [n] where a;) # Wg.
For each k € [n], there are at least |V| — 1 indices ¢ € [m] with a; # wg, so Y, (|Vk| — 1) <
>k, dist(a;, w) < mt. Now, observe that any w € W has that wy # ay for at most ¢t of k € [n].
Thus, we can enumerate over the set of these indices k, which we denote by S C [n], and for each such
k € S, there are |Vi| — 1 choices for wy, i.e.

t

LESD DI | (AR Zj,(Zw—l)) <
k=1 s

SCln],|S|<t keS s=0

< (em)’.

(my* _, (mt)'
= st Tt
Here, we used the Stirling’s approximation t! > 2(t/e)! for t > 1.

For (2), let K C [n],w € X™ be the set and vector in the definition of p(ay,ag, ..., am,a). Putting
wy = ayy, for all &k € K, we have dist(a,w) < ¢ and dist(a;,w) < t for all i € [m]. It suffices to
show that w € W. Suppose not, i.e. wi ¢ {aik,a2k,-..,am} for some k € [n]. Clearly, k ¢ K.

Putting L := K U {k}, it holds that dist(w|,.,a;|,.) + L] = dist(w|, ., a;|,..) — 1+ K|+ 1 < ¢ for all
1 <4 < m. This means p(ai,asg,...,amn) > |L| > p(a1,az,...,an,a), contradicting our assumption.
Thus, w € W N B(a,t), as desired. |

In Section 1.1, we defined the convexity space (X", Cp). It is the convexity space formed by all
intersections of arbitrary collections of Hamming balls in X™ of radius ¢. In particular, every Hamming
ball of radius at most ¢ is contained in (X",Cp). This is because B(a, £) = (V.qisq(a,p)<t—e B(b; 1) for
every { <t < n. For this convexity space, our proof of Theorem 4.1(2) and that of Theorem 4.2(2)
can be used to provide the corresponding fractional Helly theorem and the (p,q) theorem. More
specifically, suppose C1, ..., C), are convex sets in (X", Cp). Our argument shows that

e if at least a(,}",) unordered (¢+2)-tuples (where tuples have distinct entries) of these convex sets

t+2
. . . . _ 2 .

have a common intersection, then some point in X™ hits an a2~ )_fraction of these convex

sets;
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o if p > q > t+ 2 and out of any p of these convex sets, ¢ of them have a common intersection,
then there exist pt+12o(t2) points in X™ hitting all these convex sets.

Essentially the only change is to generalise p(a1, ..., an) and W(ay, ..., an) to the setting of convex
sets. For convex sets C1,...,Cy,, one can define ¢(C1,...,Cy,) to be the size of the largest K C [n]
such that for some w € X™, the set {z € X"z = wi Vk ¢ K} is contained in C1N- - -NC,,,. This is the
dimension of the largest ‘affine space’ contained in C1N- - -NC,. In addition, by Theorem 1.2, each Cj is
the intersection of at most 20+ Hamming balls of radius ¢, i.e. C; = ﬂ?:ll B(aij,t) for some a; j € X™.
One can define W(Cy,...,Cp) = W(a;; : i € [m],j € [271]). With the above ¢(C1,...,Cy,) and
W(C1,...,Cy), almost the same proof as Lemma 4.7 shows that W (C1, ..., Cy,) < (em2!T1)! and that
W(Ci,...,Cy) hits every convex set C' such that o(C1,...,Cp, C) = ¢(Cy,...,Cp). Considering
o(C1,...,Cy) in place of ¢(a,...,an), the proof of Theorem 4.1(2) and that of Theorem 4.2(2)
works to give the above results. Note that in the proof of Theorem 4.2(2), case (/3) can never happen,
so one only needs to adapt the proof till the definition of W.

4.2 Sequences of sets

One way to generalise Theorem 1.5 is to consider sequences of sets. More precisely, given n >t > 0,
a,b>1 and a set X with |X| > a+b, an (n,t,a,b; X)-system is a collection of pairs (A;, B;)™, (for
some m) such that for each i = 1,...,m,

Ai = (A,J, Ai’g, A 7Ai,n) where Ai,k - X and |Az,k’ =a Vke€ [n]
B, = (Bi,la Bi,27 ... aBi,n) where Bi,k C X and |Bz,k| =bVke [’I’L]

Define the distance dist(A;, Bj) to be the number of k € [n] such that A;; N Bj; = 0. Then, we
can extend f(¢; X) by denoting f(n,t,a,b; X) to be the size of the largest (n,t,a, b; X)-system such
that dist(A;, Bj) > t + 1 for all i € [m] and dist(A4;, B;) < t for all distinct 4,j € [m]. One can
check that Theorem 1.5 corresponds to the case a = b = 1 by replacing each entry of a; and b; by
a singleton containing it, so f(n,¢,1,1; X) = 2/*!. In addition, the first author [Alo85] proved that
fE+1,t,a,0;X) = (a;rb)tH. These results naturally lead to the conjecture that f(n,t,a,b; X) =

t+1
(a:b) " for all n > t > 0; in particular, this would mean that f(n,t,a,b; X) is independent of n.
However, this turns out to be far from the truth as long as a > 1 or b > 1.

Proposition 4.9. (tﬁl) ((“Zb) — 2)t+1 < f(n,t,a,b; X) < (tﬁl) (a?}rb)t+1 ifn>t>0and|X|>a+b.

Proof. For the upper bound, suppose (4;, B;)", is an (n, t, a, b; X )-system that realises f(n,t,a, b; X).
Uniformly sample a subset S C [n] of size ¢t + 1 and consider the following (¢ + 1,¢, a, b; X )-system:
for each i € [m], A; := (Air)kes and B; := (Bjx)res. Clearly, dist(A}, B}) < dist(4;, B;) < ¢ for
every distinct 4, € I. Let I be the set of i € [m] where dist(A}, Bl) > t + 1. By the result of the

first author [Alo85], we know || < (a:b)tﬂ. Also, using that Pr[i € I] > 1/(7:11)7 we conclude that
m/ (1) <EI| < (“;Lb)tﬂ. This shows that f(n,t,a,b; X) =m < (,};) (axb)tﬂ.
For the lower bound, we may assume X = [a+b]. Let S,..., Sy be an arbitrary enumeration of all

subsets of X of size a; so { = (a;rb). Additionally, let T; := X \ S; for i € [¢(]. Observe that S;NT; =0
if and only if ¢ = j. Define a mapping ¢ : [¢ — 1] — [¢] by putting

. i, i=1,..,0-2
PO=0 =1
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Now, consider all vectors in [¢ — 1]™ where precisely n — t — 1 entries equal to £ — 1. Let ay,...,am
be an enumeration of them; so m = (t-tl) ((azb) - 2)t+1. For each i € [m], define A; = (A4, );_, and
B; = (B ;)_, such that

Ai,k = Slli,k and Bi,k =T,

o(ai k) fork=1,...,n.

Clearly, (A4;, B;)™, is an (n,t,a,b; X)-system with m = (t—tl) ((a:b) — 2)t+1, so it suffices to check

that dist(A;, Bj) >t + 1 if and only if ¢ = j. For any ¢,j € [m] and k € [n], it holds that
A@k N Bj7k =0 & Sai’k N Tw(aj,k) =0 & il = gD(ang) < Qi = Qjk £0—1.

Thus, dist(A;, Bj) equals the number of k € [n] such that a;; = aji # ¢ — 1. Recall that in both a;
and aj, precisely n —t — 1 entries equal to £ — 1. Hence, dist(A;, B;) < t+ 1 for all 4, j € [m] and the
equality holds if and only if a; = a;, i.e. ¢ = j. This concludes the proof. |

Notably, when b = 1 and |X| = a + 1, f(n,n — t,a,1; X) equals the maximum m such that
there exist ai,...,am,b1,...,bpn € X™ where dist(a;, b;) < ¢ if and only if ¢ = j, the opposite to
the constraints in the definition of f(¢; X). To see the equivalence, for any A; = (A;1,...,A4in)
with [A; x| = a and B; = (B;1,...,B;iyn) with |B; ;| = 1, we can define a; = (a;x);_, where a;y, is
the only element in X \ A;, and b; = (b; x)}_,; where b;;, is the only element in B;j. Notice that
dist(A;, Bj) + dist(a;, bj) = n for all i, j. The condition that dist(A;, Bj) > n —t if and only if i = j
is equivalent to the condition that dist(a;,b;) < t if and only if ¢ = j. Despite the similarity to the
definition of f(t; X), Proposition 4.9 shows that the number of pairs (a;, b;) such that dist(a;, b;) <t
if and only if 4 = j can be (,}";)(a — O(1))"*1.

4.3 Connection to the Prague dimension

Given a graph G, the Prague dimension, pd(G), is the minimum d such that one can assign each
vertex a unique vector in Z¢ and two vertices are adjacent in G if and only if the two corresponding
vectors differ in all coordinates. In other words, pd(G) is the minimum d such that there exists some
injection f : V(G) — Z% such that u, v are adjacent in G if and only if dist(f(u), f(v)) = d.

The definition and results of the function f(¢; X) suggest the following variant of the Prague
dimension. Given a graph G, the threshold Prague dimension, tpd(G), is the minimum ¢ such that
there exists some d € N and some f : V(G) — Z¢ so that u,v are adjacent in G if and only if f(u)
and f(v) differ in at least ¢ coordinates, that is, dist(f(u), f(v)) > t. By definition, tpd(G) < pd(G).
In this section, we list and compare some properties of these two dimensions.

First, tpd(G(n,1/2)) = ©(n/logn) with high probability. The upper bound holds as pd(G(n,1/2)) =
©(n/logn) with high probability by [GPW23]. For the lower bound, let G be the set of all graphs
with vertex set [n] whose complement has diameter 2. It is well known that |G| = (1 — 0(1))2(3) (see,
for example, [Bol01]). We will consider the mappings f : V(G) — Z? that realise tpd(G) for some
G € G and compare the number of ‘intrinsically distinct” fs and the cardinality |G|. Now, let G € G
and f : V(G) — Z% be a mapping that realises ¢ := tpd(G). Without loss of generality, we can assume
that f(u) € [n]? for every vertex u and that f(1) is the all-ones vector. Define

L= J {keld: f(r# flu)}.

ueV(Q)

Knowing that dist(f(u), f(v)) <t for u,v not adjacent in G and that the diameter of the complement
of G is 2, it follows that dist(f(1), f(u)) < 2t for all u € V(G), so |I| < 2tn. By the definition of I,
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fu)r = f(1)r =1 for every u € [n] and k € [d] \ I. This means that we can assume d = 2tn without
loss of generality. Taken together, any G € G is determined by a pair (7, f) where T is a spanning
tree in its complement and f : V/(G) — [n]*" is the above mapping which, in particular, satisfies that
f(1) is the all-ones vector and dist(f(u), f(v)) < t for all u,v € E(T). Fixing T', let us count the
number of possible fs. Observe that if u is the parent of v in 7" and f(u) has been fixed, there are at
most (2<t?)nt = n9® choices for f(v). Thus, the number of such fs is at most (no(t))n_l = nOltn),
Recall that there are 2°(7%) spanning trees in K,. If ¢t = o(n/logn), the number of pairs (T, f) is
20(n*) 50 tpd(G(n, 1/2)) < t with probability o(1). In other words, tpd(G(n,1/2)) = Q(n/logn) with
high probability.

Second, if u1,ug,...,us and vi,v2,...,vs are two sequences of vertices in G such that u;,v; are
adjacent in G if and only if i = j, i.e., the edges (u;, v;) form an induced matching in G, then tpd(G) >
logs s by Theorem 1.5. Indeed, any f : V(G) — Z? realising tpd(G) satisfies dist(f(u;), f(v;)) >
tpd(G) for all i € [s] and dist(f(u;), f(vj)) < tpd(G) for all distinct ¢,j € [s]. This argument has
been widely used to give lower bounds for pd(G) for various graphs G. For example, let us consider
graphs on n vertices such that the minimum degree is at least one while the maximum degree is A.
This includes a lot of basic graphs like perfect matchings, cycles, paths, etc. The first author [Alo86]
showed that the Prague dimension for these graphs is at least logy x — 2 because they contain an
induced matching of size at least ;5. Now, Theorem 1.5 shows the same bound also holds for the
threshold Prague dimension. To compare, we note that Eaton and Roédl [ER96| showed that the
Prague dimension (and thus the threshold Prague dimension) for these graphs is at most O(Alog, n).

Third, the threshold Prague dimension can be much smaller than the Prague dimension. For
example, it is known that pd(K, + K1) = n (see [LNP80]), where K, + K is the disjoint union of
a clique of size n and an isolated vertex. However, by mapping the vertices of K, to the standard
orthonormal basis of R” and that of K to the all-zeros vector, we observe that tpd(K,, + K1) < 2.
A more interesting example is the Kneser graph: for n > k, the Kneser graph K (n, k) is the graph
whose vertices are all the k-element subsets of [n] and whose edges are pairs of disjoint subsets.
When 1 <k < n/2, it is known that logy logy ™7 < pd(K(n, k)) < Cylogylogy n for some constant
Cy; see [Fiir00]. For the threshold Prague dimension, define f : ([Z]) — {0,1}" by mapping each
vertex in K(n,k) to the indicator vector of length n of the corresponding subset. Then, for two
adjacent vertices u, v, (where the corresponding two subsets are disjoint), dist(f(u), f(v)) = 2k. For
two non-adjacent vertices u,v, the two subsets intersect and dist(f(u), f(v)) < 2(k — 1) < 2k — 1.
This shows tpd(K(n,k)) < 2k — 1. In addition, K(2k,k) is an induced matching of size %(Qkk),
so tpd(K(2k,k)) > log, %(2:) = 2k — O(logy k). Knowing that K(n,k) contains K(2k, k) as an
induced subgraph, we have tpd(K (n,k)) > tpd(K (2k,k)) = 2k — O(logy k). Thus, tpd(K(n,k)) is
asymptotically 2k. This holds independently of n, very different from the behaviour of pd(K(n, k)).

Finally, it would also be interesting to determine the maximum possible threshold Prague dimension
for an n-vertex graph G. For the ordinary Prague dimension, this was done by Lovész, Nesetsil and
Pultr [LNP80|, who showed that pd(G) < n —1 and pd(G) = n — 1 if and only if G = K,,_1 + K;
(when n > 5). As we already mentioned above, K,,_; + K; is not a good candidate to maximise
tpd(G) since tpd(K,,—1 + K1) < 2. Another natural graph to consider is K, + K,,, when n = 2m. For
this graph, we claim that tpd(K,, + K,,) = pd(K,,, + K;,) = m. Let the vertex sets of the two cliques
be U = {u1,...,un} and V. = {v1,...,v,}. For the upper bound, assign to u; an all-is string of
length m, and to v; a string s of length m starting from 4 in which s = sg_1+1 mod m for all k. For
the lower bound of tpd(K,, + K,,), suppose f : UUV — Z2 (for some d) realises t := tpd (K, + Kn).
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Let

Cro= Y dist(f(u), flug))+ > dist(f(v), f(vg)), Car= Y dist(f(u), f(vy)).
1<i<j<m 1<i<j<m i,j=1

We consider C1 —Cs. Fix k € [d]. For each a € Z, let s, be the number of ¢ € [m] such that f(u;)r = a,
and t, be the number of i € [m] such that f(v;)r = a. The contribution to C; — Cy from the kth
coordinates is given by

(@) Z (S2a>> ” (@) Z (2)) - <m2 za:sata> =Zajsata 82?2 <.

Summing over all k € [d], we know C7 < Cy. But then, 2(”21) 1< Cp < Cy <m?-(t—1), showing
tpd(K,, + K,) =t > m, as claimed. In general, it might be the case that tpd(G) < {%1 for every
n-vertex graph G.

5 Concluding remarks and open problems

In Theorem 2.4 we showed there are at most 2!*! pairs of (a;,b;) such that dist(a;,b;) > ¢t + 1
for all ¢ and dist(a;,b;) < t for all i # j. Consider any ¢ > 1, the nontrivial case. Notice that
‘gﬁj > ‘g,fff’ = Qttt% > 271 for all s > 3. Therefore, Eq. (2) indicates that in the extremal
case, where there are 2!7! such pairs, it must be that dist(a;,b;) € {t + 1, + 2} for all i. Taking
a; € {0,131 and b; = @;, we construct 2+ such pairs with dist(a;,b;) = t + 1. Also, by taking
a; € {0,1}*2 with an even number of 1s and b; = @;, we construct 22 pairs with dist(a;, b;) =t + 2.
Thus, dist(a;,b;) =t + 1 and dist(a;, b;) = t + 2 are both possible in the extremal case. It would be
interesting to have a complete characterisation of the extremal cases.

In the realm of set-pair inequalities, the skew version also plays an important role; see [Lov77,
Lov79]. Given t and X, what is the largest m such that there exist n > t+1 and aq, ..., am,b1,..., by €
X" where dist(a;, b;) > t+ 1 for all i € [m] and dist(a;,b;) <t forall 1 <i < j < m? We suspect
that the answer is also 2!71, and it would be interesting to try to adapt the dimension argument to
prove it.

In |Fiir84], Fiiredi showed the set-pair inequality via the following vector space generalisation.
If Aq,..., A, are a-dimensional and By, ..., B,, are b-dimensional linear subspaces of R™ such that
dim(A;NB;) < kifand only if i = j, then m < (“J:Lb__k%). We wonder if there is a natural generalisation
of Theorem 1.5 or even Theorem 2.4 to vector spaces.

It will also be interesting to study the threshold Prague dimension further. In particular, it would be
nice to determine or estimate the maximum possible value of this invariant for a graph with n vertices
and maximum degree A. We note that for the classic Prague dimension, Eaton and Roédl [ER96]
showed the maximum possible dimension of a graph with n vertices and maximum degree A is at

most O(Alogn) and at least Q(bgﬁ%).
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