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Abstract

We prove the following variant of Helly’s classical theorem for Hamming balls with a bounded
radius. For n > t and any (finite or infinite) set X, if in a family of Hamming balls of radius t in
Xn, every subfamily of at most 2t+1 balls has a common point, so does the whole family. This
is tight for all |X| > 1 and all n > t. The proof of the main result is based on a novel variant of
the so-called dimension argument, which allows one to prove upper bounds that do not depend on
the dimension of the ambient space. We also discuss several related questions and connections to
problems and results in extremal finite set theory and graph theory.

1 Introduction

1.1 Helly-type problems for the Hamming balls

Helly’s theorem, proved by Helly more than 100 years ago ([Hel23]), is a fundamental result in discrete
geometry. It asserts that a finite family of convex sets in the d-dimensional Euclidean space has a
nonempty intersection if every subfamily of at most d+ 1 of the sets has a nonempty intersection.

This theorem, in which the number d+1 is tight, led to numerous fascinating variants and extensions
in geometry and beyond (c.f., e.g., [Eck93, BK22] for two survey articles). It motivated the definition
of the Helly number h(F) for a general family F of sets. This is the smallest integer h such that
for every finite subfamily K of F , if every collection of at most h members in K has a nonempty
intersection, then all sets in K have a nonempty intersection. The classical Helly’s theorem asserts
that the Helly number of the family containing all convex sets in Rd is d + 1. Another interesting
example of a known Helly number is due to Doignon [Doi73]: the Helly number of convex lattice sets
in the d-dimensional Euclidean space, that is, sets of the form C ∩ Zd where C is a convex set in Rd,
is 2d. A more combinatorial example is the fact that, given any tree T on more than one vertex, the
Helly number of the family of (the vertex sets of) all subtrees of T is 2.

In the space Xn for finite or infinite X, the Hamming balls are among the most natural objects to
study. The Hamming distance between p, q ∈ Xn, denoted by dist(p, q), is the number of coordinates
where p and q differ, and the Hamming ball of radius t centred at x ∈ Xn, denoted by B(x, t), is
the set of all points p ∈ Xn that satisfy dist(p, x) ≤ t. Since every Hamming ball of radius t equals
the whole space whenever n ≤ t, we may and will always assume that n ≥ t + 1. Our main result
determines the Helly number of the family of all Hamming balls of radius t in the space Xn, where X

is an arbitrary (finite or infinite) set.

Theorem 1.1. Let n > t ≥ 0 and X be any set of cardinality |X| ≥ 2. The Helly number h(n, t;X)

of the family of all Hamming balls of radius t in Xn is exactly 2t+1.
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Crucially, h(n, t;X) depends only on t. We note that the special case X = {0, 1} of this theorem
settles a recent question raised in [RST24], where the question was motivated by an application in
learning theory. See also [BHMZ20] for more connections between the Helly numbers and questions
in computational learning theory.

Another fundamental result in discrete geometry is Radon’s theorem [Rad21], which states that any
set of d+2 points in the d-dimensional Euclidean space can be partitioned into two parts whose convex
hulls intersect. This was first obtained by Radon in 1921 and was used to prove Helly’s theorem; see
also [Eck93, BK22]. Using our methods, we can prove the following strengthening of Theorem 1.1. As
we will explain below, it can be viewed as Radon’s theorem for the Hamming balls.

Theorem 1.2. Let n > t ≥ 0 and X be any set of cardinality |X| ≥ 2. Suppose {Bα}α∈A is a (finite
or infinite) collection of Hamming balls in Xn of radius t. Then, there exists A′ ⊆ A of size at most
2t+1 such that

⋂
α∈ABα =

⋂
α∈A′ Bα.

The upper bound of the Helly number h(n, t;X) ≤ 2t+1 follows easily from this result. Indeed,
suppose B1, . . . , Bm are Hamming balls in Xn of radius t such that any collection of at most 2t+1 of
them has a common intersection. By Theorem 1.2, there exists I ⊆ [m] of size |I| ≤ 2t+1 such that⋂n

i=1Bi =
⋂

i∈I Bi, which is nonempty. To explain its connection with Radon’s theorem, we briefly
discuss the notion of (abstract) convexity spaces.

An (abstract) convexity space is a pair (U, C) where U is a nonempty set and C is a family of subsets
of U satisfying the following properties. Both ∅ and U are in C and the intersection of any collection
of sets in C is a set in C. One natural example is the standard Euclidean convexity space (Rd, Cd)

where Cd is the family of all convex sets in Rd. We refer the readers to the book by van de Vel [Vel93]
for a comprehensive overview of the theory of convexity spaces.

In a convexity space (U, C), the members of C are called convex sets. Given a subset Y ⊆ U , the
convex hull of Y , denoted by conv(Y ), is the intersection of all convex sets containing Y , i.e. the
minimal convex set containing Y . The Radon number of this convexity space (U, C), denoted by r(C),
is the smallest integer r (if it exists) such that any subset P ⊆ X of at least r points can be partitioned
into two parts P1 and P2 such that conv(P1)∩conv(P2) ̸= ∅. For instance, r(Cd) = d+2 for the family
of convex sets in Rd. It is well-known that the Helly number is smaller than the Radon number if the
latter is finite; see [Lev51].

In our case, U = Xn, and CH consists of all intersections of arbitrary collections of Hamming balls
of radius t. It is easy to check that (U, CH) is a convexity space and that all Hamming balls of radius
at most t are contained in CH . We now argue that in (U, CH), the Helly number is 2t+1 and the Radon
number is 2t+1 + 1. By the above discussion, we already know that r(CH) > h(CH) ≥ h(n, t;X). In
addition, as we will see in Proposition 2.2, a simple ‘cube’ construction shows h(n, t;X) ≥ 2t+1. Hence,
for our purpose, it suffices to prove that r(CH) ≤ 2t+1 + 1. Now, let p1, p2, . . . , pm be m ≥ 2t+1 + 1

points in Xn. Notice that for any set of points P ⊆ Xn, conv(P ) is the intersection of all Hamming
balls B(q, t) satisfying P ⊆ B(q, t), and that P ⊆ B(q, t) if and only if q ∈

⋂
p∈P B(p, t). So conv(P ) is

the intersection of B(q, t)s over all q ∈
⋂

p∈P B(p, t). By Theorem 1.2,
⋂m

i=1B(pi, t) =
⋂

i∈I B(pi, t) for
some I ⊆ [m] of size at most 2t+1. This means ∅ ≠ I ̸= [m] and conv((pi)

m
i=1) = conv((pi)i∈I). Hence,

∅ ̸= conv((pi)i/∈I) ⊆ conv((pi)
m
i=1) = conv((pi)i∈I), which implies conv((pi)i/∈I) ∩ conv((pi)i∈I) ̸= ∅.

This proves r(CH) ≤ 2t+1 + 1, as desired.
In the original setting of convex sets in Rd, the following two extensions of Helly’s theorem received

considerable attention. The fractional Helly theorem, first proved by Katchalski and Liu [KL79], states
that in a finite family of convex sets in Rd, if an α-fraction of the (d+ 1)-tuples of sets in this family
intersect, then one can select a β-fraction of the sets in the family with a nonempty intersection.
The Hadwiger–Debrunner conjecture, also known as the (p, q)-theorem, was first proved by Alon and
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Kleitman [AK92]. It states that for p ≥ q ≥ d+1, if among any p convex sets in the family, q of them
intersect, then there is a set of Od,p,q(1) points in Rd such that every convex set in the family contains
at least one of these points. See also [BK22] for more recent variants and extensions.

Fractional Helly theorems and (p, q)-theorems are also studied in general convexity spaces. It is
known that a finite Radon number implies the fractional Helly theorem [HL21]. Moreover, as long as
the convexity space has a finite Radon number and a fractional Helly theorem for ℓ-tuples (for any
ℓ), then the (p, q)-theorem holds for every p > q ≥ ℓ [AKMM02, HL21]. In the case of Hamming balls
of radius t, one can use these general results together with the fact that r(CH) = 2t+1 + 1 to obtain
the fractional Helly theorem, where ℓ-tuples of Hamming balls are considered with ℓ ≫ 2t+1, and
the (p, q)-theorem where p > q ≥ ℓ. Such results are very far from optimal. In Section 4.1, we will
give self-contained proofs to obtain much better dependencies on t. Interestingly, for both of them, if
|X| = 2, we only need the information on pairs of Hamming balls. On the other hand, if |X| = ∞, we
need the information on (t+2)-tuples of Hamming balls. In particular, the threshold for having both
theorems for Hamming balls (of radius t) is either 2 or t + 2, much smaller than the corresponding
Helly number. This is very different from convex sets in Rd, where the threshold for having both
theorems is d+ 1, the same as the corresponding Helly number.

1.2 Algebraic tools and set-pair inequalities

The proof of Theorem 1.2 is based on a novel variant of the so-called dimension argument. Surprisingly,
this variant allows us to prove some upper bounds that do not depend on the dimension of the ambient
space. We believe that this may have further applications. For the special case of binary strings, that
is, |X| = 2, we prove a stronger statement using a probabilistic argument. For convenience, we define
the following two functions f(t,X) and f ′(t,X).

Definition 1.3. Let t ≥ 0 and X be any set of cardinality |X| ≥ 2. Define

• f(t;X) to be the maximum m such that there exists n > t and a1, a2, . . . , am, b1, b2, . . . , bm ∈ Xn

where dist(ai, bi) ≥ t+ 1 for all i ∈ [m] and dist(ai, bj) ≤ t for all distinct i, j ∈ [m];

• f ′(t;X) to be the maximum m such that there exists n > t and a1, a2, . . . , am, b1, b2, . . . , bm ∈ Xn

where dist(ai, bi) ≥ t+1 for all i ∈ [m] and dist(ai, bj)+dist(aj , bi) ≤ 2t for all distinct i, j ∈ [m].

The study of these functions can also be motivated by the well-known set-pair inequalities in ex-
tremal set theory. The set-pair inequalities, initiated by Bollobás [Bol65], play an important role
in extremal combinatorics with applications in the study of saturated (hyper)-graphs, τ -critical hy-
pergraphs, matching-critical hypergraphs, and more. See [Tuz94, Tuz96] for surveys. A significant
generalisation of Bollobás’ result is due to Füredi [Für84]. It states that if A1, A2, . . . , Am are sets of
size a and B1, B2, . . . , Bm are sets of size b such that |Ai ∩ Bi| ≤ k for all i ∈ [m] and |Ai ∩ Bj | > k

for all 1 ≤ i < j ≤ m, then m ≤
(
a+b−2k
a−k

)
, and this is tight. Using this result, one can give a short

argument that f(t;X) is finite.

Proposition 1.4. Let n > t ≥ 0 and X be any set of cardinality |X| ≥ 2. Suppose a1, . . . , am, b1, . . . , bm
are points in Xn such that dist(ai, bi) ≥ t+1 for all i ∈ [m] and dist(ai, bj) ≤ t for all 1 ≤ i < j ≤ m.
Then, m ≤

(
2t+2
t+1

)
. In particular, this means f(t;X) ≤

(
2t+2
t+1

)
.

Proof. For each i ∈ [m], define two sets

Ai := {(ℓ, ai,ℓ) : ℓ = 1, 2, . . . , n} and Bi := {(ℓ, bi,ℓ) : ℓ = 1, 2, . . . , n}.
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Since |Ai ∩ Bj | + dist(ai, bj) = n for all i, j ∈ [m], we have that |Ai ∩ Bi| ≤ n − t − 1 for all i and
|Ai ∩ Bj | ≥ n − t for all i < j. Then, the above result of Füredi with a = b = n and k = n − t − 1

shows m ≤
(2n−2(n−t−1)

n−(n−t−1)

)
=
(
2t+2
t+1

)
, as desired. This clearly implies that f(t;X) ≤

(
2t+2
t+1

)
. ■

We note that any upper bound for f(t;X) implies the same bound in Theorem 1.2 (and hence for
the Helly number h(n, t;X)); see Proposition 2.1 for a short argument. Hence, Theorem 1.2 follows
from the following result.

Theorem 1.5. f(t;X) = 2t+1 for every t ≥ 0 and every set X with |X| ≥ 2.

In the binary case, we prove the following under the additional condition X = {0, 1} (i.e. |X| = 2).
Interestingly, this additional condition turns out to be necessary as f ′(t;X) ≥ 3t whenever |X| ≥ 3;
this will be discussed in Theorem 3.3.

Theorem 1.6. f ′(t; {0, 1}) = 2t+1 for every t ≥ 0.

Both proofs of Theorems 1.5 and 1.6 work in the more general setting where we assume dist(ai, bi) ≥
t + s (for some s ≥ 1) instead of dist(ai, bi) ≥ t + 1, and also dist(ai, bj) ≤ t whenever i ̸= j. For
simplicity, we denote f(t, s;X) and f ′(t, s;X) as the largest sizes of the corresponding families. And
our proof shows that f(t, s;X) ≤ 2t+s/Vt+s,s and f ′(t, s; {0, 1}) ≤ 2t+s/Vt+s,s, where

Vn,d :=

{ ∑(d−1)/2
i=0

(
n
i

)
d is odd∑d/2−1

i=0

(
n
i

)
+
(

n−1
d/2−1

)
d is even

(1)

We note that Vn,d is the size of the Hamming ball in {0, 1}n of radius d−1
2 if d is odd and of the

union of two Hamming balls in {0, 1}n of radius d
2 − 1 whose centres are of Hamming distance 1 if

d is even. Interestingly, Vn,d is also known as the maximum possible cardinality of a set of points of
diameter at most d − 1 in {0, 1}n; see [Kat64, Kle66, Bez87]. Additionally, when d is odd, 2n/Vn,d

is the well-known Hamming bound for the maximum possible number of codewords in a binary error
correcting code (ECC) of length n and distance d. Binary ECCs, which are large collections of binary
strings with a prescribed minimum Hamming distance between any pair, are widely studied and
applied in computing, telecommunication, information theory and more; see [MS77a, MS77b]. Indeed,
ECCs naturally define ais and bis in Definition 1.3. As we will show in Section 3, the existence of
ECCs that match the Hamming bound (the so-called perfect codes) and their extensions imply that
f(t, s;X) = f ′(t, s; {0, 1}) = 2t+s/Vt+s,s when s ∈ {1, 2}, or s ∈ {3, 4} and t + 4 is a power of 2,
or s ∈ {7, 8} and t = 16. This will be shown using the well-known Hamming code [Ham50] and
the Golay code [Gol49]. In addition, the famous BCH codes discovered by Bose, Chaudhuri and
Hocquenghem [Hoc59, BRC60] imply that our bounds are close to being tight for every fixed s, that
is, f(t, s;X) = Θs(2

t+s/Vt+s,s) and f ′(t, s;X) = Θs(2
t+s/Vt+s,s).

Another well-known result in extremal set theory due to Tuza [Tuz87] states that if (Ai, Bi)
m
i=1

satisfies Ai∩Bi = ∅ for i ∈ [m] and (Ai∩Bj)∪(Aj∩Bi) ̸= ∅ for distinct i, j ∈ [m], then
∑m

i=1 p
|Ai|(1−

p)|Bi| ≤ 1 for all 0 < p < 1. This also has various applications; see [Tuz94, Tuz96]. When |Ai|+ |Bi| =
t + 1 for all i, this result implies m ≤ 2t+1, which is tight. Theorem 1.6 generalises this by taking
Ai := {k ∈ [n] : ai,k = 1} and Bi := {k ∈ [n] : bi,k = 1}: if |Ai△Bi| ≥ t + 1 for all i ∈ [m] and
|Ai△Bj | + |Aj△Bi| ≤ 2t for all distinct i, j ∈ [m], then m ≤ f ′(t; {0, 1}) = 2t+1. Here, we do not
require Ai and Bi to be disjoint and write A△B := (A \B) ∪ (B \A) for the symmetric difference of
A and B.

Finally, let us mention briefly that Theorem 1.5 motivates the study of a natural variant of the
Prague dimension (also called the product dimension) of graphs. Initiated by Nešetřil, Pultr and
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Rödl [NP77, NR78], the Prague dimension of a graph is the minimum d such that every vertex is
uniquely mapped to Zd and two vertices are connected by an edge if and only if the corresponding
vectors differ in all coordinates, i.e, it is essentially the minimum possible number of proper vertex
colourings of G so that for every pair u, v of non-adjacent vertices there is at least one colouring in
which u and v have the same colour. This notion has been studied intensively, see, e.g., [LNP80,
Alo86, ER96, Für00, AA20, GPW23].

The rest of this paper is organised as follows. In Section 2 we prove the main result Theorem 1.5.
We also show that any upper bound for f(t;X) implies the same bound in Theorem 1.2. Section 3
deals with binary strings and briefly discusses the behaviour of f ′(t;X) when |X| > 2. We also discuss
the connection to error correcting codes and another set-pair inequality. In Section 4 we investigate
several variants and generalisations of the main results, including a fractional Helly theorem, a (p, q)-
theorem, a variant of the Prague dimension of graphs, and a generalisation of f(t;X) to sequences of
sets. Finally, we conclude with some remarks and open problems in Section 5.

2 General strings

We begin by showing that Theorem 1.2 follows from Theorem 1.5.

Proposition 2.1. Let n > t ≥ 0 and X be any set of cardinality |X| ≥ 2. Suppose {Bα}α∈A is a
(finite or infinite) collection of Hamming balls in Xn of radius t. Then, there exists A′ ⊆ A of size
|A′| ≤ f(t;X) such that

⋂
α∈ABα =

⋂
α∈A′ Bα.

Proof. We first show that
⋂

α∈ABα =
⋂

α∈A0
Bα for some subset A0 ⊆ A of size |A0| ≤

(
2t+2
t+1

)
.

Indeed, suppose that this is not the case. Then, we can select a sequence of m =
(
2t+2
t+1

)
+1 Hamming

balls B1, B2, . . . , Bm in {Bα}α∈A such that
⋂

j≤iBj ⊊
⋂

j<iBj for all i ≥ 1. For each i ∈ [m], take ai
to be the centre of Bi and bi to be an arbitrary point in

⋂
j<iBj \

⋂
j≤iBj . By definition, we know

that bi /∈ Bi for all i ∈ [m] and bi ∈ Bj for all 1 ≤ j < i ≤ m. In other words, dist(ai, bi) ≥ t+ 1 for
all i ∈ [m] and dist(aj , bi) ≤ t for all 1 ≤ j < i ≤ m. By Proposition 1.4, m ≤

(
2t+2
t+1

)
, contradicting

our choice of m.
By the above discussion, it suffices to consider the case |A| is finite, in which case we can simply

write {Bα}α∈A to be {B1, . . . , Bm}. Now, consider any minimal collection of Hamming balls (in Xn

of radius t) B = {B1, B2, . . . , Bm} such that
⋂m

i=1Bi ̸=
⋂

i∈I Bi for any I ⊆ [m] of size at most
f(t;X). This means m > f(t;X) and

⋂
iBi ̸=

⋂
i ̸=j Bi holds for all j (using that B is minimal). So,

for each j ∈ [m], there exists bj ∈
⋂

i ̸=j Bi \
⋂

iBi. In addition, let aj be the centre of Bj . Then,
dist(ai, bi) ≥ t + 1 for all i and dist(ai, bj) ≤ t for all i ̸= j. Hence, m ≤ f(t;X), contradicting
m > f(t;X). This completes the proof. ■

As discussed in Section 1.1, any upper bound in Theorem 1.2 also implies the same upper bound
for h(n, t;X), so Proposition 2.1 implies that

h(n, t;X) ≤ f(t;X) ≤ f ′(t;X).

Here, the second inequality holds by definition.
Next, we show that h(n, t;X) ≥ 2t+1 (the lower bound in Theorem 1.1), and hence for f ′(t;X) ≥

f ′(t;X) = 2t+1 (the lower bounds in Theorems 2.4 and 3.1). The construction is given by [RST24].
Basically, one can consider all Hamming balls in {0, 1}t+1 (assuming X = {0, 1} and n = t+1), which
have the form {0, 1}t+1 \ p for a single point p. We note that this construction corresponds to that of
convex lattice sets [Doi73] by taking the convex hull in Rt+1.
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Proposition 2.2. h(n, t;X) ≥ 2t+1 for any n > t and any set X of cardinality |X| ≥ 2.

Proof. We may assume n = t+ 1 as h(n, t;X) ≥ h(t+ 1, t;X) and that 0, 1 ∈ X. Consider all 2t+1

Hamming balls B(a, t) where a ∈ {0, 1}t+1. It suffices to show that any 2t+1 − 1 balls intersect while
all of them do not. Observe that B(a, t) = {0, 1}t+1 \ {a} where a ∈ {0, 1}t+1 is given by flipping all
coordinates of a, i.e. changing 0 to 1 and changing 1 to 0. Therefore, for any ℓ = 2t+1 − 1 vectors
a1, . . . , aℓ ∈ {0, 1}t+1, the intersection

⋂ℓ
i=1B(ai, t) contains all but at most ℓ < 2t+1 elements in

{0, 1}t+1. This means that any 2t+1 − 1 such Hamming balls intersect. On the other hand,⋂
a∈{0,1}t+1

B(a, t) =
⋂

a∈{0,1}t+1

(
{0, 1}t+1 \ {a}

)
= {0, 1}t+1 \

⋃
a∈{0,1}t+1

{a} = ∅,

i.e. all the 2t+1 balls do not intersect. ■

The rest of this section contains the proof of the upper bound of Theorem 1.5, and thus also of
Theorem 1.1. To this end, we need the following properties of Vn,d.

Claim 2.3. Vn,d ≥ 2Vn−1,d−1 for 2 ≤ d ≤ n and this is an equality if d is even. In particular,
Vn,d ≥ 2d−1 for all 1 ≤ d ≤ n.

Proof. If d = 2k for some k ∈ {1, 2, . . . ,
⌊
n
2

⌋
}, then

Vn,d =
k−1∑
i=0

(
n

i

)
+

(
n− 1

k − 1

)
=

k−1∑
i=0

(
n− 1

i

)
+

k−2∑
i=0

(
n− 1

i

)
+

(
n− 1

k − 1

)
= 2

k−1∑
i=0

(
n− 1

i

)
= 2Vn−1,d−1.

If d = 2k − 1 for some k ∈ {2, 3, . . . ,
⌊
n+1
2

⌋
}, then

Vn,d =

k−1∑
i=0

(
n

i

)
= 2

k−2∑
i=0

(
n− 1

i

)
+

(
n− 1

k − 1

)
≥ 2

k−2∑
i=0

(
n− 1

i

)
+ 2

(
n− 2

k − 2

)
= 2Vn−1,d−1.

Here, we used
(
n−1
k−1

)
≥ 2
(
n−2
k−2

)
as k ≤ n+1

2 .
Given the first inequality, Vn,d ≥ 2Vn−1,d−1 ≥ · · · ≥ 2d−1Vn−d+1,1 = 2d−1, as desired. ■

We now show the upper bound of Theorem 1.5 by the following more general result.

Theorem 2.4. Let n > t ≥ 0,m ≥ 1, and X be nonempty. Suppose a1, a2, . . . , am, b1, b2, . . . , bm ∈ Xn,
and assume that for each i ∈ [m], dist(ai, bi) = t + si for some si ≥ 1, and dist(ai, bj) ≤ t for all
distinct i, j ∈ [m]. Then,

m∑
i=1

Vt+si,si

2t+si
≤ 1. (2)

In particular, f(t;X) ≤ 2t+1 and f(t, s;X) ≤ 2t+s/Vt+s,s if si ≥ s for all i ∈ [m].

Proof. First, suppose we have proved Eq. (2). Then, Claim 2.3 implies 1 ≥ m ·2si−1/2t+si ≥ m/2t+1,
i.e. m ≤ 2t+1. Hence, f(t;X) ≤ 2t+1. Similarly, if si ≥ s for all i ∈ [m], using Claim 2.3, we acquire
1 ≥

∑m
i=1

Vt+si,si

2t+si
≥ m · Vt+s,s/2

t+s, i.e. m ≤ 2t+s/Vt+s,s. So, f(t, s;X) ≤ 2t+s/Vt+s,s.
In the rest of the proof, we establish Eq. (2). The proof is algebraic and uses a novel variant of

the dimension argument which provides a dimension-free upper bound. Without loss of generality,
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assume X ⊆ R. For each i ∈ [m], denote Di := {k ∈ [n] : ai,k ̸= bi,k} and di to be the largest element
in Di. Then, |Di| = dist(ai, bi) = t+ si. In addition, we call a pair (I1, I2) of sets compatible with i if

I1 ⊆ Di, |I1| ≥ t+
si + 1

2
, I2 ⊆ [n] \Di or I1 ⊆ Di \ {di}, |I1| = t+

si
2
, I2 ⊆ [n] \Di.

In other words, I1 ⊆ Di and I2 ⊆ [n] \Di such that |I1| ≥ t+ si/2 and |I1| = t+ si/2 only if di /∈ I1.
For every i ∈ [m] and every such pair (I1, I2), define a polynomial on x ∈ Rn by

fi,I1,I2
(x) :=

∏
k∈I1∪I2

(xk − ai,k)
∏

k∈Di\I1

(xk − bi,k).

Recall Eq. (1). The number of pairs compatible with i is Vt+si,si2
n−(t+si). Thus, it suffices to show

that all such fi,I1,I2
s are linearly independent. Indeed, since every fi,I1,I2

is a multilinear polynomial
on n variables, the linear independence implies

∑m
i=1 Vt+si,si2

n−(t+si) ≤ 2n, which implies Eq. (2).
To show linear independence, for each i ∈ [m] and each (I1, I2) compatible with i, we take any

x = xi,I1,I2
∈ Rn such that

xk =


ai,k k ∈ Di \ I1
bi,k k ∈ I1 or k ∈ [n] \ (Di ∪ I2)

any value ̸= bi,k k ∈ I2.

(3)

We also need the following ordering over all subsets of [n]: for distinct subsets E,F ⊆ [n], define
E ≺ F if |E| < |F | or |E| = |F | and max(E \ F ) > max(F \ E). We also write E ⪯ F if E ≺ F of
E = F . It is easy to check that ⪯ induces a total order of all the subsets of [n]. Now, we state the
crucial claim for the evaluations of fi,I1,I2

s (on xi,I1,I2
s).

Claim 2.5. Let i, j ∈ [m]. If (I1, I2) be compatible with i and (J1, J2) be compatible with j, then

(i) for i = j, we have fj,J1,J2
(xi,I1,I2

) ̸= 0 if and only if I1 = J1 and J2 ⊆ I2;

(ii) for i ̸= j, we have fj,J1,J2
(xi,I1,I2

) ̸= 0 implies (Dj \ J1) ∪ J2 ≺ (Di \ I1) ∪ I2.

Proof. Write x = xi,I1,I2
for simplicity. First, consider i = j. Since ai,k = bi,k for all k ∈ J2 ⊆ [n]\Di,

fj,J1,J2
(xi,I1,I2

) = fi,J1,J2
(x) =

∏
k∈J1∪J2

(xk−ai,k)
∏

k∈Di\J1

(xk−bi,k) =
∏
k∈J1

(xk−ai,k)
∏

k∈(Di\J1)∪J2

(xk−bi,k).

This means that

fj,J1,J2
(x) ̸= 0 ⇔ xk ̸= ai,k ∀ k ∈ J1 and xk ̸= bi,k ∀k ∈ (Di \ J1) ∪ J2.

By the definition of x = xi,I1,I2 (Eq. (3)), we know that xk = ai,k for all k ∈ Di \ I1 and xk = bi,k for
k ∈ I1 and for k ∈ [n] \ (Di ∪ I2). So, if fj,J1,J2(x) ̸= 0, then

(Di \ I1) ∩ J1 = ∅, I1 ∩ (Di \ J1) = ∅ and
(
[n] \ (Di ∪ I2)

)
∩ J2 = ∅.

This means I1 = J1 and J2 ⊆ I2. On the other hand, if I1 = J1 and J2 ⊆ I2, using that xk ̸= bi,k for
all k ∈ I2, it is easy to see that fj,J1,J2

(x) ̸= 0. This proves (i).
For (ii), suppose fj,J1,J2

(x) ̸= 0. The goal is to show (Dj \ J1) ∪ J2 ≺ (Di \ I1) ∪ I2. The fact that

fj,J1,J2
(x) =

∏
k∈J1∪J2

(xk − aj,k)
∏

k∈Dj\J1

(xk − bj,k) ̸= 0
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implies xk ̸= aj,k for all k ∈ J1 ∪ J2. By Eq. (3),

xk = bi,k for all k ∈ I := I1 ∪
(
[n] \ (Di ∪ I2)

)
.

Hence, bi,k ̸= aj,k for all k ∈ (J1 ∪ J2) ∩ I. As a consequence, dist(bi, aj) ≥ |(J1 ∩ J2) ∩ I|. By
assumption, dist(bi, aj) ≤ t, so |(J1 ∪ J2) ∩ I| ≤ t.

Observe that [n] \ I = (Di \ I1) ∪ I2. Then, we know

|J1|+ |J2| = |J1 ∪ J2| = |(J1 ∪ J2)∩ I|+ |(J1 ∪ J2)∩ ([n] \ I)| ≤ t+ |[n] \ I| = t+ |(Di \ I1) ∪ I2| . (4)

This means |J2| ≤ −|J1|+ t+ |(Di \ I1) ∪ I2|. Moreover, as |Dj | = t+ sj and |J1| ≥ t+ sj/2, we have

|(Dj \ J1) ∪ J2| = |Dj | − |J1|+ |J2| ≤ (t+ sj)− 2|J1|+ t+ |(Di \ I1) ∪ I2| ≤ |(Di \ I1) ∪ I2| . (5)

If |(Dj \ J1) ∪ J2| < |(Di \ I1) ∪ I2|, then (Dj \ J1) ∪ J2 ≺ (Di \ I1) ∪ I2, and we are done.
From now on, let us assume that |(Dj \ J1) ∪ J2| = |(Di \ I1) ∪ I2|. For simplicity, write

E := (Dj \ J1) ∪ J2 and F := (Di \ I1) ∪ I2.

As |E| = |F |, our goal is to show that E ̸= F and max(E \ F ) > max(F \ E). By the derivation of
Eq. (5), |E| = |F | if and only if Eq. (4) is an equality and that |J1| = t + sj/2. In particular, the
former implies |(J1 ∪ J2) ∩ ([n] \ I)| = |[n] \ I|, so

F = (Di \ I1) ∪ I2 = [n] \ I ⊆ J1 ∪ J2;

the latter implies J1 ⊆ Dj \ {dj}. Also, recall that dj /∈ J2. This shows E ̸= F because

dj /∈ F but dj ∈ (Dj \ J1) ∪ J2 = E.

Now, suppose for contradiction that max(F \E) > max(E\F ). By the above discussion, dj ∈ E\F ,
so max(F \ E) > dj . In addition, we know

F ⊆ J1 ∪ J2 ⊆
(
Dj \ {dj}

)
∪ J2 and dj = max(Dj).

This means max(F \ E) ∈ J2 ⊆ E, which is impossible. Therefore, max(E \ F ) > max(F \ E) must
hold. In other words, (Dj \ J1) ∪ J2 = E ≺ F = (Di \ I1) ∪ I2, as desired. ■

We now complete the proof by showing that all the fi,I1,I2
s constructed for i ∈ [m] and (I1, I2)

compatible with i are linearly independent. Suppose that F :=
∑

(j,J1,J2)
cj,J1,J2fj,J1,J2

is the zero
polynomial, where cj,J1,J2 ∈ R for every j ∈ [m] and every (J1, J2) compatible with j. It suffices to
prove cj,J1,J2 = 0 for all (j, J1, J2). If not, we pick a triple (i, I1, I2) with ci,I1,I2 ̸= 0; if there are
multiple such (i, I1, I2)s, pick the one that minimises (Di \ I1) ∪ I2 in the total order ⪯; if there is still
a tie, then pick any of them.

Take x = xi,I1,I2
and consider an arbitrary triple (j, J1, J2) with cj,J1,J2fj,J1,J2

(x) ̸= 0. If i = j, then
Claim 2.5(i) implies J1 = I1 and J2 ⊆ I2. Due to the minimality of (Di \ I1) ∪ I2, cj,J1,J2 ̸= 0 implies
J2 = I2, so (i, I1, I2) = (j, J1, J2). If i ̸= j, Claim 2.5(ii) implies that (Dj \ J1) ∪ J2 ≺ (Di \ I1) ∪ I2.
Again, the minimality of (Di \ I1) ∪ I2 implies cj,J1,J2 = 0. But this is impossible as we assumed
cj,J1,J2fj,J1,J2

(x) ̸= 0. Altogether, cj,J1,J2fj,J1,J2
(x) ̸= 0 implies that (i, I1, I2) = (j, J1, J2). In addition,

Claim 2.5(i) asserts fi,I1,I2
(x) ̸= 0. So,

0 = F (x) =
∑

(j,J1,J2)

cj,J1,J2fj,J1,J2
(x) = ci,I1,I2fi,I1,I2

(x),

which shows ci,I1,I2 = 0. This contradicts our assumption ci,I1,I2 ̸= 0. We conclude that ci,I1,I2 = 0 for
all (i, I1, I2), and this shows the linear independence of all fi,I1,I2

s. ■
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3 Binary strings

This section deals with binary settings, e.g. X = {0, 1}. In this case, we can prove a stronger result
(Theorem 1.6) where the condition dist(ai, bj) ≤ t, dist(aj , bi) ≤ t is replaced by that dist(ai, bj) +
dist(aj , bi) ≤ 2t. As mentioned in Section 2, the lower bound of Theorem 1.6 follows from Proposi-
tion 2.2. For the upper bound, we provide a probabilistic proof that is simpler than that of Theo-
rem 2.4.

Theorem 3.1. Let n > t ≥ 0. Suppose a1, a2, . . . , am, b1, b2, . . . , bm ∈ {0, 1}n satisfy, for all i ∈ [m],
dist(ai, bi) = t+ si for some si ≥ 1, and dist(ai, bj) + dist(aj , bi) ≤ 2t for all distinct i, j ∈ [m]. Then,

m∑
i=1

Vt+si,si

2t+si
≤ 1. (6)

In particular, f ′(t; {0, 1}) ≤ 2t+1 and f ′(t, s; {0, 1}) ≤ 2t+s/Vt+s,s if si ≥ s for all i ∈ [m].

Proof. Given Eq. (6), the derivation of the bounds for f ′(t; {0, 1}) and f ′(t, s; {0, 1}) is the same as
that in the proof of Theorem 2.4, so we omit it here.

The goal is to prove Eq. (6). For each i, denote Di := {k ∈ [n] : ai,k ̸= bi,k} and di := max(Di).
Then, |Di| = dist(ai, bi) = t + si. Now, sample a string α, uniformly in {0, 1}n. For each i ∈ [m],
let Di(α) := {k ∈ Di : αk = ai,k}. Denote Ei to be the event that either |Di(α)| ≥ t + si+1

2 , or
|Di(α)| = t+ si

2 and di /∈ Di(α). Note that |Di(α)| ≥ t+ si
2 in both cases and Pr[Ei] = Vt+si,si/2

t+si

in view of Eq. (1). We conclude the proof by showing Claim 3.2. Once this is shown, Eq. (6) follows
immediately, since

1 ≥ Pr[E1 ∪ · · · ∪ Em] =
m∑
i=1

Pr[Ei] =
m∑
i=1

Vt+si,si

2t+si
.

Claim 3.2. The events E1, E2, . . . , Em are pairwise disjoint.

Proof. Suppose for contradiction that Ei and Ej are not disjoint for some 1 ≤ i < j ≤ m. Let
α ∈ Ei ∩ Ej , and write Dij := Di \Dj and Dji := Dj \Di. By the definition of Di and Dj ,

ai,k = bi,k ∀ k /∈ Di, ai,k = 1− bi,k ∀ k ∈ Di

and
aj,k = bj,k ∀ k /∈ Dj , aj,k = 1− bj,k ∀ k ∈ Dj .

This means ai,k ̸= bi,k while aj,k = bj,k for all k ∈ Dij = Di \Dj . Hence, every k ∈ Dij contributes
one to the sum dist(ai, bj) + dist(bi, aj). Similarly, every k ∈ Dji also contributes one to this sum.
Altogether, restricted to the index set Dij ∪Dji,

dist(ai
∣∣
Dij∪Dji

, bj
∣∣
Dij∪Dji

) + dist(bi
∣∣
Dij∪Dji

, aj
∣∣
Dij∪Dji

) = |Dij |+ |Dji|. (7)

Write g := |Di ∩Dj |. Then, |Dij | = t+ si − g, |Dji| = t+ sj − g, and Eq. (7) implies

dist(ai.bj) + dist(bi, aj) ≥ |Dij |+ |Dji| = 2t+ si + sj − 2g.

By assumption, 2t ≥ dist(ai, bj) + dist(bi, aj) ≥ 2t+ si + sj − 2g, so 2g ≥ si + sj .
The second step is to consider the contribution from k ∈ Di ∩Dj . Denote D := Di(α) ∩Dj(α) ⊆

Di ∩Dj . Observe that ai,k = aj,k = αk ̸= bi,k = bj,k for k ∈ D. So, restricted to the index set D,

dist(ai
∣∣
D
, bj
∣∣
D
) + dist(bi

∣∣
D
, aj
∣∣
D
) = 2|D|. (8)
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To lower bound |D|, note that α ∈ Ei ∩ Ej implies |Di(α)| ≥ t+ si
2 and |Dj(α)| ≥ t+

sj
2 . Write

D′
i := Di(α) ∩ (Di ∩Dj) and D′

j := Dj(α) ∩ (Di ∩Dj).

We know |D′
i| = |Di(α) ∩ (Di ∩Dj)| = |Di(α) \Dij | ≥ t+

si
2
− (t+ si − g) = g − si

2

|D′
j | = |Dj(α) ∩ (Di ∩Dj)| = |Dj(α) \Dji| ≥ t+

sj
2

− (t+ sj − g) = g − sj
2
.

(9)

Observe that D′
i, D

′
j ⊆ Di ∩Dj , so Eq. (9) further implies

|D| = |D′
i ∩D′

j | = |D′
i|+ |D′

j | − |D′
i ∪D′

j |

≥ |D′
i|+ |D′

j | − |Di ∩Dj | ≥ g − si
2
+ g − sj

2
− g = g − si + sj

2
.

(10)

We note that the RHS of Eq. (10) is non-negative because 2g ≥ si + sj . Using Eqs. (7), (8) and (10),

2t ≥ dist(ai, bj) + dist(bi, aj)
≥ dist(ai

∣∣
Dij∪Dji

, bj
∣∣
Dij∪Dji

) + dist(bi
∣∣
Dij∪Dji

, aj
∣∣
Dij∪Dji

) + dist(ai
∣∣
D
, bj
∣∣
D
) + dist(bi

∣∣
D
, aj
∣∣
D
)

≥ |Dij |+ |Dji|+ 2|D| = (t+ si − g) + (t+ sj − g) + 2g − (si + sj) = 2t.

This being an equality implies that Eq. (10) is an equality, so

D′
i ∪D′

j = Di ∩Dj .

Moreover, Eq. (10) being an equality means that both inequalities in (9) must be equalities, thereby

Dij ⊆ Di(α), Dji ⊆ Dj(α), |Di(α)| = t+
si
2

and |Dj(α)| = t+
sj
2
.

By the definition of Ei and Ej , we know di /∈ Di(α) and dj /∈ Dj(α). But Dij ⊆ Di(α), so di /∈
Dij = Di \ Dj . In other words, di ∈ Di ∩ Dj . Similarly, dj ∈ Di ∩ Dj . Taken together, we have
di, dj ∈ Di ∩Dj . But recall that di is the maximum element in Di and dj is the maximum element
in Dj , so di and dj must be the same, i.e. di = dj = max(Di ∩Dj). On the other hand, D′

i ⊆ Di(α)

does not contain di and D′
j ⊆ Dj(α) does not contain dj , so di = dj /∈ D′

i ∪D′
j . This is impossible, as

we also know D′
i ∪D′

j = Di ∩Dj . Therefore, Ei and Ej must be disjoint for every 1 ≤ i < j ≤ m. ■

■

Next, we discuss the tightness of Theorems 2.4 and 3.1. For 1 ≤ d ≤ n, an (n, d) error correcting
code (ECC) is a collection of binary strings (codewords) of length n with all pairwise distances at least
d. Write A(n, d) for the maximum possible size of such collections. Taking n = t + s, every ai to be
one of the codewords and every bi to be the opposite string of ai, we see that

dist(ai, bi) = t+ s ∀ i and dist(ai, bj) = t+ s− dist(ai, aj) ≤ t ∀ i ̸= j.

This shows that the strings a1, a2, . . . , am, b1, b2, . . . , bm ∈ {0, 1}n satisfying

dist(ai, bi) = t+ s ∀ i and dist(ai, bj) ≤ t ∀ i ̸= j.
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generalises the ECCs, i.e. f ′(t, s, {0, 1}) ≥ A(t + s, s). Moreover, as discussed in Section 1.2, our
upper bound f ′(t, s; {0, 1}) ≤ 2t+s

/
Vt+s,s is precisely the Hamming bound for ECCs when s is odd.

Thus, we can use perfect codes (ECCs that match the Hamming bound) and their extensions (add a
parity bit so that the length and the distance increase by one while the number of codewords stays
the same) to show that our bound on f ′(t, s, {0, 1}) is tight (and the same also holds for f(t, s,X)).
More precisely,

• f ′(t, s, {0, 1}) = 2t+1 for s ∈ {1, 2}. We can take the trivial ECC, all binary strings of length
t + 1. There are 2t+1 of them and the pairwise distances are at least one. So, f ′(t, 1, {0, 1}) =
A(t+1, 1) = 2t+1. Adding a parity bit to all these strings, the pairwise distances are at least 2.
So, f ′(t, 2, {0, 1}) = A(t+ 2, 2) = 2t+1.

• f ′(t, s, {0, 1}) = 2t+3

t+4 when s ∈ {3, 4} and t+ 4 is a power of 2. When t+ 4 is a power of 2, we
take the Hamming code [Ham50]: 2t+3

t+4 binary strings of length t + 3 and pairwise distances at
least 3. This shows that f ′(t, 3, {0, 1}) = A(t + 3, 3) = 2t+3

t+4 . Adding a parity bit to all these
strings, the pairwise distances are at least 4. So, f ′(t, 4, {0, 1}) = A(t+ 4, 4) = 2t+3

t+4 .

• f ′(16, 7; {0, 1}) = f ′(16, 8; {0, 1}) = 2048. Here, we take the Golay code [Gol49]: 2048 binary
strings of length 23 whose pairwise distances are at least 7. This, as well as its extension, implies
f ′(16, 7; {0, 1}) = f ′(16, 8; {0, 1}) = 2048.

In addition to the perfect codes, we also consider the Bose–Chaudhuri–Hocquenghem codes (BCH
codes) [Hoc59, BRC60]: there are Ωs(2

t+s/(t+ s)s) binary strings of length t+ s where the pairwise
distances are at least s whenever s is odd. Based on the previous discussion, the BCH codes, together
with their extensions, show that for every fixed s,

f(t, s;X) = Θs

(
2t+s/Vt+s,s

)
and f ′(t, s;X) = Θs

(
2t+s/Vt+s,s

)
.

We also note that our probabilistic proof of Theorem 3.1 relies crucially on the fact that each
coordinate has two possible values (0 or 1). A similar proof by sampling α ∈ Xn appropriately works
for general Xs but only gives an upper bound of |X|t+1. This is not a coincidence: when |X| ∈ {3, 4},
unlike f(t;X) = 2t+1, we can prove that f ′(t;X) = Θ(3t).

Theorem 3.3. 3t ≤ f ′(t;X) ≤ 3t+1 for every t ≥ 0 and every set X of size 3 or 4.

Proof. For the lower bound, it suffices to prove it for X = Z/3Z. Consider all strings s in
(
Z/3Z

)t+1

such that s1+ · · ·+st+1 = 0, and let a1, . . . , am be any enumeration of them. We know m = 3t because
for any fixed s1, . . . , st, there exists a unique st+1 ∈ Z/3Z such that s1 + · · · + st+1 = 0. For each
i ∈ [m], define bi ∈

(
Z/3Z

)t+1 by putting bi,k = ai,k+1 for every k ∈ [t+1]. Clearly, dist(ai, bi) = t+1

for all i ∈ [m], and for any i ̸= j, it holds that

dist(ai, bj) + dist(bi, aj) =
∣∣{1 ≤ k ≤ t+ 1 : ai,k ̸= aj,k + 1}

∣∣+ ∣∣{1 ≤ k ≤ t+ 1 : ai,k + 1 ̸= aj,k}
∣∣

= t+ 1 + {k : ai,k = aj,k}.

Since
∑t+1

k=1 ai,k =
∑t+1

k=1 aj,k = 0, ai and aj can share at most t+1−2 = t−1 coordinates. Therefore,
dist(ai, bj) + dist(aj , bi) ≤ t+ 1 + t− 1 = 2t. This shows that f ′(t;X) ≥ 3t.

We now prove the upper bound. Suppose n > t and a1, a2, . . . , am, b1, b2 . . . , bm ∈ Xn with
dist(ai, bi) ≥ t + 1 for i ∈ [m] and dist(ai, bj) + dist(aj , bi) ≤ 2t for i ̸= j. For every k ∈ [n],

11



sample independently and uniformly a subset Xk ⊆ X of size 2. Then, for each i ∈ [m], define two
strings ai, bi ∈ {0, 1}n by taking

a′i,k = 1ai,k∈Xi and b′i,k = 1bi,k∈Xi
∀ k ∈ [n].

Denote I := {i ∈ [m] : dist(a′i, b
′
i) ≥ t + 1}. Observe that dist(a′i, b

′
j) ≤ dist(ai, bj) for any distinct

i, j ∈ I. We know |I| ≤ f ′(t; {0, 1}) = 2t+1 by Theorem 1.6. Moreover, since |X| ∈ {3, 4}, whenever
ai,k ̸= bi,k,

Pr
[
a′i,k ̸= b′i,k

]
= 2(|X| − 2)

/(|X|
2

)
=

2

3
.

This means Pr[i ∈ I] ≥ (2/3)t+1 for each i ∈ [m], and hence E|I| ≥ m(2/3)t+1. Taken together,
m(2/3)t+1 ≤ E|I| ≤ 2t+1, so m ≤ 3t+1. ■

We remark that for general X, a similar argument by sampling Xk ∈
(

X
⌊|X|/2⌋

)
shows 3t ≤ f ′(t;X) ≤(

|X|(|X|−1)
⌊|X|/2⌋⌈|X|/2⌉

)t+1
. We do not know which of these bounds is closer to the truth.

3.1 A set-pair result

As mentioned in Section 1.2, Füredi [Für84] proved that if A1, A2, . . . , Am are sets of size a and
B1, B2, . . . , Bm are sets of size b such that |Ai ∩ Bi| ≤ k for i ∈ [m] and |Ai ∩ Bj | > k for distinct
i, j ∈ [m], then m ≤

(
a+b−2k
a−k

)
, and this is tight. In the same paper, he raised the question of

understanding the largest possible size of a family (Ai, Bi)
m
i=1 such that |Ai| = a, |Bi| = b, |Ai∩Bi| ≤ ℓ

for all i ∈ [m] and |Ai∩Bj | > k, (where k ≥ ℓ are given) for all distinct i, j ∈ [m]. Füredi’s result shows
that this maximum is exactly

(
a+b−2ℓ
a−ℓ

)
in the case k = ℓ. For the general case, Zhu [Zhu95] showed

the answer is at most min(
(
a+b−2ℓ
a−k

)
/
(
a−ℓ
k−ℓ

)
,
(
a+b−2ℓ
b−k

)
/
(
b−ℓ
k−ℓ

)
), and this is tight if there is a collection A

of subsets of U := [a + b − 2ℓ], each with size a − ℓ, such that every subset of U with size a − k is
contained in exactly one member of A, or there is a collection B of subsets of U with size b− ℓ, such
that every subset of U with size b− k is contained in exactly one member of B. These collections are
called designs or Steiner systems. A famous result of Keevash [Kee14] asserts their existence when
one of a− ℓ, b− ℓ is sufficiently larger than the other and certain natural divisibility conditions hold;
see also [GKLO23].

In fact, with a slight change of his argument, we can show the answer is at most
(

a+b−2ℓ
a−ℓ−x+y

)/[(
a−ℓ
x

)(
b−ℓ
y

)]
for every x, y ≥ 0 with x + y = k − ℓ. This is better than Zhu’s original bound by a factor
of exp(O(k − ℓ)) when, say, a − ℓ = b − ℓ ≫ k − ℓ. Indeed, by the general position and the
dimension reduction arguments, used in [Für84, Zhu95], we can essentially assume ℓ = 0 (with
a − ℓ, b − ℓ, k − ℓ replacing a, b, k), so x + y = k, Ai ∩ Bi = ∅ and |Ai ∩ Bj | > k. For each i ∈ [m],
we build

(
a
x

)(
b
y

)
pairs of sets based on (Ai, Bi) by shifting, in all possible ways, an x-element subset

X ⊆ Ai from Ai to Bi, and a y-element subset Y ⊆ Bi from Bi to Ai. This gives m
(
a
x

)(
b
y

)
pairs

(AX,Y

i , BX,Y

i ) with |AX,Y

i | = a − x + y, |BX,Y

i | = b − y + x,AX,Y

i ∩ BX,Y

i = ∅. In addition, whenever
k − |Y | = |X| ≤ |X ′| = k − |Y ′|, one can check that AX,Y

i ∩ BX′,Y ′

i ̸= ∅ (unless X = X ′ and Y = Y ′)
and AX,Y

i ∩ BX′,Y ′

j ̸= ∅. Ordering all pairs (AX,Y

i , BX,Y

i ) by |X|, we can apply the skew version of the
set-pair inequality ([Lov77, Lov79]) to conclude that m

(
a
x

)(
b
y

)
≤
(

a+b
a−x+y

)
, as desired.

Moreover, Theorem 3.1 provides the following variation of Füredi’s question, where instead of
|Ai| = a, |Bi| = b, we only require |Ai|+ |Bi| = s.
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Theorem 3.4. Let s > k ≥ ℓ ≥ 0 and m ≥ 0. Suppose A1, A2, . . . , Am, B1, B2, . . . , Bm are sets such
that |Ai|+ |Bi| = s for all i ∈ [m], |Ai ∩ Bi| ≤ ℓ for all i ∈ [m] and |Ai ∩ Bj |+ |Bi ∩ Aj | ≥ 2(k + 1)

for all 1 ≤ i < j ≤ m. Then,

m ≤ f ′(s− 2(k + 1), 2(k + 1)− 2ℓ; {0, 1}
)
≤ 2s−2ℓ−1∑k−ℓ

i=0

(
s−2ℓ−1

i

) .
Proof. Suppose all sets are subsets of [n] for some n ∈ N. For 1 ≤ i ≤ m, let ai ∈ {0, 1}n be the
indicator vector of Ai, i.e. ai,k = 1k∈Ai

for every k ∈ [n]; similarly, let bi ∈ {0, 1}n be the indicator
vector of Bi. Then, for i ̸= j,{

dist(ai, bi) = |Ai|+ |Bi| − 2|Ai ∩Bi| ≥ s− 2ℓ

dist(ai, bj) + dist(bi, aj) = |Ai|+ |Bj | − 2|Ai ∩Bj |+ |Bi|+ |Aj | − 2|Bi ∩Aj | ≤ 2s− 4(k + 1).

By Theorem 3.1, m ≤ f ′(s− 2(k + 1), 2(k − ℓ+ 1); {0, 1}
)
. According to Claim 2.3 and Eq. (1), this

is at most
2s−2ℓ

Vs−2ℓ,2k−2ℓ+2
=

2s−2ℓ−1

Vs−2ℓ−1,2k−2ℓ+1
=

2s−2ℓ−1∑k−ℓ
i=0

(
s−2ℓ−1

i

) . ■

Note that this bound is close to being tight when s−2ℓ ≫ k− ℓ. In this case, we can take the BCH
code of length s − 2ℓ − 1 and pairwise distances at least 2k − 2ℓ + 1. Appending to each codeword
a parity bit, we get Ω(2s−2ℓ/(s − 2ℓ)k−ℓ) binary strings of length s − 2ℓ and pairwise distances at
least 2k − 2ℓ+ 2. Now, take Ai ⊆ [s− 2ℓ] to be the set corresponding to each codeword joined with
{−1,−2, . . . ,−ℓ} and Bi := ([s− 2ℓ] \Ai)∪ {−1,−2, . . . ,−ℓ}. Then, |Ai|+ |Bi| = s, |Ai ∩Bi| = ℓ for
i ∈ [m] and |Ai ∩Bj |+ |Aj ∩Bi| ≥ 2ℓ+ 2(k − ℓ+ 1) = 2k + 2 for i ̸= j, forming the desired family.

4 Related questions

4.1 The fractional Helly theorem and the (p, q)-theorem for Hamming balls

In this section, we establish the fractional Helly theorem and the (p, q)-theorem for Hamming balls of
radius t. For both of them, we only need the information about pairs of Hamming balls when X is
finite, and the information about (t + 2)-tuples of Hamming balls when X is infinite. Notably, both
constants 2 and t+ 2 are optimal, much smaller than the Helly number h(n, t;X) = 2t+1. Moreover,
all bounds in Theorems 4.1 and 4.2 are independent of n.

We say a point hits a Hamming ball if the ball contains this point, and a set of points hits a
collection of Hamming balls if every ball contains some point in this set.

Theorem 4.1. Let m ≥ 1, n > t ≥ 0, X be a nonempty set and B1, . . . , Bm be Hamming balls of
radius t in Xn.

(1) If X is finite and, for some α > 0, at least α
(
m
2

)
(unordered) pairs of the Hamming balls intersect,

then some point in Xn hits an Ω
(
α2|X|−t

/(
4t
t

))
-fraction of these Hamming balls;

(2) If, for some α > 0, at least α
(

m
t+2

)
unordered (t + 2)-tuples (where tuples have distinct entries)

of the Hamming balls have a common intersection, then some point in Xn hits an Ω
(
α/(e(t +

1))t+1
)
-fraction of these Hamming balls.

Theorem 4.2. Let m ≥ 1, n > t ≥ 0, p ≥ q ≥ 2, and X be a nonempty set. Let B1, B2, . . . , Bm be
Hamming balls of radius t in Xn, where out of any p balls, q of them have a common intersection.
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(1) If X is finite and q ≤ t + 1, then there exist pqqt|X|t+2−q2O(t) points in Xn hitting all these
Hamming balls;

(2) If q ≥ t+ 2, then there exist O(e2tpt+1) points in Xn hitting all these Hamming balls.

Remark 4.3. We first note that in part (1) of both results, it is important that n does not appear
in the bounds. Otherwise, we can simply take a random point in Xn in Theorem 4.1(1) and take
all points in Xn in Theorem 4.2(1). Hence, it is necessary to require information on the pairs of
Hamming balls. Moreover, t+ 2 is also tight for part (2) of both results. To see this, think of X = N
and n = t+1. Consider m Hamming balls centred at (1, . . . , 1), (2, . . . , 2), . . . , (m, . . . ,m), respectively.
One can check that any t+ 1 Hamming balls have a common intersection. However, any point in Xn

hits at most t of these Hamming balls, and we need at least m/t points in Xn to hit all these Hamming
balls. This shows that Theorem 4.1(2) and Theorem 4.2(2) require information on the (t + 2)-tuples
of Hamming balls.

We first give a simple proof for Theorem 4.1(1). To this end, we need the following lemma, whose
proof is delayed.

Lemma 4.4. Let n > t ≥ δ ≥ 0, X be a finite nonempty set, and a, b ∈ Xn. Then, there is a set
of at most

(
4t−δ
t−δ

)
|X|t−δ points in Xn hitting all the Hamming balls B(p, t) with p ∈ Xn satisfying

dist(a, p) ≤ min(dist(a, b), 2t− δ) and dist(b, p) ≤ 2t.

We remark that when t = δ, we do not require |X| < ∞ because then, all B(p, t)s under consider-
ation contain point a.

Proof for Theorem 4.1(1). We may assume α > 12/m and m > 12 as otherwise the statement is
trivial. For each i ∈ [m], write ai for the centre of the Hamming ball Bi. Construct a graph G with
vertex set V (G) = [m] where i and j are adjacent if Bi and Bj intersect, i.e. dist(ai, aj) ≤ 2t. Starting
from G, by iteratively deleting vertices of degree smaller than α(m − 1)/2 as long as there are such
vertices, we arrive at an induced subgraph G′ of G. By assumption, e(G) ≥ α

(
m
2

)
= m · α(m− 1)/2.

This means G′ is not empty and hence, the minimum degree of G′ is at least α(m−1)/2 ≥ αm/3 (using
m > 12). Fix any vertex u ∈ V (G′). The number of paths uvw in G′ is at least αm/3 · (αm/3− 1) ≥
α2m2/12, using α ≥ 12/m.

An (ordered) triple of distinct vertices (x, y, z) ∈ V (G′)3 is said to be good if

dist(ax, az) ≤ min
(
dist(ax, ay), 2t

)
and dist(ay, az) ≤ 2t.

We note that this is the same condition as in Lemma 4.4 with δ = 0 and ax, ay, az in place of a, b, p,
respectively. Observe that for every path uvw in G,

• if uw /∈ E(G), then dist(av, aw) ≤ 2t and dist(au, av) ≤ 2t < dist(au, aw), so (u,w, v) is good;

• if uw ∈ E(G), then dist(av, aw) ≤ 2t, dist(au, av) ≤ dist(au, aw) ≤ 2t (so (u,w, v) is good) or
dist(av, aw) ≤ 2t, dist(au, aw) ≤ dist(au, av) ≤ 2t (so (u, v, w) is good).

Enumerating over all paths of length 2, there are at least α2m2/24 good triples (u, v, w) with the fixed
u (as each good triple is counted at most twice). By the pigeonhole principle, there exist v ∈ [m]

and W ⊆ [m] such that |W | ≥ α2m/24 and (u, v, w) is good for all w ∈ W . Then, Lemma 4.4 with
δ = 0, a = au, b = av, p = aw guarantees

(
4t
t

)
|X|t points in Xn hitting every Bw, w ∈ W . Therefore,

some point among these
(
4t
t

)
|X|t points hits at least α2m

24(4tt )|X|t = Ω
(
α2m|X|−t

/(
4t
t

))
Hamming balls,

as desired. ■
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We now provide the following definitions that are useful in the proof of Theorem 4.1(2) and of
Theorem 4.2.

Definition 4.5. Let m ≥ 0, n > t ≥ 0, let X be a nonempty set, and a1, . . . , am ∈ Xn. Define
φ(a1, . . . , am; t) to be the size of the largest K ⊆ [n] such that for some w ∈ Xn, dist(w

∣∣
Kc , ai

∣∣
Kc) +

|K| ≤ t for all i ∈ [m]. Define φ(a1, . . . , am; t) := −∞ if no such K exists.

Given the w and K in this definition, one can freely change the coordinates of w indexed by
k ∈ K while maintaining w ∈

⋂m
i=1B(ai, t). Hence, φ(a1, . . . , am; t) represents a certain ‘dimension’

of
⋂m

i=1B(ai, t): it is the dimension of the largest ‘affine subspace’ contained in
⋂m

i=1B(ai, t) which
has form {p ∈ Xn : pk = wk ∀k ∈ [n] \K}.

We note that φ(a1, . . . , am+1; t) ≤ φ(a1, . . . , am; t) ≤ t, φ(a1; t) = t and φ(a1, . . . , am; t) ≥ 0 if and
only if

⋂m
i=1B(ai, t) ̸= ∅. In addition, we can assume that wk ∈ {a1,k, a2,k, . . . , am,k} for all k ∈ [n]\K

because otherwise, we should have considered K ′ := K ∪{k}. This motivates the following definition.

Definition 4.6. Let m ≥ 0, n > t ≥ 0, let X be a nonempty set, and a1, . . . , am ∈ Xn. Define
W (a1, a2, . . . , am; t) to be the set of w ∈

⋂m
i=1B(ai, t) where wk ∈ {a1,k, a2,k, . . . , am,k} for all k ∈ [n].

When it is clear from the context, we omit t in φ(·) and W (·). The following crucial property,
whose proof is delayed, shows how φ(·) can be used to find a ‘small’ set hitting the Hamming balls.

Lemma 4.7. Let m ≥ 1, n > t ≥ 0, let X be any nonempty set, and a1, . . . , am ∈ Xn.

(1) |W (a1, . . . , am)| ≤ (em)t;

(2) W (a1, . . . , am) hits all B(a, t) where a ∈ Xn satisfies φ(a1, . . . , am, a) = φ(a1, . . . , am) ≥ 0.

Now, we can prove Theorem 4.1(2) and Theorem 4.2.

Proof of Theorem 4.1(2). We may assume m ≥ 2t without loss of generality. For each i ∈ [m],
write ai for the centre of the Hamming ball Bi. An unordered (t + 2)-tuple (i1, i2, . . . , it+2) ∈

(
[m]
t+2

)
is said to be good if Bi1 , Bi2 , . . . , Bit+2 intersect. Find the largest ℓ ∈ N such that there exist distinct
i1, i2 . . . , iℓ ∈ [m] with the following properties.

• φ(ai1) > φ(ai1 , ai2) > · · · > φ(ai1 , ai2 , . . . , aiℓ) ≥ 0;

• There are at least t+3−ℓ
t+2 α

(
m−ℓ
t+2−ℓ

)
good tuples containing i1, . . . , iℓ.

Note that ℓ ≥ 1 because the pigeonhole principle implies that some i1 ∈ [m] lies in at least α
(

m
t+2

)
· t+2
m =

α
(
m−1
t+1

)
good tuples. In addition, ℓ ≤ t+ 1 because

0 ≤ φ(ai1 , . . . , aiℓ) ≤ φ(ai1 , . . . , aiℓ−1
)− 1 ≤ φ(ai1 , . . . , aiℓ−2

)− 2 ≤ · · · ≤ φ(ai1)− (ℓ− 1) = t− ℓ+ 1.

Now, let I be the set of i ∈ [m] \ {i1, . . . , iℓ} such that at least t+2−ℓ
t+2 α

(
m−ℓ−1
t+1−ℓ

)
good tuples contain

i1, . . . , iℓ and i. We claim that |I| ≥ α(m− ℓ)/(t+2). We prove it by double-counting Z, the number
of good tuples containing i1, . . . , iℓ. By first enumerating i ∈ [m] \ {i1, . . . , iℓ} and then good tuples
containing i1, . . . , iℓ, i (so every good tuple is counted t+ 2− ℓ times), we have

(t+ 2− ℓ)Z ≤ |I|
(
m− ℓ− 1

t+ 1− ℓ

)
+ (m− ℓ− |I|) t+ 2− ℓ

t+ 2
α

(
m− ℓ− 1

t+ 1− ℓ

)
≤ |I|

(
m− ℓ− 1

t+ 1− ℓ

)
+

t+ 2− ℓ

t+ 2
α(m− ℓ)

(
m− ℓ− 1

t+ 1− ℓ

)
= |I|

(
m− ℓ− 1

t+ 1− ℓ

)
+

t+ 2− ℓ

t+ 2
α

(
m− ℓ

t+ 2− ℓ

)
(t+ 2− ℓ).
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Moreover, our definition of i1, . . . , iℓ guarantees Z ≥ t+3−ℓ
t+2 α

(
m−ℓ
t+2−ℓ

)
, so

t+ 3− ℓ

t+ 2
α

(
m− ℓ

t+ 2− ℓ

)
(t+ 2− ℓ) ≤ |I|

(
m− ℓ− 1

t+ 1− ℓ

)
+

t+ 2− ℓ

t+ 2
α

(
m− ℓ

t+ 2− ℓ

)
(t+ 2− ℓ).

This means |I| ≥ α
t+2

(
m−ℓ
t+2−ℓ

)
(t+ 2− ℓ)

/(
m−ℓ−1
t+1−ℓ

)
= α

t+2(m− ℓ), as claimed.
By the maximality of ℓ, we know that φ(ai1 , . . . , aiℓ) = φ(ai1 , . . . , aiℓ , ai) ≥ 0 for all i ∈ I (otherwise

i1, . . . , iℓ, i is a longer sequence). Then, Lemma 4.7 guarantees a set of at most (eℓ)t points in Xn

hitting every Bi, i ∈ I. By the pigeonhole principle, some point in Xn hits at least |I|/(eℓ)t ≥
α(m−ℓ)

(t+2)(eℓ)t = Ω(αm/(e(t+ 1))t+1) of the Hamming balls (here, we used that m ≥ 2t). ■

Proof of Theorem 4.2. We start with the common part of the proofs of both (1) and (2).
For each i ∈ [m], write ai for the centre of the Hamming ball Bi. Denote A := {a1, a2, . . . , am}.

Recall that given any x1, x2, . . . , xk ∈ Xn, φ(x1, x2, . . . , xk) ≥ 0 if and only if
⋂k

i=1B(xi, t) ̸= ∅. Find
the largest ℓ ≥ 1 such that there exist x1, x2, . . . , xℓ ∈ A with the following properties.

(i) For every 1 ≤ i1 < i2 < · · · < iq ≤ ℓ, it holds that
⋂q

j=1B(xij , t) = ∅;

(ii) for every 2 ≤ k < q and 1 ≤ i1 < i2 < · · · < ik ≤ ℓ with
⋂k−1

j=1 B(xij , t) ̸= ∅, it holds that
φ(xi1 , xi2 , . . . , xik) < φ(xi1 , xi2 , . . . , xik−1

).

We first note that ℓ is well-defined as one can take ℓ = 1, x1 = a1. In addition, by our assumption,
out of any p Hammings balls among B1, B2, . . . , Bm, q of them intersect, so ℓ ≤ p− 1.

Fix any a ∈ A. The maximality of ℓ implies that φ(xi1 , xi2 , . . . , xiq−1 , a) ≥ 0 for some 1 ≤ i1 <

i2 < · · · < iq−1 ≤ ℓ or 0 ≤ φ(xi1 , xi2 , . . . , xik , a) = φ(xi1 , xi2 , . . . , xik) for some 1 ≤ k < q − 1 and
1 ≤ i1 < i2 < · · · < ik ≤ ℓ. As a consequence, one of the following must hold.

(α) 0 ≤ φ(xi1 , xi2 , . . . , xik , a) = φ(xi1 , xi2 , . . . , xik) for some 1 ≤ k < q, 1 ≤ i1 < i2 < · · · < ik ≤ ℓ;

(β) 0 ≤ φ(xi1 , xi2 , . . . , xiq−1 , a) < φ(xi1 , xi2 , . . . , xiq−1) for some 1 ≤ i1 < i2 < · · · < iq−1 ≤ ℓ.

We first deal with a ∈ A satisfying (α). For every ∅ ̸= J ⊆ [ℓ] of size at most q − 1, let WJ :=

W (xij : j ∈ J) (see Definition 4.6). By Lemma 4.7, |WJ | ≤ (e|J |)t ≤
(
e(q − 1)

)t and WJ hits B(a, t)

whenever a ∈ A satisfies (α) with J = {i1, i2, . . . , ik}. Taking the union of all WJ , W :=
⋃

J WJ

satisfies |W | ≤
(
p−1
<q

)(
e(q − 1)

)t ≤ ( p
<q

)(
e(q − 1)

)t and W hits B(a, t) whenever a ∈ A satisfies (α).
Now, suppose J = {i1 < i2 < · · · < iq−1} ⊆ [ℓ]. Consider AJ , the set of all a ∈ A satisfying (β)

with i1, i2, . . . , iq−1. We will propose a set YJ ⊆ Xn that hits every B(a, t), a ∈ AJ . To this end, we
may assume φ(xi1 , xi2 , . . . , xiq−1) ≥ 0 as otherwise AJ = ∅. We also need the following estimate.

Claim 4.8. For every a ∈ A, dist(a,WJ) := minw∈WJ
dist(a,w) ≤ 2t+ 2− q.

Proof. Since φ(xi1 , xi2 , . . . , xiq−1 , a) ≥ 0, there exists w ∈ B(a, t) ∩
⋂q−1

j=1 B(xij , t). So we have
dist(w, a) ≤ t and dist(w, xij ) ≤ t for all j ∈ [q − 1]. Let K be the set of k ∈ [n] such that
wk /∈ {xi1,k, xi2,k . . . , xiq−1,k}. Then, dist(w

∣∣
Kc , xij

∣∣
Kc) + |K| = dist(w, xij ) ≤ t for all j ∈ [q − 1].

Using (ii) and Definition 4.5, we acquire

|K| ≤ φ(xi1 , xi2 , . . . , xiq−1) ≤ φ(xi1 , xi2 , . . . , xiq−2)− 1 ≤ · · · ≤ t+ 2− q.

Now, pick w′ ∈ Xn where w′
k = wk for k ∈ Kc and w′

k = xi1,k for k ∈ K. It satisfies that
w′
k ∈ {xi1,k, xi2,k, . . . , xiq−1,k} for all k ∈ [n] and

dist(w′, xij ) ≤ dist(w′∣∣
Kc , xij

∣∣
Kc) + |K| = dist(w

∣∣
Kc , xij

∣∣
Kc) + |K| = dist(w, xij ) ≤ t
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for all j ∈ [q − 1]. In other words, w′ ∈
⋂q−1

j=1 B(xij , t) and hence, w′ ∈ WJ . So,

dist(a,WJ) ≤ dist(a,w′) ≤ dist(a,w) + dist(w,w′) ≤ t+ |K| ≤ 2t+ 2− q. ■

Next, we generate xJ,1, xJ,2, . . . , xJ,kJ ∈ AJ as follows.

• Pick any xJ,1 ∈ AJ .

• Having picked xJ,1, xJ,2, . . . , xJ,k for some k ≥ 1, if there exists a ∈ AJ with dist(a, xJ,i) > 2t for
all i ∈ [k], pick xJ,k+1 to be such a that maximises dist(a,WJ).

Clearly, among B(xJ,1, t), B(xJ,2, t), . . . , B(xJ,kJ , t), no two balls intersect, so kJ < p. For every
w ∈ WJ and every 1 ≤ k ≤ kJ , let Yw,k be the set of points given by Lemma 4.4 (plugging a := w,
b := xJ,k and δ = q − 2); so |Yw,k| ≤

(
4t+2−q
t+2−q

)
|X|t+2−q. We claim that

YJ :=
⋃

w∈WJ

kJ⋃
k=1

Yw,k

hits every B(p, t), p ∈ AJ . To show this, fix an arbitrary p ∈ AJ . According to the generation of
xJ,1, xJ,2, . . . , xJ,kJ , there exists kp ∈ [kJ ] such that dist(p, xJ,kp) ≤ 2t. We may take the minimum
such kp. Thus, dist(p, xJ,k) > 2t for all 1 ≤ k < kp. But then, the procedure (in step kp) also implies
dist(p,WJ) ≤ dist(xJ,kp ,WJ). Taking w ∈ WJ such that dist(p,WJ) = dist(p, w), we get

dist(p, w) = dist(p,WJ) ≤ dist(xJ,kp ,WJ) ≤ dist(xJ,kp , w).

Recall from Claim 4.8 that dist(p, w) = dist(p,WJ) ≤ 2t+ 2− q. Taken together, we know

dist(w, p) ≤ min(dist(w, xJ,kp), 2t+ 2− q) and dist(p, xJ,kp) ≤ 2t.

By Lemma 4.4, Yw,k hits B(p, t) and hence, YJ hits B(p, t). In addition,

|YJ | ≤
∑

w∈WJ

kJ∑
k=1

|Yw,k| < |WJ |kJ
(
4t+ 2− q

t+ 2− q

)
|X|t+2−q ≤ (eq)tp2O(t)|X|t+2−q ≤ qtp2O(t)|X|t+2−q.

To complete the proof, we consider two cases. If 2 ≤ q ≤ t+1. Either a ∈ A satisfies (α), so W hits
B(a, t), or a ∈ A satisfies (β), so YJ hits B(a, t) for some J ⊆ [ℓ] of size q− 1. Thus, Y := W ∪

⋃
J YJ

is the desired set, whose size

|Y | ≤
(

p

< q

)(
e(q − 1)

)t
+

(
p

q − 1

)
qtp2O(t)|X|t+2−q = pqqt|X|t+2−q2O(t).

This proves part (1) of this theorem.
If q ≥ t+ 2, without loss of generality, we may assume that q = t+ 2. Note that all a ∈ A satisfy

(α). Indeed, a ∈ A satisfying (β) is not possible, since then (β) and (ii) imply

0 ≤ φ(xi1 , xi2 , . . . , xiq−1 , a) ≤ φ(xi1 , xi2 , . . . , xiq−1)− 1 ≤ φ(xi1 , xi2 , . . . , xiq−2)− 2 ≤ · · ·
≤ φ(xi1)− (q − 1) = t− (q − 1) = −1.

In other words, a1, a2, . . . , am all satisfy (α). By the former discussion, W hits every Bi, i ∈ [m],
where

|W | ≤
(

p

< q

)(
e(q − 1)

)t ≤ ( ep

(q − 1)

)q−1(
e(q − 1)

)t
=

(
ep

(t+ 1)

)t+1(
e(t+ 1)

)t
= O

(
e2tpt+1

)
.

This proves part (2) of this theorem. ■
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Proof of Lemma 4.4. Write P := {p ∈ Xn : dist(a, p) ≤ min(dist(a, b), 2t− δ), dist(b, p) ≤ 2t}. We
may assume that P ̸= ∅ and that dist(a, b) > t as otherwise every B(p, t), p ∈ P , contains a. By
taking any p ∈ P , we know dist(a, b) ≤ dist(a, p) + dist(p, b) ≤ 4t− δ. Write D := {k ∈ [n] : ak ̸= bk},
so |D| = dist(a, b) ≤ 4t − δ. Let Y be the set of all y ∈ Xn such that {k : yk ̸= ak} is a subset of D
of size at most t − δ; |Y | ≤

(
4t−δ
t−δ

)
|X|t−δ. We prove that Y has the desired property, i.e. Y hits all

B(p, t), p ∈ P .
To this end, fix any p ∈ P . Writing Dp := {k ∈ [n] : ak ̸= pk}, it holds that |Dp| = dist(a, p) ≤

min(|D|, 2t − δ) ≤ |D|, thereby |D△Dp| ≥ 2|Dp \D|. Now, observe that bk ̸= pk for all k ∈ D△Dp.
This means 2|Dp \ D| ≤ |D△Dp| ≤ dist(b, p) ≤ 2t, which implies |Dp \ D| ≤ t. Then, take any
I ⊆ Dp ∩D of size min(|Dp ∩D|, t− δ) and y ∈ Xn such that

yk =

{
ak k ∈ [n] \ I
pk k ∈ I.

We know y ∈ Y because {k : yk ̸= ak} ⊆ I ⊆ D and it has size at most t − δ. In addition,
dist(y, p) = |Dp \ I|. If |I| = t− δ, then |Dp \ I| = |Dp| − |I| ≤ 2t− δ − (t− δ) = t; if |I| = |Dp ∩D|,
then |Dp \ I| = |Dp \D| ≤ t. In any case, dist(y, p) ≤ t, i.e. y ∈ Y hits B(p, t). This completes the
proof. ■

Proof of Lemma 4.7. Write W := W (a1, a2, . . . , am). For (1), we may assume W ̸= ∅ and m ≥ 2

because W = {a1} when m = 1. For each k ∈ [n], denote Vk := {a1,k, a2,k, . . . , am,k}. Consider∑m
i=1 dist(ai, w̃) for an arbitrary w̃ ∈ W , which counts pairs (i, k) ∈ [m] × [n] where ai,k ̸= w̃k.

For each k ∈ [n], there are at least |Vk| − 1 indices i ∈ [m] with ai,k ̸= wk, so
∑n

k=1(|Vk| − 1) ≤∑m
i=1 dist(ai, w̃) ≤ mt. Now, observe that any w ∈ W has that wk ̸= a1,k for at most t of k ∈ [n].

Thus, we can enumerate over the set of these indices k, which we denote by S ⊆ [n], and for each such
k ∈ S, there are |Vk| − 1 choices for wk, i.e.

|W | ≤
∑

S⊆[n],|S|≤t

∏
k∈S

(|Vk| − 1) ≤
t∑

s=0

1

s!

(
n∑

k=1

(|Vk| − 1)

)s

≤
t∑

s=0

(mt)s

s!
≤ 2

(mt)t

t!
≤ (em)t.

Here, we used the Stirling’s approximation t! ≥ 2(t/e)t for t ≥ 1.
For (2), let K ⊆ [n], w ∈ Xn be the set and vector in the definition of φ(a1, a2, . . . , am, a). Putting

wk = a1,k for all k ∈ K, we have dist(a,w) ≤ t and dist(ai, w) ≤ t for all i ∈ [m]. It suffices to
show that w ∈ W . Suppose not, i.e. wk /∈ {a1,k, a2,k, . . . , am,k} for some k ∈ [n]. Clearly, k /∈ K.
Putting L := K ∪ {k}, it holds that dist(w

∣∣
Lc , ai

∣∣
Lc) + |L| = dist(w

∣∣
Kc , ai

∣∣
Kc)− 1 + |K|+ 1 ≤ t for all

1 ≤ i ≤ m. This means φ(a1, a2, . . . , am) ≥ |L| > φ(a1, a2, . . . , am, a), contradicting our assumption.
Thus, w ∈ W ∩B(a, t), as desired. ■

In Section 1.1, we defined the convexity space (Xn, CH). It is the convexity space formed by all
intersections of arbitrary collections of Hamming balls in Xn of radius t. In particular, every Hamming
ball of radius at most t is contained in (Xn, CH). This is because B(a, ℓ) =

⋂
b:dist(a,b)≤t−ℓB(b, t) for

every ℓ ≤ t < n. For this convexity space, our proof of Theorem 4.1(2) and that of Theorem 4.2(2)
can be used to provide the corresponding fractional Helly theorem and the (p, q) theorem. More
specifically, suppose C1, . . . , Cm are convex sets in (Xn, CH). Our argument shows that

• if at least α
(

m
t+2

)
unordered (t+2)-tuples (where tuples have distinct entries) of these convex sets

have a common intersection, then some point in Xn hits an α2−O(t2)-fraction of these convex
sets;

18



• if p ≥ q ≥ t + 2 and out of any p of these convex sets, q of them have a common intersection,
then there exist pt+12O(t2) points in Xn hitting all these convex sets.

Essentially the only change is to generalise φ(a1, . . . , am) and W (a1, . . . , am) to the setting of convex
sets. For convex sets C1, . . . , Cm, one can define φ(C1, . . . , Cm) to be the size of the largest K ⊆ [n]

such that for some w ∈ Xn, the set
{
z ∈ Xn : zk = wk ∀k /∈ K

}
is contained in C1∩· · ·∩Cm. This is the

dimension of the largest ‘affine space’ contained in C1∩· · ·∩Cm. In addition, by Theorem 1.2, each Ci is
the intersection of at most 2t+1 Hamming balls of radius t, i.e. Ci =

⋂2t+1

j=1 B(ai,j , t) for some ai,j ∈ Xn.
One can define W (C1, . . . , Cm) = W (ai,j : i ∈ [m], j ∈ [2t+1]). With the above φ(C1, . . . , Cm) and
W (C1, . . . , Cm), almost the same proof as Lemma 4.7 shows that W (C1, . . . , Cm) ≤ (em2t+1)t and that
W (C1, . . . , Cm) hits every convex set C such that φ(C1, . . . , Cm, C) = φ(C1, . . . , Cm). Considering
φ(C1, . . . , Cm) in place of φ(a1, . . . , am), the proof of Theorem 4.1(2) and that of Theorem 4.2(2)
works to give the above results. Note that in the proof of Theorem 4.2(2), case (β) can never happen,
so one only needs to adapt the proof till the definition of W .

4.2 Sequences of sets

One way to generalise Theorem 1.5 is to consider sequences of sets. More precisely, given n > t ≥ 0,
a, b ≥ 1 and a set X with |X| ≥ a+ b, an (n, t, a, b;X)-system is a collection of pairs (Ai, Bi)

m
i=1 (for

some m) such that for each i = 1, . . . ,m,{
Ai = (Ai,1, Ai,2, . . . , Ai,n) where Ai,k ⊆ X and |Ai,k| = a ∀ k ∈ [n]

Bi = (Bi,1, Bi,2, . . . , Bi,n) where Bi,k ⊆ X and |Bi,k| = b ∀ k ∈ [n]

Define the distance dist(Ai, Bj) to be the number of k ∈ [n] such that Ai,k ∩ Bj,k = ∅. Then, we
can extend f(t;X) by denoting f(n, t, a, b;X) to be the size of the largest (n, t, a, b;X)-system such
that dist(Ai, Bj) ≥ t + 1 for all i ∈ [m] and dist(Ai, Bj) ≤ t for all distinct i, j ∈ [m]. One can
check that Theorem 1.5 corresponds to the case a = b = 1 by replacing each entry of ai and bi by
a singleton containing it, so f(n, t, 1, 1;X) = 2t+1. In addition, the first author [Alo85] proved that
f(t + 1, t, a, b;X) =

(
a+b
a

)t+1
. These results naturally lead to the conjecture that f(n, t, a, b;X) =(

a+b
a

)t+1
for all n > t ≥ 0; in particular, this would mean that f(n, t, a, b;X) is independent of n.

However, this turns out to be far from the truth as long as a > 1 or b > 1.

Proposition 4.9.
(

n
t+1

)((
a+b
b

)
− 2
)t+1≤ f(n, t, a, b;X) ≤

(
n

t+1

)(
a+b
b

)t+1
if n > t ≥ 0 and |X| ≥ a+ b.

Proof. For the upper bound, suppose (Ai, Bi)
m
i=1 is an (n, t, a, b;X)-system that realises f(n, t, a, b;X).

Uniformly sample a subset S ⊆ [n] of size t + 1 and consider the following (t + 1, t, a, b;X)-system:
for each i ∈ [m], A′

i := (Ai,k)k∈S and B′
i := (Bi,k)k∈S . Clearly, dist(A′

i, B
′
j) ≤ dist(Ai, Bj) ≤ t for

every distinct i, j ∈ I. Let I be the set of i ∈ [m] where dist(A′
i, B

′
i) ≥ t + 1. By the result of the

first author [Alo85], we know |I| ≤
(
a+b
a

)t+1
. Also, using that Pr[i ∈ I] ≥ 1/

(
n

t+1

)
, we conclude that

m/
(

n
t+1

)
≤ E|I| ≤

(
a+b
a

)t+1
. This shows that f(n, t, a, b;X) = m ≤

(
n

t+1

)(
a+b
b

)t+1
.

For the lower bound, we may assume X = [a+ b]. Let S1, . . . , Sℓ be an arbitrary enumeration of all
subsets of X of size a; so ℓ =

(
a+b
a

)
. Additionally, let Ti := X \Si for i ∈ [ℓ]. Observe that Si ∩Tj = ∅

if and only if i = j. Define a mapping φ : [ℓ− 1] → [ℓ] by putting

φ(i) =

{
i, i = 1, . . . , ℓ− 2

ℓ, i = ℓ− 1
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Now, consider all vectors in [ℓ − 1]n where precisely n − t − 1 entries equal to ℓ − 1. Let a1, . . . , am
be an enumeration of them; so m =

(
n

t+1

)((
a+b
a

)
− 2
)t+1. For each i ∈ [m], define Ai = (Ai,k)

n
k=1 and

Bi = (Bi,k)
n
k=1 such that

Ai,k = Sai,k and Bi,k = Tφ(ai,k) for k = 1, . . . , n.

Clearly, (Ai, Bi)
m
i=1 is an (n, t, a, b;X)-system with m =

(
n

t+1

)((
a+b
a

)
− 2
)t+1, so it suffices to check

that dist(Ai, Bj) ≥ t+ 1 if and only if i = j. For any i, j ∈ [m] and k ∈ [n], it holds that

Ai,k ∩Bj,k = ∅ ⇔ Sai,k ∩ Tφ(aj,k) = ∅ ⇔ ai,k = φ(aj,k) ⇔ ai,k = aj,k ̸= ℓ− 1.

Thus, dist(Ai, Bj) equals the number of k ∈ [n] such that ai,k = aj,k ̸= ℓ − 1. Recall that in both ai
and aj , precisely n− t− 1 entries equal to ℓ− 1. Hence, dist(Ai, Bj) ≤ t+ 1 for all i, j ∈ [m] and the
equality holds if and only if ai = aj , i.e. i = j. This concludes the proof. ■

Notably, when b = 1 and |X| = a + 1, f(n, n − t, a, 1;X) equals the maximum m such that
there exist a1, . . . , am, b1, . . . , bm ∈ Xn where dist(ai, bj) ≤ t if and only if i = j, the opposite to
the constraints in the definition of f(t;X). To see the equivalence, for any Ai = (Ai,1, . . . , Ai,n)

with |Ai,k| = a and Bi = (Bi,1, . . . , Bi,n) with |Bi,k| = 1, we can define ai = (ai,k)
n
k=1 where ai,k is

the only element in X \ Ai,k, and bi = (bi,k)
n
k=1 where bi,k is the only element in Bi,k. Notice that

dist(Ai, Bj) + dist(ai, bj) = n for all i, j. The condition that dist(Ai, Bj) ≥ n− t if and only if i = j

is equivalent to the condition that dist(ai, bj) ≤ t if and only if i = j. Despite the similarity to the
definition of f(t;X), Proposition 4.9 shows that the number of pairs (ai, bi) such that dist(ai, bj) ≤ t

if and only if i = j can be
(

n
t+1

)
(a−O(1))t+1.

4.3 Connection to the Prague dimension

Given a graph G, the Prague dimension, pd(G), is the minimum d such that one can assign each
vertex a unique vector in Zd and two vertices are adjacent in G if and only if the two corresponding
vectors differ in all coordinates. In other words, pd(G) is the minimum d such that there exists some
injection f : V (G) → Zd such that u, v are adjacent in G if and only if dist(f(u), f(v)) = d.

The definition and results of the function f(t;X) suggest the following variant of the Prague
dimension. Given a graph G, the threshold Prague dimension, tpd(G), is the minimum t such that
there exists some d ∈ N and some f : V (G) → Zd so that u, v are adjacent in G if and only if f(u)
and f(v) differ in at least t coordinates, that is, dist(f(u), f(v)) ≥ t. By definition, tpd(G) ≤ pd(G).
In this section, we list and compare some properties of these two dimensions.

First, tpd(G(n, 1/2)) = Θ(n/ log n) with high probability. The upper bound holds as pd(G(n, 1/2)) =

Θ(n/ log n) with high probability by [GPW23]. For the lower bound, let G be the set of all graphs
with vertex set [n] whose complement has diameter 2. It is well known that |G| = (1− o(1))2(

n
2) (see,

for example, [Bol01]). We will consider the mappings f : V (G) → Zd that realise tpd(G) for some
G ∈ G and compare the number of ‘intrinsically distinct’ fs and the cardinality |G|. Now, let G ∈ G
and f : V (G) → Zd be a mapping that realises t := tpd(G). Without loss of generality, we can assume
that f(u) ∈ [n]d for every vertex u and that f(1) is the all-ones vector. Define

I :=
⋃

u∈V (G)

{
k ∈ [d] : f(1)k ̸= f(u)k

}
.

Knowing that dist(f(u), f(v)) < t for u, v not adjacent in G and that the diameter of the complement
of G is 2, it follows that dist(f(1), f(u)) < 2t for all u ∈ V (G), so |I| < 2tn. By the definition of I,
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f(u)k = f(1)k = 1 for every u ∈ [n] and k ∈ [d] \ I. This means that we can assume d = 2tn without
loss of generality. Taken together, any G ∈ G is determined by a pair (T, f) where T is a spanning
tree in its complement and f : V (G) → [n]2tn is the above mapping which, in particular, satisfies that
f(1) is the all-ones vector and dist(f(u), f(v)) < t for all u, v ∈ E(T ). Fixing T , let us count the
number of possible fs. Observe that if u is the parent of v in T and f(u) has been fixed, there are at
most

(
2tn
<t

)
nt = nO(t) choices for f(v). Thus, the number of such fs is at most

(
nO(t)

)n−1
= nO(tn).

Recall that there are 2o(n
2) spanning trees in Kn. If t = o(n/ log n), the number of pairs (T, f) is

2o(n
2), so tpd(G(n, 1/2)) ≤ t with probability o(1). In other words, tpd(G(n, 1/2)) = Ω(n/ log n) with

high probability.
Second, if u1, u2, . . . , us and v1, v2, . . . , vs are two sequences of vertices in G such that ui, vj are

adjacent in G if and only if i = j, i.e., the edges (ui, vi) form an induced matching in G, then tpd(G) ≥
log2 s by Theorem 1.5. Indeed, any f : V (G) → Zd realising tpd(G) satisfies dist(f(ui), f(vi)) ≥
tpd(G) for all i ∈ [s] and dist(f(ui), f(vj)) < tpd(G) for all distinct i, j ∈ [s]. This argument has
been widely used to give lower bounds for pd(G) for various graphs G. For example, let us consider
graphs on n vertices such that the minimum degree is at least one while the maximum degree is ∆.
This includes a lot of basic graphs like perfect matchings, cycles, paths, etc. The first author [Alo86]
showed that the Prague dimension for these graphs is at least log2

n
∆ − 2 because they contain an

induced matching of size at least n
4∆ . Now, Theorem 1.5 shows the same bound also holds for the

threshold Prague dimension. To compare, we note that Eaton and Rödl [ER96] showed that the
Prague dimension (and thus the threshold Prague dimension) for these graphs is at most O(∆ log2 n).

Third, the threshold Prague dimension can be much smaller than the Prague dimension. For
example, it is known that pd(Kn + K1) = n (see [LNP80]), where Kn + K1 is the disjoint union of
a clique of size n and an isolated vertex. However, by mapping the vertices of Kn to the standard
orthonormal basis of Rn and that of K1 to the all-zeros vector, we observe that tpd(Kn +K1) ≤ 2.
A more interesting example is the Kneser graph: for n ≥ k, the Kneser graph K(n, k) is the graph
whose vertices are all the k-element subsets of [n] and whose edges are pairs of disjoint subsets.
When 1 ≤ k ≤ n/2, it is known that log2 log2

n
k−1 ≤ pd(K(n, k)) ≤ Ck log2 log2 n for some constant

Ck; see [Für00]. For the threshold Prague dimension, define f :
([n]
k

)
→ {0, 1}n by mapping each

vertex in K(n, k) to the indicator vector of length n of the corresponding subset. Then, for two
adjacent vertices u, v, (where the corresponding two subsets are disjoint), dist(f(u), f(v)) = 2k. For
two non-adjacent vertices u, v, the two subsets intersect and dist(f(u), f(v)) ≤ 2(k − 1) < 2k − 1.
This shows tpd(K(n, k)) ≤ 2k − 1. In addition, K(2k, k) is an induced matching of size 1

2

(
2k
k

)
,

so tpd(K(2k, k)) ≥ log2
1
2

(
2k
k

)
= 2k − O(log2 k). Knowing that K(n, k) contains K(2k, k) as an

induced subgraph, we have tpd(K(n, k)) ≥ tpd(K(2k, k)) = 2k − O(log2 k). Thus, tpd(K(n, k)) is
asymptotically 2k. This holds independently of n, very different from the behaviour of pd(K(n, k)).

Finally, it would also be interesting to determine the maximum possible threshold Prague dimension
for an n-vertex graph G. For the ordinary Prague dimension, this was done by Lovász, Nešetšil and
Pultr [LNP80], who showed that pd(G) ≤ n − 1 and pd(G) = n − 1 if and only if G = Kn−1 + K1

(when n ≥ 5). As we already mentioned above, Kn−1 + K1 is not a good candidate to maximise
tpd(G) since tpd(Kn−1+K1) ≤ 2. Another natural graph to consider is Km+Km when n = 2m. For
this graph, we claim that tpd(Km+Km) = pd(Km+Km) = m. Let the vertex sets of the two cliques
be U = {u1, . . . , um} and V = {v1, . . . , vm}. For the upper bound, assign to ui an all-is string of
length m, and to vi a string s of length m starting from i in which sk = sk−1+1 mod m for all k. For
the lower bound of tpd(Km+Km), suppose f : U ∪V → Zd (for some d) realises t := tpd(Km+Km).
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Let

C1 :=
∑

1≤i<j≤m

dist(f(ui), f(uj)) +
∑

1≤i<j≤m

dist(f(vi), f(vj)), C2 :=
m∑

i,j=1

dist(f(ui), f(vj)).

We consider C1−C2. Fix k ∈ [d]. For each a ∈ Z, let sa be the number of i ∈ [m] such that f(ui)k = a,
and ta be the number of i ∈ [m] such that f(vi)k = a. The contribution to C1 − C2 from the kth
coordinates is given by((

m

2

)
−
∑
a

(
sa
2

))
+

((
m

2

)
−
∑
a

(
ta
2

))
−

(
m2 −

∑
a

sata

)
=
∑
a

sata −
s2a + t2a

2
≤ 0.

Summing over all k ∈ [d], we know C1 ≤ C2. But then, 2
(
m
2

)
· t ≤ C1 ≤ C2 ≤ m2 · (t − 1), showing

tpd(Km + Km) = t ≥ m, as claimed. In general, it might be the case that tpd(G) ≤
⌈
n
2

⌉
for every

n-vertex graph G.

5 Concluding remarks and open problems

In Theorem 2.4 we showed there are at most 2t+1 pairs of (ai, bi) such that dist(ai, bi) ≥ t + 1

for all i and dist(ai, bj) ≤ t for all i ̸= j. Consider any t ≥ 1, the nontrivial case. Notice that
Vt+s,s

2t+s ≥ Vt+3,3

2t+3 = t+4
2t+3 > 2−t−1 for all s ≥ 3. Therefore, Eq. (2) indicates that in the extremal

case, where there are 2t+1 such pairs, it must be that dist(ai, bi) ∈ {t + 1, t + 2} for all i. Taking
ai ∈ {0, 1}t+1 and bi = ai, we construct 2t+1 such pairs with dist(ai, bi) = t + 1. Also, by taking
ai ∈ {0, 1}t+2 with an even number of 1s and bi = ai, we construct 2t+2 pairs with dist(ai, bi) = t+2.
Thus, dist(ai, bi) = t + 1 and dist(ai, bi) = t + 2 are both possible in the extremal case. It would be
interesting to have a complete characterisation of the extremal cases.

In the realm of set-pair inequalities, the skew version also plays an important role; see [Lov77,
Lov79]. Given t and X, what is the largest m such that there exist n ≥ t+1 and a1, . . . , am, b1, . . . , bm ∈
Xn where dist(ai, bi) ≥ t + 1 for all i ∈ [m] and dist(ai, bj) ≤ t for all 1 ≤ i < j ≤ m? We suspect
that the answer is also 2t+1, and it would be interesting to try to adapt the dimension argument to
prove it.

In [Für84], Füredi showed the set-pair inequality via the following vector space generalisation.
If A1, . . . , Am are a-dimensional and B1, . . . , Bm are b-dimensional linear subspaces of Rn such that
dim(Ai∩Bj) ≤ k if and only if i = j, then m ≤

(
a+b−2k
a−k

)
. We wonder if there is a natural generalisation

of Theorem 1.5 or even Theorem 2.4 to vector spaces.
It will also be interesting to study the threshold Prague dimension further. In particular, it would be

nice to determine or estimate the maximum possible value of this invariant for a graph with n vertices
and maximum degree ∆. We note that for the classic Prague dimension, Eaton and Rödl [ER96]
showed the maximum possible dimension of a graph with n vertices and maximum degree ∆ is at
most O(∆ log n) and at least Ω( ∆logn

log∆+log logn).
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