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Abstract

We prove the following variant of Helly’s classical theorem for Hamming balls with a bounded
radius. For n > t and any (finite or infinite) set X, if in a family of Hamming balls of radius t in
Xn, every subfamily of at most 2t+1 balls have a common point, so do all members of the family.
This is tight for all |X| > 1 and all n > t. The proof of the main result is based on a novel variant
of the so-called dimension argument, which allows one to prove upper bounds that do not depend
on the dimension of the ambient space. We also discuss several related questions and connections
to problems and results in extremal finite set theory and graph theory.

1 Introduction

1.1 Helly-type problems for the Hamming balls

Helly’s theorem, proved by Helly more than 100 years ago ([Hel23]), is a fundamental result in Discrete
Geometry. It asserts that a finite family of convex sets in the d-dimensional Euclidean space has a
nonempty intersection if every subfamily of at most d+ 1 of the sets has a nonempty intersection.

This theorem, in which the number d+1 is tight, led to numerous fascinating variants and extensions
in geometry and beyond (c.f., e.g., [Eck93, BK22] for two survey articles). It motivated the definition
of the Helly number h(F) for a general family F of sets. This is the smallest integer h such that for
any finite subfamily K of F , if every subset of at most h members of K has a nonempty intersection
then all sets in K have a nonempty intersection. The classical theorem of Helly asserts that the Helly
number of the family of convex sets in Rd is d+1. An additional example of a known Helly number is
the Theorem of Doignon [Doi73] that asserts that the Helly number of convex lattice sets in d-space,
that is sets of the form C ∩Zd where C is a convex set in Rd, is 2d. A more combinatorial example is
the fact that the Helly number of the collection of (sets of vertices of) subtrees of any tree is 2.

In the spaces Xn for finite or infinite X, the Hamming balls are among the most natural objects to
study. The Hamming distance between p, q ∈ Xn, denoted by dist(p, q), is the number of coordinates
where p and q differ, and the Hamming ball of radius t centered at x ∈ Xn, denoted by B(x, t), is the
set of all points p ∈ Xn that satisfy dist(p, x) ≤ t. Note that every Hamming ball of radius t is the
whole space if n ≤ t. Hence, we may and will always assume that n ≥ t+ 1. Our main result in the
present paper is the determination of the Helly number of the family of all Hamming balls of radius t
in the space Xn, where X is an arbitrary (finite or infinite) set.

Theorem 1.1. Let n > t ≥ 0 and X be any set of cardinality |X| ≥ 2. The Helly number h(n, t;X)

of the family of all Hamming balls of radius t in Xn is exactly 2t+1.
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Crucially, h(n, t;X) depends only on t. We note that the special case X = {0, 1} of this theorem
settles a recent problem raised in [RST23], where the question is motivated by an application in
learning theory. See also [BHMZ20] for more about the connection between Helly numbers and
questions in computational learning.

Another fundamental result in Discrete Geometry is Radon’s theorem [Rad21] which states that
any set of d+ 2 points in the d-dimensional Euclidean space can be partitioned into two parts whose
convex hulls intersect. This was first obtained by Radon in 1921 and was used to prove Helly’s theorem;
see also [Eck93, BK22]. Using our methods we can prove the following strengthening of Theorem 1.1.
As we explain below it can be viewed as Radon’s theorem for the Hamming balls.

Theorem 1.2. Let n > t ≥ 0 and X be any set of cardinality |X| ≥ 2. If B1, B2, . . . , Bm are Hamming
balls in Xn of radius t, then there exists I ⊆ [m] of size at most 2t+1 such that

⋂m
i=1Bi =

⋂
i∈I Bi.

It is easy to see, that the upper bound of the Helly number h(n, t;X) ≤ 2t+1 follows from this result
by taking

⋂m
i=1Bi = ∅. To explain the connection of this statement with Radon’s theorem we briefly

discuss the notion of abstract convexity spaces.
An (abstract) convexity space is a pair (U, C) where U is a nonempty set and C is a family of

subsets of U satisfying the following properties. Both ∅ and U are in C and the intersection of any
subfamily of sets in C is a set in C. One natural example is the standard Euclidean convexity space
(Rd, Cd) where Cd is the family of all convex sets in Rd. We refer the readers to the book by van de
Vel [Vel93] for a comprehensive overview of the theory of convexity spaces.

In a convexity space (U, C), the members of C are called convex sets. Given a subset Y ⊆ U , the
convex hull of Y , denoted by conv(Y ), is the intersection of all the convex sets containing Y , that is
the minimal convex set containing Y . The Radon number of (U, C), denoted by r(C), is the smallest
integer r (if it exists) such that any subset P ⊆ X of at least r points can be partitioned into two
parts P1 and P2 such that conv(P1) ∩ conv(P2) ̸= ∅. For instance, r(Cd) = d + 2 for the family of
convex sets in Rd. It is well-known that the Helly number is smaller than the Radon number if the
latter is finite; see [Lev51].

In our case, U = Xn, and CH contains all the intersections of Hamming balls of radius t. For
simplicity we assume that X is finite. Then, (U, CH) is automatically a convexity space. Moreover,
one can check that all Hamming balls of radius at most t are contained in CH . We now show that
in (U, CH), the Helly number is 2t+1 and the Radon number is 2t+1 + 1. By the discussion above,
we know r(CH) > h(CH) ≥ h(n, t;X) ≥ 2t+1, where the last equality follows from an easy example
in Proposition 2.1. So, it suffices to show that r(CH) ≤ 2t+1 + 1. To this end, let p1, p2, . . . , pm be
m ≥ 2t+1 + 1 points in Xn. Recall that for any set of points P ⊆ Xn, conv(P ) is the intersection
of the Hamming balls containing P , that is the intersection of B(q, t)s over all q ∈

⋂
p∈P B(p, t). By

Theorem 1.2, there exists I ⊆ [m] of size at most 2t+1 so that
⋂m

i=1B(pi, t) =
⋂

i∈I B(pi, t). This
means ∅ ≠ I ̸= [m] and conv((pi)

m
i=1) = conv((pi)i∈I). Hence, ∅ ≠ conv((pi)i/∈I) ⊆ conv((pi)

m
i=1) =

conv((pi)i∈I), i.e. conv((pi)i/∈I) ∩ conv((pi)i∈I) ̸= ∅. This proves r(CH) ≤ 2t+1 + 1, as needed.
In the original setting of convex sets in Rd, the following two extensions of Helly’s theorem received

a considerable amount of attention. The fractional Helly theorem, first proved by Katchalski and
Liu [KL79], states that in a finite family of convex sets in Rd, if an α-fraction of the (d+ 1)-tuples of
sets in this family intersect, then one can select a β-fraction of the sets in the family with a nonempty
intersection. The Hadwiger-Debrunner conjecture, also known as the (p, q)-theorem, was first proved
by Alon and Kleitman [AK92]. It states that for p ≥ q ≥ d + 1, if among any p convex sets in the
family, q of them intersect, then there is a set of Od,p,q(1) points in Rd such that every convex set in the
family contains at least one of these points. See also [BK22] for more recent variants and extensions.
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One can ask for versions of fractional Helly and (p, q) theorems in general convexity spaces as well.
Moreover, it is known that finite Radon number implies the fractional Helly theorem [HL21] and in
turn the fractional Helly theorem implies the (p, q) theorem [AKMM02], both for suitable parameters.
In the case of Hamming balls of radius t, one can use these general results together with the fact
that r(CH) = 2t+1 + 1 to obtain the fractional Helly theorem, where ℓ-tuples of Hamming balls are
considered with ℓ ≫ 2t+1, and the (p, q)-theorem where p > q ≥ ℓ ≫ 2t+1. Such resulst are very
far from being optimal and instead we will prove them directly with much better dependencies on t.
Interestingly, for both of them, if |X| = 2, we only need the information on pairs of Hamming balls.
On the other hand, if |X| = ∞, we need the information on (t + 2)-tuples of Hamming balls. In
particular, the threshold to have both theorems for Hamming balls (of radius t) is either 2 or t + 2,
much smaller than the corresponding Helly number. This is very different from convex sets in Rd,
where the threshold to have both theorems is d+ 1, the same as the corresponding Helly number.

1.2 Algebraic tools and set-pair inequalities

The proof of Theorem 1.2 is based on a novel variant of the so-called dimension argument. Surprisingly,
this variant allows us to prove some upper bounds that do not depend on the dimension of the ambient
space. We believe that this may have further applications. For the special case of binary strings, that
is, |X| = 2, we prove a stronger statement by a probabilistic argument. For convenience, we define
the following two functions f(t,X) and f ′(t,X).

Definition 1.3. Let t ≥ 0 and X be any set of cardinality |X| ≥ 2. Define

• f(t;X) to be the maximum m such that there exists n > t and a1, a2, . . . , am, b1, b2, . . . , bm ∈ Xn

where dist(ai, bi) ≥ t+ 1 for all i ∈ [m] and dist(ai, bj) ≤ t for all distinct i, j ∈ [m];

• f ′(t;X) to be the maximum m such that there exists n > t and a1, a2, . . . , am, b1, b2, . . . , bm ∈ Xn

where dist(ai, bi) ≥ t+1 for all i ∈ [m] and dist(ai, bj)+dist(aj , bi) ≤ 2t for all distinct i, j ∈ [m].

The study of these functions can also be motivated by the well-known set-pair inequalities in ex-
tremal set theory. The set-pair inequalities, initiated by Bollobás [Bol65], play an important role
in extremal combinatorics with applications in the study of saturated (hyper)-graphs, τ -critical hy-
pergraphs, matching-critical hypergraphs, and more. See [Tuz94, Tuz96] for surveys. A significant
generalization of Bollobás’ result is due to Füredi [Für84]. It states that if A1, A2, . . . , Am are sets of
size a and B1, B2, . . . , Bm are sets of size b such that |Ai∩Bi| ≤ k for all i ∈ [m] and |Ai∩Bj | > k for
1 ≤ i < j ≤ m, then m ≤

(
a+b−2k
a−k

)
, and this is tight. Using this result, one can give a short argument

that f(t;X) is finite.

Proposition 1.4. f(t;X) ≤
(
2t+2
t+1

)
for every t ≥ 0 and every set X.

Proof. Suppose, for some n > t, that there are a1, a2, . . . , am, b1, b2, . . . , bm ∈ Xn satisfying dist(ai, bi)
≥ t+ 1 for all i and dist(ai, bj) ≤ t for all distinct i, j ∈ [m]. For each i ∈ [m], let Ai := {(k, ak) : k =

1, 2, . . . , n} and Bi := {(k, bk) : k = 1, 2, . . . , n} be sets of n pairs. Observe that |Ai∩Bj |+dist(ai, bj) =
n for all i, j ∈ [m]. It holds that |Ai ∩Bi| ≤ n− t− 1 for all i and |Ai ∩Bj | ≥ n− t for all distinct i, j.
Since |Ai| = |Bi| = n, the above result of Füredi implies m ≤

(2n−2(n−t−1)
n−(n−t−1)

)
=
(
2t+2
t+1

)
, as desired. ■

We note that f(t;X) ≤ f ′(t;X) holds by definition and that any upper bound on f(t;X) implies the
corresponding bound in Theorem 1.2. Indeed, suppose B = {B1, B2, . . . , Bm} is a minimal collection of
Hamming balls in Xn of radius t such for any I ⊆ [m] of size at most f(t;X),

⋂m
i=1Bi ̸=

⋂
i∈I Bi. This
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means m > f(t;X) and
⋂

iBi ̸=
⋂

i ̸=j Bi holds for all j (using that B is minimal). So, for each j ∈ [m],
there exists bj ∈

⋂
i ̸=j Bi \

⋂
iBi. In addition, let aj be the center of Bj . Then, dist(ai, bi) ≥ t + 1

for all i and dist(ai, bj) ≤ t for all distinct i, j. Hence, m ≤ f(t;X), contradicting that m > f(t;X).
This argument proves Theorem 1.2 with the help of the following result.

Theorem 1.5. f(t;X) = 2t+1 for every t ≥ 0 and every set X with |X| ≥ 2.

In the binary case, we further prove the following.

Theorem 1.6. f ′(t; {0, 1}) = 2t+1 for every t ≥ 0.

Our proof of Theorems 1.5 and 1.6 works in the more general setting where we assume dist(ai, bi) ≥
t+ s (for some s ≥ 1) instead of dist(ai, bi) ≥ t+1. For simplicity, we denote f(t, s;X) and f ′(t, s;X)

as the corresponding families’ largest size. Precisely, our proof shows that f(t, s;X) ≤ 2t+s/Vt+s,s and
f ′(t, s; {0, 1}) ≤ 2t+s/Vt+s,s, where

Vn,d :=

{ ∑(d−1)/2
i=0

(
n
i

)
d is odd∑d/2−1

i=0

(
n
i

)
+
(

n−1
d/2−1

)
d is even

(1)

We note that Vn,d is the size of the Hamming ball in {0, 1}n of radius d−1
2 if d is odd and of the

union of two Hamming balls in {0, 1}n of radius d
2 − 1 whose centers are of Hamming distance 1 if

d is even. Interestingly, Vn,d is also known to be the maximum possible cardinality of a set of points
of diameter at most d − 1 in {0, 1}n; see [Kat64, Kle66, Bez87]. We also note that when d is odd,
2n/Vn,d is the well-known Hamming bound for the maximum possible number of codewords in a binary
error correcting code (ECC) of length n and distance d. Binary ECCs, which are large collections of
binary strings with a prescribed minimum Hamming distance between any pair, are widely studied and
applied in computing, telecommunication, information theory and more; see [MS77a, MS77b]. Indeed,
ECCs naturally define ais and bis in Definition 1.3. As we will show in Section 3, the existence of
ECCs that match the Hamming bound (the so-called perfect codes) and their extensions imply that
f(t, s;X) = f ′(t, s; {0, 1}) = 2t+s/Vt+s,s when s ∈ {1, 2}, or s ∈ {3, 4} and t + 4 is a power of 2,
or s ∈ {7, 8} and t = 16. This will be shown using the well-known Hamming code and the Golay
code. In addition, the famous BCH codes discovered by Bose, Chaudhuri and Hocquenghem imply
that our bounds are close to being tight when s is fixed, that is, f(t, s;X) = Θs(2

t+s/Vt+s,s) and
f ′(t, s;X) = Θs(2

t+s/Vt+s,s).
Another well-known result in extremal set theory due to Tuza [Tuz87] states that if (Ai, Bi)

m
i=1

satisfies Ai∩Bi = ∅ for i ∈ [m] and (Ai∩Bj)∪(Aj∩Bi) ̸= ∅ for distinct i, j ∈ [m], then
∑m

i=1 p
|Ai|(1−

p)|Bi| ≤ 1 for all 0 < p < 1. This also has various applications; see [Tuz94, Tuz96]. When |Ai|+ |Bi| =
t + 1 for all i, this result implies m ≤ 2t+1, which is tight. Theorem 1.6 generalizes this by taking
Ai := {k ∈ [n] : ai,k = 1} and Bi := {k ∈ [n] : bi,k = 1}: if |Ai△Bi| ≥ t + 1 for all i ∈ [m] and
|Ai△Bj | + |Aj△Bi| ≤ 2t for all distinct i, j ∈ [m], then m ≤ f ′(n, t, {0, 1}) = 2t+1. Here, we do not
require Ai and Bi to be disjoint and write A△B := (A \B) ∪ (B \A) for the symmetric difference of
A and B.

Finally, we mention briefly that Theorem 1.5 motivates the study of a natural variant of the Prague
dimension (also called the product dimension) of graphs. Initiated by Nešetřil, Pultr and Rödl [NP77,
NR78], the Prague dimension of a graph is the minimum d such that every vertex is uniquely mapped
to Zd and two vertices are connected by an edge if and only if the corresponding vectors differ in all
coordinates, i.e, it is the minimum possible number of proper vertex colorings of G so that for every
pair u, v of non-adjacent vertices there is at least one coloring in which u and v have the same color.
This notion has been studied intensively, see, e.g., [LNP80, Alo86, ER96, Für00, AA20, GPW23].
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The rest of this paper is organized as follows. In Section 2 we present the proof of the main result
Theorem 1.5. Section 3 deals with binary strings and briefly discusses the behavior of f ′(n, t,X) for
|X| > 2. We also discuss the connection to error correcting codes and another set-pair inequality. In
Section 4 we investigate several variants and generalizations of the main results including a fractional
Helly-type result, a Hadwiger-Debrunner-type result, a variant of the Prague dimension of graphs,
and a generalization of f(t;X) to sequences of sets. The final Section 5 contains some concluding
remarks and open problems.

2 General strings

We start by describing the lower bound of Theorem 1.1, given by [RST23]. This also provides the
lower bounds in Theorems 1.5 and 1.6 as f ′(t;X) ≥ f(t;X) ≥ h(n, t;X) ≥ 2t+1

Proposition 2.1. h(n, t;X) ≥ 2t+1 for any n > t and any set X of cardinality |X| ≥ 2.

Proof. We may assume n = t + 1 as h(n, t;X) ≥ h(t + 1, t;X) and that 0, 1 ∈ X. Consider all
the 2t+1 Hamming balls B(a, t) where a ∈ {0, 1}t+1. It suffices to show that any 2t+1 − 1 balls
intersect while all of them do not. Observe that B(a, t) = {0, 1}t+1 \ {a} where a ∈ {0, 1}t+1 is
given by flipping all coordinates of a, i.e. changing 0 to 1 and changing 1 to 0. Therefore, for any
ℓ = 2t+1 − 1 vectors a1, . . . , aℓ ∈ {0, 1}t+1, the intersection

⋂ℓ
i=1B(ai, t) contains all but at most

ℓ < 2t+1 elements in {0, 1}t+1. In other words, any 2t+1 − 1 such Hamming balls intersect. On the
other hand,

⋂
a∈{0,1}t+1 B(a, t) =

⋂
a∈{0,1}t+1({0, 1}t+1 \ {a}) = {0, 1}t+1 \

⋃
a∈{0,1}t+1{a} = ∅, i.e. all

the 2t+1 balls do not intersect. ■

The rest of this section contains the proof of the upper bound of Theorem 1.5, and thus also of
Theorem 1.1. To this end, we need the following properties of Vn,d.

Claim 2.2. Vn,d ≥ 2Vn−1,d−1 for 2 ≤ d ≤ n and this is an equality if d is even. In particular,
Vn,d ≥ 2d−1 for all 1 ≤ d ≤ n.

Proof. If d = 2k for some k ∈ {1, 2, . . . ,
⌊
n
2

⌋
}, then

Vn,d =
k−1∑
i=0

(
n

i

)
+

(
n− 1

k − 1

)
=

k−1∑
i=0

(
n− 1

i

)
+

k−2∑
i=0

(
n− 1

i

)
+

(
n− 1

k − 1

)
= 2

k−1∑
i=0

(
n− 1

i

)
= 2Vn−1,d−1.

If d = 2k − 1 for some k ∈ {2, 3, . . . ,
⌊
n+1
2

⌋
}, then

Vn,d =
k−1∑
i=0

(
n

i

)
= 2

k−2∑
i=0

(
n− 1

i

)
+

(
n− 1

k − 1

)
≥ 2

k−2∑
i=0

(
n− 1

i

)
+ 2

(
n− 2

k − 2

)
= 2Vn−1,d−1.

Here, we used
(
n−1
k−1

)
≥ 2
(
n−2
k−2

)
as k ≤ n+1

2 .
Given the first inequality, Vn,d ≥ 2Vn−1,d−1 ≥ · · · ≥ 2d−1Vn−d+1,1 = 2d−1, as desired. ■

We now show the upper bound of Theorem 1.5 by the following stronger theorem.

Theorem 2.3. Let n > t ≥ 0,m ≥ 1, and X be nonempty. Suppose a1, a2, . . . , am, b1, b2, . . . , bm ∈ Xn,
and assume that for each i ∈ [m], dist(ai, bi) = t + si for some si ≥ 1, and dist(ai, bj) ≤ t for all
distinct i, j ∈ [m]. Then,

m∑
i=1

Vt+si,si

2t+si
≤ 1. (2)
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In particular, f(t;X) ≤ 2t+1 and f(t, s;X) ≤ 2t+s/Vt+s,s if si ≥ s for all i ∈ [m].

Proof. First, suppose we have proved Eq. (2). Then, Claim 2.2 implies 1 ≥ m ·2si−1/2t+si ≥ m/2t+1,
i.e. m ≤ 2t+1. Hence, f(t;X) ≤ 2t+1. Similarly, if si ≥ s for all i ∈ [m], using Claim 2.2, we acquire
1 ≥

∑m
i=1

Vt+si,si

2t+si
≥ m · Vt+s,s/2

t+s, i.e. m ≤ 2t+s/Vt+s,s. So, f(t, s;X) ≤ 2t+s/Vt+s,s.
In the rest of the proof, we establish Eq. (2). The proof is algebraic and uses a novel variant of

the dimension argument which provides a dimension-free upper bound. Without loss of generality,
assume X ⊆ R. For each i ∈ [m], denote Di := {k ∈ [n] : ai,k ̸= bi,k} and di to be the largest
element in Di. Then, |Di| = dist(ai, bi) = t+ si. In addition, we call a pair (I1, I2) compatible with i if
I1 ⊆ Di, |I1| ≥ t+ si+1

2 , I2 ⊆ [n] \Di, or I1 ⊆ Di \ {di}, |I1| = t+ si
2 , I2 ⊆ [n] \Di (the latter happens

only when si is even). Note that |I1| ≥ t + si
2 in both cases and |I1| = t + si

2 only if I1 ⊆ Di \ {di}.
For every i ∈ [m] and every such pair (I1, I2), define a polynomial on x ∈ Rn by

fi,I1,I2
(x) :=

∏
k∈I1∪I2

(xk − ai,k)
∏

k∈Di\I1

(xk − bi,k).

Recall Eq. (1). The number of pairs compatible with i is Vt+si,si2
n−(t+si). Thus, it suffices to show

that all such fi,I1,I2
s are linearly independent. Indeed, since every fi,I1,I2

is a multilinear polynomial
on n variables, the linear independence implies

∑m
i=1 Vt+si,si2

n−(t+si) ≤ 2n, giving Eq. (2).
To show the linear independence, we define, for each i ∈ [m] and each (I1, I2) compatible with

i, an x = xi,I1,I2
∈ Rn by xk = ai,k for all k ∈ Di \ I1; xk = bi,k for all k ∈ I1 ∪ ([n] \ (Di ∪ I2));

xk ∈ X \ {bi,k} arbitrary for all k ∈ I2. We also need the following ordering of the subsets of [n]: for
distinct subsets E,F ⊆ [n], we denote E ≺ F if |E| < |F | or |E| = |F | and max(E \F ) > max(F \E).
We also write E ⪯ F if E ≺ F of E = F . It is easy to check that ⪯ induces a total order of all the
subsets of [n]. Now, we state the crucial claim for the evaluations of fi,I1,I2

s (on xi,I1,I2
s).

Claim 2.4. Let i, j ∈ [m] and (I1, I2) be compatible with i and (J1, J2) be compatible with j. Then,

(i) for i = j, we have fj,J1,J2
(xi,I1,I2

) ̸= 0 if and only if I1 = J1 and J2 ⊆ I2;

(ii) for i ̸= j, we have fj,J1,J2
(xi,I1,I2

) ̸= 0 implies (Dj \ J1) ∪ J2 ≺ (Di \ I1) ∪ I2.

Proof. Write x = xi,I1,I2
for simplicity. First, when i = j, since ai,k = bi,k for all k ∈ J2 ⊆ [n] \Di,

fj,J1,J2
(xi,I1,I2

) = fi,J1,J2
(x) =

∏
k∈J1∪J2

(xk−ai,k)
∏

k∈Di\J1

(xk−bi,k) =
∏
k∈J1

(xk−ai,k)
∏

k∈(Di\J1)∪J2

(xk−bi,k).

This means that fj,J1,J2
(x) ̸= 0 if and only if xk ̸= ai,k for all k ∈ J1 and xk ̸= bi,k for all k ∈

(Di \J1)∪J2. By the definition of x = xi,I1,I2 , we know that xk = ai,k for all k ∈ Di \ I1 and xk = bi,k
for k ∈ I1 ∪ ([n] \ (Di ∪ I2)). So, if fj,J1,J2(x) ̸= 0, then (Di \ I1) ∩ J1 = ∅, I1 ∩ (Di \ J1) = ∅ and
([n] \ (Di ∪ I2)) ∩ J2 = ∅, i.e. I1 = J1 and J2 ⊆ I2. On the other hand, if I1 = J1 and J2 ⊆ I2, using
that xk ̸= bi,k for all k ∈ I2, it is easy to see that fj,J1,J2

(x) ̸= 0. This demonstrates (i).
For (ii), suppose fj,J1,J2

(x) ̸= 0. The goal is to show (Dj \ J1) ∪ J2 ≺ (Di \ I1) ∪ I2. The fact that

fj,J1,J2
(x) =

∏
k∈J1∪J2

(xk − aj,k)
∏

k∈Dj\J1

(xk − bj,k) ̸= 0

implies xk ̸= aj,k for all k ∈ J1∪J2. In particular, since xk = bi,k for all k ∈ I := I1∪([n]\(Di∪I2)) (by
the definition of x = xi,I1,I2), it holds that bi,k ̸= aj,k for all k ∈ (J1 ∪ J2) ∩ I, meaning dist(bi, aj) ≥
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|(J1 ∪ J2) ∩ I|. Then, the assumption dist(bi, aj) ≤ t implies |(J1 ∪ J2) ∩ I| ≤ t. Observe that
[n] \ I = (Di \ I1) ∪ I2, and thus

|J1|+ |J2| = |J1 ∪ J2| = |(J1 ∪ J2)∩ I|+ |(J1 ∪ J2)∩ ([n] \ I)| ≤ t+ |[n] \ I| = t+ |(Di \ I1) ∪ I2| . (3)

Namely, |J2| ≤ t+ |(Di \ I1) ∪ I2| − |J1|. Then, using |Dj | = t+ sj and |J1| ≥ t+ sj/2, we obtain

|(Dj \ J1) ∪ J2| = |Dj | − |J1|+ |J2| ≤ (t+ sj)− 2|J1|+ t+ |(Di \ I1) ∪ I2| ≤ |(Di \ I1) ∪ I2| . (4)

If |(Dj \ J1) ∪ J2| < |(Di \ I1) ∪ I2|, then (Dj \ J1) ∪ J2 ≺ (Di \ I1) ∪ I2, and we are done.
From now on, let us assume that |(Dj \ J1) ∪ J2| = |(Di \ I1) ∪ I2|. For simplicity, write E :=

(Dj \ J1) ∪ J2 and F := (Di \ I1) ∪ I2. As |E| = |F |, our goal is to show that E ̸= F and max(E\F ) >

max(F \ E). Note that the derivation of Eq. (4) demonstrates that |E| = |F | only if Eq. (3) is an
equality and that |J1| = t+sj/2. In particular, the former implies that |(J1∪J2)∩ ([n]\ I)| = |[n]\ I|,
i.e. F = (Di \ I1) ∪ I2 = [n] \ I ⊆ J1 ∪ J2; the latter implies J1 ⊆ Dj \ {dj}. Hence, dj /∈ F while
dj ∈ (Dj \ J1) ∪ J2 = E, showing E ̸= F . In addition, max(E \ F ) ≥ dj as dj ∈ E \ F . Suppose for
contradiction that max(F \ E) > max(E \ F ) (≥ dj). However, since F ⊆ J1 ∪ J2 ⊆ (Dj \ {dj}) ∪ J2
and dj = max(Dj), we have max(F \E) ∈ J2 ⊆ E. This is impossible, so max(E \ F ) > max(F \E)

must hold. This shows (Dj \ J1) ∪ J2 = E ≺ F = (Di \ I1) ∪ I2, as desired. ■

We now complete the proof by showing that all the fi,I1,I2
s constructed for i ∈ [m] and (I1, I2)

compatible with i are linearly independent. Suppose that F :=
∑

(j,J1,J2)
cj,J1,J2fj,J1,J2

is the zero
polynomial, where cj,J1,J2 ∈ R for j ∈ [m] and (J1, J2) compatible with j. It suffices to prove cj,J1,J2 = 0

for all (j, J1, J2). If not, we pick a triple (i, I1, I2) with ci,I1,I2 ̸= 0; if there are multiple such (i, I1, I2)s,
pick the one that minimizes (Di \ I1) ∪ I2 in the total order ⪯; if there is still a tie, then pick any of
them. Consider x := xi,I1,I2

, and suppose that cj,J1,J2fj,J1,J2
(x) ̸= 0 for some (j, J1, J2). If i = j, then

Claim 2.4(i) implies J1 = I1 and J2 ⊆ I2. Due to the minimality of (Di \ I1) ∪ I2, it must be that J2 =
I2, meaning (i, I1, I2) = (j, J1, J2). If i ̸= j, Claim 2.4(ii) implies that (Dj \ J1) ∪ J2 ≺ (Di \ I1) ∪ I2.
Again, the minimality of (Di \ I1) ∪ I2 implies cj,J1,J2 = 0. But this is impossible as we assumed
cj,J1,J2fj,J1,J2

(x) ̸= 0. Altogether, cj,J1,J2fj,J1,J2
(x) ̸= 0 implies that (i, I1, I2) = (j, J1, J2). In addition,

Claim 2.4(i) asserts fi,I1,I2
(x) ̸= 0. So, 0 = F (x) =

∑
(j,J1,J2)

cj,J1,J2fj,J1,J2
(x) = ci,I1,I2fi,I1,I2

(x), and
thus ci,I1,I2 = 0. This contradicts our assumption that ci,I1,I2 ̸= 0. Therefore, ci,I1,I2 = 0 for all
(i, I1, I2), and this shows that all the fi,I1,I2

s are linearly independent. ■

3 Binary strings

This section deals with the binary setting, e.g. X = {0, 1}. In this case, we can prove a stronger result
(Theorem 1.6) where we only assume that dist(ai, bj) + dist(aj , bi) ≤ 2t for i ̸= j. The lower bound
is, again, derived from Proposition 2.1. For the upper bound, we provide a probabilistic proof that is
simpler than that of Theorem 2.3.

Theorem 3.1. Let n > t ≥ 0. Suppose a1, a2, . . . , am, b1, b2, . . . , bm ∈ {0, 1}n satisfy for all i ∈ [m],
dist(ai, bi) = t+ si for some si ≥ 1, and dist(ai, bj) + dist(aj , bi) ≤ 2t for all distinct i, j ∈ [m]. Then,

m∑
i=1

Vt+si,si

2t+si
≤ 1. (5)

In particular, f ′(t; {0, 1}) ≤ 2t+1 and f ′(t, s;X) ≤ 2t+s/Vt+s,s if si ≥ s for all i ∈ [m].
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Proof. Given Eq. (5), the derivation of the bounds for f ′(t; {0, 1}) and f ′(t, s; {0, 1}) is the same as
that in the proof of Theorem 2.3, so we omit it here.

We have to prove Eq. (5). For each i, denote Di := {k ∈ [n] : ai,k ̸= bi,k} and di := max(Di).
Then, |Di| = dist(ai, bi) = t+ si. Now, sample a string α, uniformly in {0, 1}n. For each i ∈ [m], let
Di(α) := {k ∈ Di : αk = ai,k}. Denote Ei to be the event that either |Di(α)| ≥ t+ si+1

2 , or |Di(α)| =
t + si

2 and di /∈ Di(α) (the latter happens only when si is even). In both cases, |Di(α)| ≥ t + si
2 . It

suffices to establish Claim 3.2 below because then, 1 ≥ Pr[E1∪· · ·∪Em] =
∑m

i=1 Pr[Ei] =
∑n

i=1
Vt+si,si

2t+si
,

using Eq. (1).

Claim 3.2. The events E1, E2, . . . , Em are pairwise disjoint.

Proof. Suppose for contradiction that Ei and Ej are not disjoint for some 1 ≤ i < j ≤ m. Let
α ∈ Ei ∩ Ej . For convenience, denote Dij := Di \Dj and Dji := Dj \Di. By the definition of Di, we
know that ai and bi are the same restricted to Dc

i while they are the opposite restricted to Di, i.e.
ai
∣∣
Dc
i
= bi

∣∣
Dc
i

and ai
∣∣
Di

= bi
∣∣
Di

(we use · for the opposite string of the same index set). Similarly,

aj
∣∣
Dc
j
= bj

∣∣
Dc
j

and aj
∣∣
Dj

= bj
∣∣
Dj

. As a consequence, coordinates among Dij ∪ Dji will contribute to

the distance dist(ai, bj) + dist(bi, aj). More precisely,

dist(ai
∣∣
Dij

, bj
∣∣
Dij

) + dist(bi
∣∣
Dij

, aj
∣∣
Dij

) = dist(bi
∣∣
Dij

, bj
∣∣
Dij

) + dist(bi
∣∣
Dij

, bj
∣∣
Dij

) = |Dij |, (6)

and similarly,
dist(ai

∣∣
Dji

, bj
∣∣
Dji

) + dist(bi
∣∣
Dji

, aj
∣∣
Dji

) = |Dji|. (7)

Write g := |Di ∩Dj |, and hence |Dij | = t+ si − g, |Dji| = t+ sj − g. Then, Eqs. (6) and (7) imply

dist(ai, bj) + dist(bi, aj)
≥ dist(ai

∣∣
Dij∪Dji

, bj
∣∣
Dij∪Dji

) + dist(bi
∣∣
Dij∪Dji

, aj
∣∣
Dij∪Dji

)

= dist(ai
∣∣
Dij

, bj
∣∣
Dij

) + dist(bi
∣∣
Dij

, aj
∣∣
Dij

) + dist(ai
∣∣
Dji

, bj
∣∣
Dji

) + dist(bi
∣∣
Dji

, aj
∣∣
Dji

)

= |Dij |+ |Dji| = 2t− 2g + si + sj .

(8)

By assumption, 2t ≥ 2t− 2g + si + sj , i.e. 2g ≥ si + sj .
The second step is to consider the contribution to dist(ai, bj)+dist(bi, aj) from k ∈ Di∩Dj . Denote

D := Di(α) ∩Dj(α) ⊆ Di ∩Dj . Observe that ai,k = aj,k = αk ̸= bi,k = bj,k for k ∈ D. So

dist(ai
∣∣
D
, bj
∣∣
D
) + dist(bi

∣∣
D
, aj
∣∣
D
) = 2|D|. (9)

We then lower bound |D|. Since α ∈ Ei ∩ Ej , |Di(α)| ≥ t + si
2 and |Dj(α)| ≥ t +

sj
2 . Writing

D′
i := Di(α) ∩ (Di ∩Dj) and D′

j := Dj(α) ∩ (Di ∩Dj), we know|D′
i| = |Di(α) ∩ (Di ∩Dj)| = |Di(α) \Dij | ≥ t+

si
2
− (t+ si − g) = g − si

2

|D′
j | = |Dj(α) ∩ (Di ∩Dj)| = |Dj(α) \Dji| ≥ t+

sj
2

− (t+ sj − g) = g − sj
2
,

(10)

and thus
|D| = |D′

i ∩D′
j | = |D′

i|+ |D′
j | − |D′

i ∪D′
j |

≥ |D′
i|+ |D′

j | − |Di ∩Dj | ≥ g − si
2
+ g − sj

2
− g = g − si + sj

2
.

(11)
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We note that the RHS of Eq. (11) is non-negative because 2g ≥ si+sj . Using Eqs. (6) to (9) and (11),

2t ≥ dist(ai, bj) + dist(bi, aj)
≥ dist(ai

∣∣
Dij∪Dji

, bj
∣∣
Dij∪Dji

) + dist(bi
∣∣
Dij∪Dji

, aj
∣∣
Dij∪Dji

) + dist(ai
∣∣
D
, bj
∣∣
D
) + dist(bi

∣∣
D
, aj
∣∣
D
)

≥ |Dij |+ |Dji|+ 2|D| = (t+ si − g) + (t+ sj − g) + 2g − (si + sj) = 2t.

This being an equality implies, in particular, Eq. (11) is an equality, so Eq. (10) is also an equality.
The former means D′

i∪D′
j = Di∩Dj while the latter means Dij ⊆ Di(α), Dji ⊆ Dj(α) and |Di(α)| =

t+ si
2 , |Dj(α)| = t+

sj
2 . By the definition of Ei and Ej , di /∈ Di(α) and dj /∈ Dj(α), and thus, di /∈ D′

i

and dj /∈ D′
j . Also, as Dij ⊆ Di(α) and Dji ⊆ Dj(α), it must be that di, dj ∈ Di ∩Dj . Recall that

di = max(Di) and dj = max(Dj). This means di = dj = max(Di∩Dj). However, as discussed before,
di = dj /∈ D′

i ∪D′
j . This contradicts that D′

i ∪D′
j = Di ∩Dj . Therefore, Ei and Ej must be disjoint

for all 1 ≤ i < j ≤ m. ■

■

Next, we discuss the tightness of Theorems 2.3 and 3.1. For 1 ≤ d ≤ n, an (n, d) error correcting
code (ECC) is a collection of binary strings (codewords) of length n with all pairwise distances at
least d. Write A(n, d) for the maximum possible size of such a collection. Taking n = t+ s, ai to be
any one of the codewords and bi = ai, it is easy to see that f ′(t, s, {0, 1}) ≥ A(t+ s, s). As discussed
in the Introduction, the upper bound f ′(t, s; {0, 1}) ≤ 2t+s

Vt+s,s
is the Hamming bound for ECC when s

is odd. Thus, we can use perfect codes (ECCs that match the Hamming bound) and their extensions
(add a parity bit so that the length and the distance increases by one while the number of codewords
stays the same) to show our bound on f ′(t, s, {0, 1}) is tight, (and the same also holds for f(t, s,X)).
More precisely,

• f ′(t, s, {0, 1} = 2t+1 for s ∈ {1, 2}. We can take the trivial ECC, all the binary strings of length
t + 1. There are 2t+1 of them and all pairwise distances are at least 1. So, f ′(t, 1, {0, 1}) =

A(t+1, 1) = 2t+1. Adding a parity bit to all these strings, the pairwise distances are at least 2.
So, f ′(t, 2, {0, 1}) = A(t+ 2, 2) = 2t+1.

• f ′(t, s, {0, 1} = 2t+3

t+4 when s ∈ {3, 4} and t + 4 is a power of 2. When t + 4 is a power of 2, we
take the Hamming code: 2t+3

t+4 binary strings of length t + 3 and pairwise distances at least 3.
This shows that f ′(t, 3, {0, 1} = A(t+ 3, 3) = 2t+3

t+4 . Adding a parity bit to all these strings, the
pairwise distances are at least 4. So, f ′(t, 4, {0, 1}) = A(t+ 4, 4) = 2t+3

t+4 .

• f ′(16, 7; {0, 1}) = f ′(16, 8; {0, 1}) = 2048. Here, we take the Golay code [Gol49]: 2048 binary
strings of length 23 whose pairwise distances are at least 7. This, as wells as its extension,
implies f ′(16, 7; {0, 1}) = f ′(16, 8; {0, 1}) = 2048.

Besides the perfect codes, we can take the Bose–Chaudhuri–Hocquenghem codes (BCH codes) [Hoc59,
BRC60]. These are Ω(2t+s/(t+ s)s) binary strings of length t + s and pairwise distances at least s

whenever s is odd. Based on the former discussion, this, and its extension, demonstrate that for every
fixed s, f(t, s;X) = Θs(2

t+s/Vt+s,s) and f ′(t, s;X) = Θs(2
t+s/Vt+s,s).

We note that our probabilistic proof relies crucially on the fact that each coordinate is either 0 or
1. A similar proof by sampling α ∈ Xn appropriately works for general Xs but only gives an upper
bound of |X|t+1. This is not merely a coincidence: when |X| ∈ {3, 4}, unlike f(t;X) = 2t+1, we can
prove that f ′(t;X) = Θ(3t).
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Theorem 3.3. 3t ≤ f ′(t;X) ≤ 3t+1 for every t ≥ 0 and every X of size 3 or 4.

Proof. For the lower bound, we assume {0, 1, 2} ⊂ X. Define φ : {0, 1, 2} → {0, 1, 2} by φ(0) =

1, φ(1) = 2 and φ(2) = 0. Let a1, a2, . . . , am be an enumeration of s ∈ {0, 1, 2}t+1 such that
∑t+1

k=1 sk
is a multiple of 3. Since, for every choice of s1, . . . , st there is a unique st+1 such that

∑t+1
k=1 sk is a

multiple of 3, we have that m = 3t. For each i ∈ [m], define bi ∈ {0, 1, 2}t+1 by bi,k = φ(ai,k) for all
k ∈ [t+ 1]. Clearly dist(ai, bi) = t+ 1 for all i ∈ [m], and for any i ̸= j, it holds that

dist(ai, bj) + dist(aj , bi) = |{1 ≤ k ≤ t+ 1 : ai,k ̸= φ(aj,k)}|+ |{1 ≤ k ≤ t+ 1 : φ(ai,k) ̸= aj,k}|
= t+ 1 + {k : ai,k = aj,k}.

Since
∑t+1

k=1 ai,k and
∑t+1

k=1 aj,k are both multiples of 3, ai and aj can share at most t+ 1− 2 = t− 1

bits. Therefore, dist(ai, bj) + dist(aj , bi) ≤ t+ 1 + t− 1 = 2t. This shows that f ′(t;X) ≥ 3t.
We now prove the upper bound. Suppose n > t and a1, a2, . . . , am, b1, b2 . . . , bm ∈ Xn with

dist(ai, bi) ≥ t + 1 for i ∈ [m] and dist(ai, bj) + dist(aj , bi) ≤ 2t for i ̸= j. For 1 ≤ k ≤ n, inde-
pendently and uniformly sample a 2-element subset Xk of X. For each i ∈ [m], define a′i ∈ {0, 1}n
by a′i,k := 1 iff ai,k ∈ Xi for all k ∈ [n], and b′i ∈ {0, 1}n by b′i,k := 1 iff bi,k ∈ Xi for all k ∈ [n].
Denote I := {i ∈ [m] : dist(a′i, b

′
i) ≥ t + 1}. Using |X| ∈ {3, 4}, it holds that Pr[a′i,k ̸= b′i,k] =

2
(|X|−2

1

)
/
(|X|

2

)
= 2

3 whenever ai,k ̸= bi,k. So, Pr[i ∈ I] ≥
(
2
3

)t+1, and hence, E|I| ≥ m
(
2
3

)t+1. Observe
also that dist(a′i, b

′
j) ≤ dist(ai, bj) ≤ t for any distinct i, j ∈ I, which means |I| ≤ f ′(t; {0, 1}) ≤ 2t+1.

Therefore, m(23)
t+1 ≤ E|I| ≤ 2t+1, i.e. m ≤ 3t+1. ■

We remark that for general X, the same argument (by sampling Xk ∈
(

X
⌊|X|/2⌋

)
instead) shows

3t ≤ f ′(n, t,X) ≤
(

|X|(|X|−1)
⌊|X|/2⌋⌈|X|/2⌉

)t+1
. We do not know which of these bounds is closer to the truth.

3.1 A set-pair result

As mentioned in the Introduction, Füredi [Für84] proved that if A1, A2, . . . , Am are sets of size a

and B1, B2, . . . , Bm are sets of size b such that |Ai ∩ Bi| ≤ k for i ∈ [m] and |Ai ∩ Bj | > k for
distinct i, j ∈ [m], then m ≤

(
a+b−2k
a−k

)
, and this is tight. In the same paper, he raised the question of

understanding the largest possible size of a family (Ai, Bi)
m
i=1 such that |Ai| = a, |Bi| = b, |Ai∩Bi| ≤ ℓ

for all i ∈ [m] and |Ai ∩ Bj | > k, (where k ≥ ℓ are given) for all distinct i, j ∈ [m]. His result shows
that this maximum is exactly

(
a+b−2ℓ
a−ℓ

)
in case k = ℓ. For the general case, Zhu [Zhu95] showed the

answer is at most min(
(
a+b−2ℓ
a−k

)
/
(
a−ℓ
k−ℓ

)
,
(
a+b−2ℓ
b−k

)
/
(
b−ℓ
k−ℓ

)
), and this is tight if there is a collection A of

subsets of U := [a+b−2ℓ], each with size a−ℓ, such that every subset of U with size a−k is contained
in exactly one of A, or there is a collection B of subsets of U with size b − ℓ, such that every subset
of U with size b − k is contained in exactly one of B. These collections are called designs or Steiner
systems and exist when a − ℓ is sufficiently larger than b − ℓ or b − ℓ is sufficiently larger than a − ℓ

provided the appropriate divisibility conditions hold; see [Kee14, GKLO23].

We note that with a slight change of his argument, we can show the answer is at most
( a+b−2ℓ
a−ℓ−x+y)
(a−ℓ

x )(b−ℓ
y )

for every x, y ≥ 0 with x + y = k − ℓ. This is exp(O(k − ℓ)) better than his original bound if, say,
a− ℓ = b− ℓ ≫ k − ℓ. Indeed, by the general position and the dimension reduction arguments, used
in [Für84, Zhu95], we can essentially assume ℓ = 0 (with a− ℓ, b− ℓ, k − ℓ replacing a, b, k). For each
i ∈ [m], we build

(
a
x

)(
b
y

)
pairs of sets based on (Ai, Bi) by shifting, in all possible ways, a subset X

of x elements of Ai from Ai to Bi, and a subset Y of y elements of Bi from Bi to Ai. This gives
m
(
a
x

)(
b
y

)
pairs (AX,Y

i , BX,Y

i ) with |AX,Y

i | = a − x + y, |BX,Y

i | = b − y + x,AX,Y

i ∩ BX,Y

i = ∅. We also
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have |AX,Y

i ∩BX′,Y ′

i | > 0 if X ̸= X ′ and |AX,Y

i ∩BX′,Y ′

j | > 0 if i ̸= j, since |X| ≤ k− |Y ′| = |X ′|. Now,
we can apply the result of Bollobás [Bol65] to conclude that m

(
a
x

)(
b
y

)
≤
(

a+b
a−x+y

)
, as desired.

Moreover, Theorem 3.1 gives the following variation of Füredi’s question where instead of |Ai| =
a, |Bi| = b, we only require |Ai|+ |Bi| = s.

Theorem 3.4. Let s > k ≥ ℓ ≥ 0 and m ≥ 0. Suppose A1, A2, . . . , Am, B1, B2, . . . , Bm are sets such
that |Ai|+ |Bi| = s for all i ∈ [m], |Ai ∩ Bi| ≤ ℓ for all i ∈ [m] and |Ai ∩ Bj |+ |Aj ∩ Bi| ≥ 2(k + 1)

for all 1 ≤ i < j ≤ m. Then, m ≤ f ′(s− 2(k + 1), 2(k + 1)− 2ℓ; {0, 1}) ≤ 2s−2ℓ−1∑k−ℓ
i=0 (

s−2ℓ−1
i )

.

Proof. Suppose all sets are subsets of [n] for some n ∈ N. For 1 ≤ i ≤ m, let ai ∈ {0, 1}n be the
indicator vector of Ai, i.e. ai,k = 1 iff k ∈ Ai; similarly, let bi ∈ {0, 1}n be that of Bi. Then, for i ̸= j,{

dist(ai, bi) = |Ai|+ |Bi| − 2|Ai ∩Bi| ≥ s− 2ℓ,

dist(ai, bj) + dist(aj , bi) = |Ai|+ |Bj | − 2|Ai ∩Bj |+ |Aj |+ |Bi| − 2|Aj ∩Bi| ≤ 2s− 4(k + 1).

So,

m ≤ f ′(s− 2(k + 1), 2(k + 1)− 2ℓ; {0, 1}) ≤ 2s−2ℓ

Vs−2ℓ,2(k+1)−2ℓ
=

2s−2ℓ−1

Vs−2ℓ−1,2(k+1)−2ℓ−1
=

2s−2ℓ−1∑k−ℓ
i=0

(
s−2ℓ−1

i

) .
■

Note that this bound is close to being tight when s−2ℓ ≫ k− ℓ. In this case, we can take the BCH
code of length s − 2ℓ − 1 and pairwise distances at least 2k − 2ℓ + 1. Appending to each codeword
a parity bit, we get Ω(2s−2ℓ/(s − 2ℓ)k−ℓ) binary strings of length s − 2ℓ and pairwise distances at
least 2k − 2ℓ+ 2. Now, take Ai ⊆ [s− 2ℓ] to be the set corresponding to each codeword joined with
{−1,−2, . . . ,−ℓ} and Bi := ([s− 2ℓ] \Ai)∪ {−1,−2, . . . ,−ℓ}. Then, |Ai|+ |Bi| = s, |Ai ∩Bi| = ℓ for
i ∈ [m] and |Ai ∩Bj |+ |Aj ∩Bi| ≥ 2ℓ+ 2(k − ℓ+ 1) = 2k + 2 for i ̸= j, forming the desired family.

4 Related questions

4.1 Fractional-Helly-type and (p, q)-type problems for Hamming balls

In this section, we establish fractional-Helly and (p, q) theorems for Hamming balls. For both of them,
when X is finite, we need only the information about pairs of Hamming balls, and that of (t+2)-tuples
of Hamming balls when X is infinite. Notably, both constants 2 and t + 2 are optimal. This is in
strong contrast with the bounds that can be obtained, using the general results [AKMM02, HL21],
which make use of the Radon number r(CH) = 2t+1 + 1. These results would imply fractional-Helly
and (p, q) theorems for Hamming balls where one requires the information abut ℓ-tuples for ℓ > 2t+1.

We say a point hits a Hamming ball if the ball contains the point and a set of points hits a collection
of Hamming balls if every ball contains some point in the set.

Theorem 4.1. Let m ≥ 1, n > t ≥ 0, X be any nonempty set and B1, . . . , Bm be Hamming balls of
radius t centered at a1, . . . , am ∈ Xn, respectively.

(1) If X is finite and, for some α > 12
m , at least α

(
m
2

)
(unordered) pairs of the Hamming balls intersect,

then some point in Xn hits an Ω
(
α2|X|−t

/(
4t
t

))
fraction of the balls.
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(2) If, for some α > 0, at least α
(

m
t+2

)
unordered (t+2)-tuples (where tuples have distinct entries) of

the Hamming balls intersect, then some point in Xn hits an Ω(α/(e(t + 1))t+1) fraction of the
balls.

Theorem 4.2. Let m ≥ 1, n > t ≥ 0, p ≥ q ≥ 2, and X be a nonempty set. Let B1, B2, . . . , Bm be
Hamming balls of radius t centered at a1, a2, . . . , am ∈ Xn, respectively, where out of any p balls, q of
them intersect.

• If |X| < ∞ and q ≤ t + 1, then there exist pqqt|X|t+2−q2O(t) points in Xn hitting all these
Hamming balls;

• if q = t+ 2, then there exist O(e2tpt+1) points in Xn hitting all these Hamming balls.

Remark. Suppose B1, B2, . . . , Bm are Hamming balls of radius t. If every t + 2 of them intersect,
then there exist Ot(1) points in Xn hitting all of them (by Theorem 4.2). On the other hand the
number t+ 2 cannot be replaced by t+ 1, as can be seen by taking n = t+ 1 and an infinite X. But
if any 2t+1 of them intersect, then all of them intersect (Theorem 1.1). This behavior differs from the
setting of Helly’s theorem, where a family of convex sets in Rd is considered: if every d + 1 of them
intersect, then all intersect, but even if every d of them intersect, there still can be no finite bound for
the minimum number of points required to hit all of them.

We first give a simple proof for Theorem 4.1(1). To this end, we need the following lemma whose
proof is delayed.

Lemma 4.3. Let n > t ≥ δ ≥ 0, X be a finite nonempty set, and a, b ∈ Xn. Then, there is a set of(
4t−δ
t−δ

)
|X|t−δ points in Xn hitting all the Hamming balls B(p, t) with dist(a, p) ≤ min(dist(a, b), 2t− δ)

and dist(b, p) ≤ 2t.

We remark that when t = δ, we do not require |X| < ∞ because then, all B(p, t)s under consider-
ation contains a.

Proof for Theorem 4.1(1). We may assume m ≥ 12 as otherwise α > 1. Construct a graph G with
vertex set V (G) = [m] where i and j are adjacent if Bi and Bj intersect, i.e. dist(ai, aj) ≤ 2t. Starting
from G, by iteratively deleting vertices of degree smaller than α(m − 1)/2 as long as there are such
vertices, we arrive at an induced subgraph G′ of G. By assumption, e(G) ≥ α

(
m
2

)
= m · α(m− 1)/2.

This means G′ is not empty and hence, the minimum degree of G′ is at least α(m−1)/2 ≥ αm/3 (using
m ≥ 12). Fix any vertex u ∈ V (G′). The number of paths uvw in G′ is at least αm/3 · (αm/3− 1) ≥
α2m2/12, using α ≥ 12/m.

An (ordered) triple of distinct vertices (x, y, z) ∈ V (G′)3 is said to be good if dist(ax, az) ≤
min(dist(ax, ay), 2t) and dist(ay, az) ≤ 2t. Observe that for any path uvw in G,

• if uw /∈ E(G), then dist(av, aw) > 2t and dist(au, av) ≤ 2t < dist(au, aw), so (u,w, v) is good;

• if uw ∈ E(G), then dist(av, aw) ≤ 2t, dist(au, av) ≤ dist(au, aw) ≤ 2t (so (u,w, v) is good) or
dist(av, aw) ≤ 2t, dist(au, aw) ≤ dist(au, av) ≤ 2t (so (u, v, w) is good).

Enumerating over all paths of length 2, there are at least α2m2/24 good triples (u, v, w), where u is
fixed (as each good triple is counted at most twice). By the pigeonhole principle, there exist u, v ∈ [m]

and W ⊆ [m] such that |W | ≥ α2m/24 and (u, v, w) is good for all w ∈ W . Then, Lemma 4.3 with
δ = 0, a = au, b = av, p = aw guarantees

(
4t
t

)
|X|t points in Xn hitting every Bw, w ∈ W . Therefore,

some point among these
(
4t
t

)
|X|t points hits at least α2m

24(4tt )|X|t = Ω(α2m|X|−t
/(

4t
t

)
) balls. ■
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We now provide the following definitions that are useful in the proof of Theorem 4.1(1) and of
Theorem 4.2.

Definition 4.4. Let m ≥ 0, n > t ≥ 0, let X be a nonempty set, and a1, . . . , am ∈ Xn. Define
φ(a1, a2, . . . , am; t) to be the largest size of K ⊆ [n] such that for some w ∈ Xn, dist(w

∣∣
Kc , ai

∣∣
Kc) +

|K| ≤ t for all i ∈ [m]. Define φ(a1, a2, . . . , am; t) := −∞ if no such K exists.

This definition says that, without looking at the coordinates indexed by k ∈ K, there exists some
point lying in all the Hamming balls of radius t − |K| centered at ai, 1 ≤ i ≤ m. In other words,
we can freely choose the coordinates in K for w while maintaining that w ∈

⋂m
i=1B(ai, t). We note

that φ(a1, . . . , am+1; t) ≤ φ(a1, . . . , am; t) ≤ t, φ(a1; t) = t and φ(a1, . . . , am; t) ≥ 0 if and only if⋂m
i=1B(pi, t) ̸= ∅. In addition, we can assume that wk ∈ {a1,k, a2,k, . . . , am,k} for all k ∈ [n] \ K

because otherwise, we should have considered K ′ := K ∪{k}. This motivates the following definition.

Definition 4.5. Let m ≥ 0, n > t ≥ 0, let X be a nonempty set, and a1, . . . , am ∈ Xn. Define
W (a1, a2, . . . , am; t) to be the set of w ∈

⋂m
i=1B(ai, t) where wk ∈ {a1,k, a2,k, . . . , am,k} for all k ∈ [n].

When it is clear from the context, we omit t in φ(·) and W (·). The following crucial property,
whose proof is delayed, shows how to use φ(·) in order to find a “small” set hitting the Hamming balls.

Lemma 4.6. Let m ≥ 1, n > t ≥ 0, let X be any nonempty set, and a1, . . . , am ∈ Xn.

(1) |W (a1, a2 . . . , am)| ≤ (em)t;

(2) W (a1, a2 . . . , am) hits B(a, t) for any a ∈ Xn with φ(a1, a2, . . . , am, a) = φ(a1, a2, . . . , am) ≥ 0.

Now, we can prove Theorem 4.1(2) and Theorem 4.2.

Proof of Theorem 4.1(2). We may assume m ≥ 2t without loss of generality. An unordered tuple
(i1, i2, . . . , it+2) ∈

(
[m]
t+2

)
is said to be good if Bi1 , Bi2 , . . . , Bit+2 intersect. Find the largest ℓ ∈ [t + 1]

such that there exists (distinct) i1, i2 . . . , iℓ ∈ [m] with the following properties.

• 0 ≤ φ(ai1 , ai2 , . . . , aij ) < φ(ai1 , ai2 , . . . , aij−1) for 2 ≤ j ≤ ℓ;

• there are at least t+3−ℓ
t+2 α

(
m−ℓ
t+2−ℓ

)
good tuples containing i1, . . . , iℓ.

We first note that ℓ is well-defined because when ℓ = 1, the pigeonhole principle implies that some i1 ∈
[m] lies in at least α

(
m
t+2

)
· t+2

m = α
(
m−1
t+1

)
good tuples. Now, let I be the set of iℓ+1 ∈ [m]\{i1, i2, . . . , iℓ}

such that at least t+2−ℓ
t+2 α

(
m−ℓ−1
t+1−ℓ

)
good tuples contain i1, i2, . . . , iℓ+1. Let Z be the count of the number

of good tuples containing i1, i2, . . . , iℓ along with one entry other than i1, i2, . . . , iℓ. It holds that

t+ 3− ℓ

t+ 2
α

(
m− ℓ

t+ 2− ℓ

)
· (t+ 2− ℓ) ≤ Z ≤ |I|

(
m− ℓ− 1

t+ 1− ℓ

)
+ (m− ℓ− |I|) t+ 2− ℓ

t+ 2
α

(
m− ℓ− 1

t+ 1− ℓ

)
≤ |I|

(
m− ℓ− 1

t+ 1− ℓ

)
+

t+ 2− ℓ

t+ 2
α

(
m− ℓ

t+ 2− ℓ

)
(t+ 2− ℓ),

implying |I| ≥ α
t+2

(
m−ℓ
t+2−ℓ

)
(t + 2 − ℓ)

/(
m−ℓ−1
t+1−ℓ

)
= α

t+2(m − ℓ). We claim that φ(ai1 , ai2 , . . . , aiℓ) =

φ(ai1 , ai2 , . . . , aiℓ+1
) for all iℓ+1 ∈ I. Indeed, if ℓ = t+ 1, then

φ(ai1 , ai2 , . . . , aiℓ) ≤ φ(ai1 , ai2 , . . . , aiℓ−1
)− 1 ≤ · · · ≤ φ(ai1)− (ℓ− 1) = φ(ai1)− t = 0,
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so 0 ≤ φ(ai1 , ai2 , . . . , aiℓ+1
) ≤ φ(ai1 , ai2 , . . . , aiℓ) = 0. On the other hand, if ℓ < t+ 1, then the claim

holds due to the maximality of ℓ (otherwise i1, i2, . . . , it+1 is a longer sequence). Now, Lemma 4.6
guarantees a set of at most (eℓ)t points in Xn hitting every Biℓ+1

, iℓ+1 ∈ I. By the pigeonhole
principle, some point in Xn hits at least |I|/(eℓ)t ≥ α(m−ℓ)

(t+2)(eℓ)t = Ω(αm/(e(t+ 1))t+1) of the Hamming
balls, (here, we used that m ≥ 2t). ■

Proof of Theorem 4.2. Write A := {a1, a2, . . . , am}. Recall that given any x1, x2, . . . , xk ∈ A,
φ(x1, x2, . . . , xk) ≥ 0 if and only if

⋂k
i=1B(xi, t) ̸= ∅. Find the largest ℓ ≥ 1 such that there exist

x1, x2, . . . , xℓ ∈ A with the following properties.

(i) For every 1 ≤ i1 < i2 < · · · < iq ≤ ℓ, it holds that
⋂q

j=1B(xij , t) = ∅;

(ii) for every 2 ≤ k < q and 1 ≤ i1 < i2 < · · · < ik ≤ ℓ with
⋂k−1

j=1 B(xij , t) ̸= ∅, it holds that
φ(xi1 , xi2 , . . . , xik) < φ(xi1 , xi2 , . . . , xik−1

).

We first note that ℓ is well-defined as one can take ℓ = 1, x1 = a1. In addition, by our assumption,
out of any p Hammings balls among B1, B2, . . . , Bm, q of them intersect, so ℓ ≤ p− 1. Fix any a ∈ A.
The maximality of ℓ implies that φ(xi1 , xi2 , . . . , xiq−1 , a) ≥ 0 for some 1 ≤ i1 < i2 < · · · < iq−1 ≤ ℓ or
0 ≤ φ(xi1 , xi2 , . . . , xik , a) = φ(xi1 , xi2 , . . . , xik) for some 1 ≤ k < q − 1 and 1 ≤ i1 < i2 < · · · < ik ≤ ℓ.
As a consequence, one of the following must hold.

(1) 0 ≤ φ(xi1 , xi2 , . . . , xik , a) = φ(xi1 , xi2 , . . . , xik) for some 1 ≤ k < q, 1 ≤ i1 < i2 < · · · < ik ≤ ℓ;

(2) 0 ≤ φ(xi1 , xi2 , . . . , xiq−1 , a) < φ(xi1 , xi2 , . . . , xiq−1) for some 1 ≤ i1 < i2 < · · · < iq−1 ≤ ℓ.

We deal with a ∈ A satisfying (1) and (2) separately. For every ∅ ≠ J ⊆ [ℓ] of size at most q − 1,
let WJ := W (xij : j ∈ J) (see Definition 4.5). By Lemma 4.6, |WJ | ≤ (e|J |)t ≤ (

(
e(q − 1)

)t and WJ

hits B(a, t) whenever a ∈ A fulfills (1) with J = {i1, i2, . . . , ik}. Taking the union of all these WJs,
W :=

⋃
J WJ satisfies |W | ≤

(
p−1
<q

)(
e(q − 1)

)t ≤ ( p
<q

)(
e(q − 1)

)t and W hits B(a, t) whenever a ∈ A

fulfills (1).
Now, suppose J = {i1 < i2 < · · · < iq−1} ⊆ [ℓ]. Consider AJ , the set of all a ∈ A satisfying (2)

with i1, i2, . . . , iq−1. We will propose a set YJ ⊆ Xn that hits every B(a, t), a ∈ AJ . To this end, we
may assume φ(xi1 , xi2 , . . . , xiq−1) ≥ 0 as otherwise AJ = ∅. We also need the following estimate.

Claim 4.7. For every a ∈ A, dist(a,WJ) := minw∈WJ
dist(a,w) ≤ 2t+ 2− q.

Proof. Since φ(xi1 , xi2 , . . . , xiq−1 , a) ≥ 0, there exists w ∈ B(a, t) ∩
⋂q−1

j=1 B(xij , t), i.e. dist(w, a) ≤ t

and dist(w, xij ) ≤ t for all j ∈ [q−1]. Let K be the set of k ∈ [n] such that wk /∈ {xi1,k, xi2,k . . . , xiq−1,k}.
Then, dist(w

∣∣
Kc , xij

∣∣
Kc) + |K| = dist(w, xij ) ≤ t for all j ∈ [q − 1]. Using (ii) and Definition 4.4, we

acquire
|K| ≤ φ(xi1 , xi2 , . . . , xiq−1) ≤ φ(xi1 , xi2 , . . . , xiq−2)− 1 ≤ · · · ≤ t+ 2− q.

Now, pick w′ ∈ Xn where w′
k = wk for k ∈ Kc and w′

k = xi1,k for k ∈ K. It satisfies that w′
k ∈

{xi1,k, xi2,k, . . . , xiq−1,k} for all k ∈ [n] and dist(w′, xij ) ≤ dist(w′∣∣
Kc , xij

∣∣
Kc)+|K| = dist(w

∣∣
Kc , xij

∣∣
Kc)+

|K| = dist(w, xij ) ≤ t for all j ∈ [q − 1]. In other words, w′ ∈
⋂q−1

j=1 B(xij , t) and hence, w′ ∈ WJ . So,
dist(a,WJ) ≤ dist(a,w′) ≤ dist(a,w) + dist(w,w′) ≤ t+ |K| ≤ 2t+ 2− q. ■

Next, we generate xJ,1, xJ,2, . . . , xJ,kJ ∈ AJ as follows. Pick any xJ,1 ∈ AJ ; having picked
xJ,1, xJ,2, . . . , xJ,k for some k ≥ 1, if there exists a ∈ AJ with dist(a, xJ,i) > 2t for all i ∈ [k], pick xJ,k+1

to be such a that maximizes dist(a,WJ). Clearly, among B(xJ,1, t), B(xJ,2, t), . . . , B(xJ,kJ , t), no two
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balls intersect, so kJ < p. For every w ∈ WJ and every 1 ≤ k ≤ kJ , let Yw,k be the set of points given
by Lemma 4.3 (plugging a := w, b := xJ,k and δ = q−2); so |Yw,k| ≤

(
4t+2−q
t+2−q

)
|X|t+2−q. We claim that

YJ :=
⋃

w∈WJ ,k∈[kJ ] Yw,k hits every B(a, t), a ∈ AJ . To this end, fix an arbitrary a ∈ AJ . According to
the generation of xJ,1, xJ,2, . . . , xJ,kJ , there exists ka ∈ [kJ ] such that dist(a, xJ,ka) ≤ 2t. We may take
the minimum such ka. Thus,dist(a, xJ,k) > 2t for all 1 ≤ k < ka. But then, the procedure (in step
ka) also implies dist(a,WJ) ≤ dist(xJ,ka ,WJ). Taking w ∈ WJ such that dist(a,WJ) = dist(a,w),
we acquire dist(a,w) = dist(a,WJ) ≤ dist(xJ,ka ,WJ) ≤ dist(xJ,ka , w). Recall from Claim 4.7 that
dist(a,w) = dist(a,WJ) ≤ 2t + 2 − q. Altogether, dist(w, a) ≤ min(dist(w, xJ,ka), 2t + 2 − q) and
dist(a, xJ,ka) ≤ 2t. By Lemma 4.3, Yw,t hits B(a, t) and hence, YJ hits B(a, t). In addition,

|YJ | ≤
∑

w∈WJ ,k∈[kJ ]

|Yw,k| < |WJ |kJ
(
4t+ 2− q

t+ 2− q

)
|X|t+2−q ≤ (eq)tp2O(t)|X|t+2−q ≤ qtp2O(t)|X|t+2−q.

To complete the proof, we consider two cases. If q = t+ 2, note that all a ∈ A satisfy (1). Indeed,
a ∈ A satisfying (2) is not possible, since then (2) and (ii) imply

0 ≤ φ(xi1 , xi2 , . . . , xiq−1 , a) ≤ φ(xi1 , xi2 , . . . , xiq−1)− 1 ≤ φ(xi1 , xi2 , . . . , xiq−2)− 2 ≤ · · ·
≤ φ(xi1)− (q − 1) = t− (q − 1) = −1.

In other words, a1, a2, . . . , am all satisfy (1). By the former discussion, W hits every Bi, i ∈ [m],
where

|W | ≤
(

p

≤ t+ 1

)
(e(t+ 1))t = O

((
ep

(t+ 1)

)t+1

(e(t+ 1))t

)
= O(e2tpt+1).

If 2 ≤ q ≤ t + 1. Either a ∈ A satisfies (1), so W hits B(a, t), or a ∈ A satisfies (2), so YJ hits
B(a, t) for some J ⊆ [ℓ] of size q − 1. Thus, Y := W ∪

⋃
J YJ is the desired set, whose size

|Y | ≤
(

p

< q

)(
e(q − 1)

)t
+

(
p

q − 1

)
qtp2O(t)|X|t+2−q = pqqt|X|t+2−q2O(t).

■

Proof of Lemma 4.3. Write P := {p ∈ Xn : dist(a, p) ≤ min(dist(a, b), 2t− δ), dist(b, p) ≤ 2t}. We
may assume that P ̸= ∅ and that dist(a, b) > t as otherwise every B(p, t), p ∈ P , contains a. By
taking any p ∈ P , we know dist(a, b) ≤ dist(a, p) + dist(p, b) ≤ 4t− δ. Write D := {k ∈ [n] : ak ̸= bk},
so |D| = dist(a, b) ≤ 4t− δ. Let Y be the set of all y ∈ Xn such that {k : yk ̸= ak} is a subset of D of
size at most t− δ; |Y | ≤

(
4t−δ
t−δ

)
|X|t−δ. We prove that Y has the desired property. To this end, fix any

p ∈ P , and we will find some y ∈ Y hitting B(p, t). Writing Dp := {k ∈ [n] : ak ̸= pk}, it holds that
|Dp| = dist(a, p) ≤ min(|D|, 2t − δ) ≤ |D|, thereby |D△Dp| ≥ 2|Dp \D|. Now, observe that bk ̸= pk
for all k ∈ D△Dp. We then acquire 2|Dp \D| ≤ |D△Dp| ≤ dist(b, p) ≤ 2t, i.e. |Dp \D| ≤ t. Now,
take any I ⊆ Dp ∩D of size min(|Dp ∩D|, t− δ)) and y ∈ Xn such that yk = ak for all k ∈ [n] \ I and
yk = pk for all k ∈ I. We know y ∈ Y (because |I| ≤ t − δ) and dist(y, p) = |Dp \ I| ≤ t. Indeed, if
|I| = t− δ it holds because |Dp| ≤ 2t− δ, otherwise |I| = |Dp ∩D| and hence |Dp \ I| = |Dp \D| ≤ t.
In other words, y ∈ Y hits B(p, t), completing the proof. ■

Proof of Lemma 4.6. Write W := W (a1, a2, . . . , am). For (1), we may assume W ̸= ∅ and m ≥ 2

because W = {a1} when m = 1. For each k ∈ [n], denote Vk := {a1,k, a2,k, . . . , am,k}. Consider∑m
i=1 dist(ai, w̃) for an arbitrary w̃ ∈ W , which counts pairs (i, k) ∈ [m] × [n] where ai,k ̸= w̃k.

For each k ∈ [n], there are at least |Vk| − 1 indices i ∈ [m] with ai,k ̸= wk, so
∑n

k=1(|Vk| − 1) ≤
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∑m
i=1 dist(ai, w̃) ≤ mt. Now, observe that any w ∈ W has that wk ̸= a1,k for at most t of k ∈ [n].

Thus, we can enumerate over set of these indices k, which we denote by S ⊆ [n], and for each such
k ∈ S, there are |Vk| − 1 choices for wk, i.e.

|W | ≤
∑

S⊆[n],|S|≤t

∏
k∈S

(|Vk| − 1) ≤
t∑

s=0

1

s!

(
n∑

k=1

(|Vk| − 1)

)s

≤
t∑

s=0

(mt)s

s!
≤ 2

(mt)t

t!
≤ (em)t.

Here, we used the Stirling’s approximation t! ≥ 2(t/e)t for t ≥ 1.
For (2), let K ⊆ [n], w ∈ Xn be the set and vector in the definition of φ(a1, a2, . . . , am, a). Putting

wk = a1,k for all k ∈ K, we have dist(a,w) ≤ t and dist(ai, w) ≤ t for all i ∈ [m]. It suffices to
show that w ∈ W . Suppose not, i.e. wk /∈ {a1,k, a2,k, . . . , am,k} for some k ∈ [n]. Clearly, k /∈ K.
Putting L := K ∪ {k}, it holds that dist(w

∣∣
Lc , ai

∣∣
Lc) + |L| = dist(w

∣∣
Kc , ai

∣∣
Kc)− 1 + |K|+ 1 ≤ t for all

1 ≤ i ≤ m. This means φ(a1, a2, . . . , am) ≥ |L| > φ(a1, a2, . . . , am, a), contradicting our assumption.
Thus, w ∈ W ∩B(a, t), as desired. ■

4.2 Sequences of sets

One way to generalize Theorem 1.5 is to consider sequences of sets. More precisely, given n > t ≥ 0,
a, b ≥ 1 and a set X with |X| ≥ a+ b, an (n, t, a, b,X)-system is a collection of pairs (Ai, Bi)i∈[m] (for
some m) such that for each i, Ai = (Ai,1, Ai2 , . . . , Ai,n) (similarly, Bi = (Bi,1, Bi2 , . . . , Bi,n)) where
each Ai,k is a subset of X of size at most a (similarly, each Bi,k is a subset of X of size at most b).
Define the distance dist(Ai, Bj) to be the number of k ∈ [n] such that Ai,k ∩ Bj,k = ∅. Then, we can
extend f(t;X) by denoting f(n, t, a, b;X) to be the size of the largest (n, t, a, b,X)-system such that
dist(Ai, Bj) ≥ t + 1 if and only if i = j. One can check that Theorem 2.3 corresponds to the case
a = b = 1 by replacing each entry of ais and bis by a singleton containing it. The first author [Alo85]
proved that f(t+1, t, a, b;X) =

(
a+b
a

)t+1
and Theorem 1.5 implies f(n, t, 1, 1;X) = 2t+1. One natural

guess might be that f(n, t, a, b;X) =
(
a+b
a

)t+1
for all n > t ≥ 0. In particular, this would mean that

f(n, t, a, b;X) is independent of n. However, this is not the case whenever a > 1 or b > 1.

Proposition 4.8.
(

n
t+1

) ((
a+b
b

)
− 2
)t+1

≤ f(n, t, a, b;X) ≤
(

n
t+1

)(
a+b
b

)t+1
if n > t ≥ 0 and |X| ≥ a+ b.

Proof. For the upper bound, suppose (Ai, Bi)i∈[m] is an (n, t, a, b,X)-system realizing f(n, t, a, b;X).
Uniformly sample a subset S ⊆ [n] of size t + 1 and consider the following (t + 1, t, a, b,X)-system:
for each i ∈ [m], A′

i := (Ai,k)k∈S and B′
i := (Bi,k)k∈S . Clearly, dist(A′

i, B
′
j) ≤ dist(Ai, Bj) ≤ t

for every distinct i, j ∈ I. Let I be the set of i ∈ [m] where dist(A′
i, B

′
i) ≥ t + 1. We know

|I| ≤ f(t+ 1, t, a, b;X) =
(
a+b
a

)t+1
. Also, using that Pr[i ∈ I] ≥ 1/

(
n

t+1

)
, we conclude that m/

(
n

t+1

)
≤

E|I| ≤
(
a+b
a

)t+1
, i.e. f(n, t, a, b;X) = m ≤

(
n

t+1

)(
a+b
b

)t+1
.

For the lower bound, we may assume X = [a + b]. Let S1, . . . , Sℓ be an arbitrary enumeration of
all subsets of X of size a (so ℓ =

(
a+b
a

)
), and for each i ∈ [ℓ], let Ti := X \Si. Observe that Si∩Tj = ∅

if and only if i = j. Define a mapping φ : [ℓ − 1] → [ℓ] by putting φ(ℓ − 1) = ℓ and φ(i) = i for all
i ∈ [ℓ−2]. Now, let a1, . . . , am be any enumeration of the sequences in [ℓ−1]n, exactly n−t−1 entries
of which are ℓ − 1. Then, m =

(
n

t+1

)
(
(
a+b
a

)
− 2)t+1. For each i ∈ [m], define Ai = (Ai,k)k∈[n] where

Ai,k = Sai,k and Bi = (Bi,k)k∈[n] where Bi,k = Tφ(ai,k). Since (Ai, Bi)i∈[m] is a (n, t, a, b,X)-system, it
suffices to check that dist(Ai, Bj) ≥ t+ 1 if and only if i = j. For any i, j ∈ [m] and k ∈ [n], it holds
that Ai,k ∩Bj,k = ∅ ⇔ Sai,k ∩ Tφ(aj,k) = ∅ ⇔ ai,k = aj,k ∈ [ℓ− 2]. Thus,

dist(Ai, Bj) = |{k : Ai,k ∩Bj,k = ∅}| = |{k : ai,k = aj,k ∈ [ℓ− 2]}| ≤ |{k : ai,k ∈ [ℓ− 2]}| = t+ 1.
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Clearly, if i = j, then dist(Ai,Bi) = t+ 1. On the other hand, if dist(Ai,Bj) ≥ t+ 1, it must be that
aj,k = ai,k for all k with ai,k ∈ [ℓ− 2]. This shows i = j. ■

Notably, when b = 1 and |X| = a + 1, f(n, t, a, 1;X) is equal to the maximum m such that there
exist a1, a2, . . . , am, b1, b2, . . . , bm ∈ Xn where dist(ai, bi) ≤ n− t− 1 for all i and dist(ai, bj) ≥ n− t

for all i ̸= j. Indeed, given Ai,k with |Ai,k| = a and Bi,k with |Bi,k| = 1, for each 1 ≤ i ≤ m, we
can define ai = (ai,k)k where ai,k is the only element in X \ Ai,k, and bi = (bi,k)k where bi,k is the
only element in Bi,k. Then, dist(Ai, Bj) = n − dist(ai, bj). When a = 1, the answer is the same as
f(n, t; {0, 1}) = 2t+1 by flipping all the bis. But when a > 1, Proposition 4.8 shows that the largest
such family has size

(
n

t+1

)
(a−O(1))t+1.

4.3 Connection to the Prague dimension

Given a graph G, the Prague dimension, pd(G), is the minimum d such that one can assign each
vertex a unique vector in Zd and two vertices are adjacent in G if and only if the two corresponding
vectors differ in all coordinates. In other words, pd(G) is the minimum d such that there exists some
injection f : V (G) → Zd so that u, v are adjacent in G if and only if dist(f(u), f(v)) = d.

The definition and results of the function f(n, t,X) suggest the following variant of the Prague
dimension. Given a graph G, the threshold Prague dimension, tpd(G), is the minimum t such that
there exists some d ∈ N and some f : V (G) → Zd so that u, v are adjacent in G if and only if f(u)
and f(v) differ in at least t coordinates, that is, dist(f(u), f(v)) ≥ t. By definition, tpd(G) ≤ pd(G).
In this section, we list and compare some properties of these two dimensions.

First, tpd(G(n, 1/2)) = Θ(n/ log n) with high probability. The upper bound holds as pd(G(n, 1/2)) =

Θ(n/ log n) with high probability by [GPW23]. For the lower bound, let G be the set of all graphs
with vertex set [n] whose complement has diameter 2. It is well known that |G| = (1− o(1))2(

n
2) (see

for example [Bol01]). We will compare the number of “essentially distinct” mappings f : [n] → Zd

(that realize tpd(G) for some G ∈ G) to |G|. Given any graph G ∈ G and any f : V (G) → Zd that
realizes t := tpd(G), without loss of generality, we can assume that f(u) ∈ [n]d for every vertex u and
that f(1) is the all-ones string. Knowing that dist(f(u), f(v)) < t for u, v not adjacent in G and that
the diameter of the complement of G is 2, it follows straightforwardly that dist(f(1), f(u)) < 2t for
all u ∈ V (G). Define Iu := {k ∈ [d] : f(1)k ̸= f(u)k} for each u ∈ [n] and I :=

⋃
u∈[n] Iu. We have

|Iu| < 2t and hence, |I| < 2tn. Then, f(u)k = f(1)k = 1 for every u ∈ [n] and k ∈ [d] \ I. Thus, we
can assume d = 2tn without loss of generality. By the former discussion, we can specify any graph
G ∈ G by a spanning tree T in its complement and the corresponding lists of length d = 2tn so that
f(1) is all-ones, f(u) ∈ [n]2tn for all u ∈ [n] and dist(f(u), f(v)) < t for all u, v ∈ E(T ). If u is the
parent of v in T and f(u) has been fixed, there are at most

(
2tn
<t

)
nt choices for f(v). Thus, the number

of such functions f is at most nn−2(
(
2tn
<t

)
nt)n−1 = nO(tn) (here nn−2 is the number of spanning trees

in Kn). If tpd(G(n, 1/2)) ≤ t with high probability, then nO(tn) > |G| − o(2(
n
2)) = (1− o(1))2(

n
2), i.e.

t = Ω(n/ log n).
Second, if u1, u2, . . . , us and v1, v2, . . . , vs are two sequences of vertices in G such that ui, vj are

adjacent in G if and only if i = j, i.e., the edges (ui, vi) form an induced matching in G, then tpd(G) ≥
log2 s by Theorem 1.5. Indeed, any f : V (G) → Zd realizing tpd(G) satisfies dist(f(ui), f(vi)) ≥
tpd(G) for all i ∈ [s] and dist(f(ui), f(vj)) < tpd(G) for all distinct i, j ∈ [s]. This argument has
been widely used to give lower bounds for pd(G) for various graphs G. For example, let us consider
graphs on n vertices such that the minimum degree is at least one while the maximum degree is ∆.
This includes a lot of basic graphs like perfect matchings, cycles, paths, etc. The first author [Alo86]
showed that the Prague dimension for these graphs is at least log2

n
∆ − 2 because they contain an
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induced matching of size at least n
4∆ . Now, Theorem 1.5 shows the same bound also holds for the

threshold Prague dimension. To compare, we note that Eaton and Rödl [ER96] showed that the
Prague dimension (and thus the threshold Prague dimension) for these graphs is at most O(∆ log2 n).

Third, the threshold Prague dimension can be much smaller than the Prague dimension. For
example, it is known that pd(Kn+K1) = n (see [LNP80]), where Kn+K1 is the vertex disjoint union
of a clique of size n and an isolated vertex. However, by mapping the vertices of Kn to the standard
orthonormal basis of Rn and that of K1 to the all-zeros vector, we observe that tpd(Kn +K1) ≤ 2.
A more interesting example is the Kneser graph: for n ≥ k, the Kneser graph K(n, k) is the graph
whose vertices are all the k-element subsets of [n] and whose edges are pairs of disjoint subsets.
When 1 ≤ k ≤ n/2, it is known that log2 log2

n
k−1 ≤ pd(K(n, k)) ≤ Ck log2 log2 n for some constant

Ck; see [Für00]. For the threshold Prague dimension, define f :
([n]
k

)
→ {0, 1}n by mapping each

vertex in K(n, k) to the indicator vector of length n of the corresponding subset. Then, for two
adjacent vertices u, v, (where the corresponding two subsets are disjoint), dist(f(u), f(v)) = 2k. For
two non-adjacent vertices u, v, the two subsets intersect and dist(f(u), f(v)) ≤ 2(k − 1) < 2k − 1.
This shows tpd(K(n, k)) ≤ 2k − 1. In addition, K(2k, k) is an induced matching of size 1

2

(
2k
k

)
,

so tpd(K(2k, k)) ≥ log2
1
2

(
2k
k

)
= 2k − O(log2 k). Knowing that K(n, k) contains K(2k, k) as an

induced subgraph, we have tpd(K(n, k)) ≥ tpd(K(2k, k)) = 2k − O(log2 k). Thus, tpd(K(n, k)) is
asymptotically 2k. This holds independently of n, very different from the behavior of pd(K(n, k)).

Finally, it would be also interesting to determine the maximum possible threshold Prague dimension
for an n-vertex graph G. For the ordinary Prague dimension, this was done by Lovász, Nešetšil and
Pultr [LNP80], who showed that pd(G) ≤ n−1 and pd(G) = n−1 if and only if G = Kn−1+K1 (when
n ≥ 5). As we already mentioned above, Kn−1 +K1 is not a good candidate for maximizing tpd(G)

since tpd(Kn−1 +K1) ≤ 2. Another natural graph to consider is Km +Km when n = 2m. We claim
that tpd(Km+Km) = pd(Km+Km) = m. Let the vertex sets of the two cliques be U = {u1, . . . , um}
and V = {v1, . . . , vm}. For the upper bound, assign to ui an all-is string of length m, and to vi a
string s of length m starting from i in which sk = sk−1 + 1 mod m for all k. For the lower bound of
tpd(Km +Km), suppose f : U ∪ V → Zd (for some d) realizes t := tpd(Km +Km). Let

C1 :=
∑

1≤i<j≤m

dist(f(ui), f(uj)) +
∑

1≤i<j≤m

dist(f(vi), f(vj)), C2 :=

m∑
i,j=1

dist(f(ui), f(vj)).

We consider C1−C2. Fix k ∈ [d]. For each a ∈ Z, let sa be the number of i ∈ [m] such that f(ui)k = a,
and ta be the number of i ∈ [m] such that f(vi)k = a. The contribution to C1 − C2 from the kth
coordinates is given by((

m

2

)
−
∑
a

(
sa
2

))
+

((
m

2

)
−
∑
a

(
ta
2

))
−

(
m2 −

∑
a

sata

)
=
∑
a

sata −
s2a + t2a

2
≤ 0.

Summing over all k ∈ [d], we know C1 ≤ C2. But then, 2
(
m
2

)
· t ≤ C1 ≤ C2 ≤ m2 · (t − 1), showing

tpd(Km +Km) = t ≥ m, as claimed. It might be the case that tpd(G) ≤
⌈
n
2

⌉
for all n-vertex graphs

G.

5 Concluding remarks and open problems

In Theorem 2.3 we showed there are at most 2t+1 pairs of (ai, bi) such that dist(ai, bi) ≥ t + 1

for all i and dist(ai, bj) ≤ t for all i ̸= j. Consider any t ≥ 1, the nontrivial case. Notice that
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Vt+s,s

2t+s ≥ Vt+3,3

2t+3 = t+4
2t+3 > 2−t−1 for all s ≥ 3. Therefore, Eq. (2) indicates that in the extremal

case when there are 2t+1 such pairs, it must be that dist(ai, bi) ∈ {t + 1, t + 2} for all i. By taking
ai ∈ {0, 1}t+1 and bi = ai, we construct 2t+1 such pairs with dist(ai, bi) = t + 1. Also by taking
ai ∈ {0, 1}t+2 with an even number of 1s and bi = ai, we construct 2t+2 pairs with dist(ai, bi) = t+2.
Thus, dist(ai, bi) = t + 1 and dist(ai, bi) = t + 2 are both possible in the extremal case. It would be
interesting to have a further characterization of the extremal cases.

In the realm of the set-pair inequalities, the skew version also plays an important role; see [Lov77,
Lov79]. Given t and X, what is the largest m such that there exist n ≥ t + 1 and m pairs ai, bi ∈
Xn, 1 ≤ i ≤ m so that dist(ai, bi) ≥ t+1 for all i ∈ [m] and dist(ai, aj) ≤ t for all 1 ≤ i < j ≤ m? We
suspect the answer is also 2t+1, and it would be interesting to try to adapt the dimension argument
in order to prove it.

In [Für84], Füredi showed the set-pair inequality via the the following vector space generalization.
If A1, A2, . . . , Am are a-dimensional and B1, B2, . . . , Bm are b-dimensional linear subspaces of Rn such
that dim(Ai ∩ Bj) ≤ k if and only if i = j, then m ≤

(
a+b−2k
a−k

)
. We wonder if there is a natural

generalization of Theorem 1.5 or even Theorem 2.3 to vector spaces.
It will be interesting to study the threshold Prague dimension of graphs further. In particular, it

will be nice to determine or estimate the maximum possible value of this invariant for a graph with n

vertices and maximum degree ∆. In the case of Prague dimension, Eaton and Rödl [ER96] showed the
maximum possible dimension of a graph with n vertices and maximum degree ∆ is at most O(∆ log n)

and at least Ω( ∆logn
log∆+log logn).
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