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Abstract

The symmetric difference of two graphs G1, G2 on the same set of vertices [n] =

{1, 2, . . . , n} is the graph on [n] whose set of edges are all edges that belong to exactly

one of the two graphs G1, G2. Let H be a fixed graph with an even (positive) number

of edges, and let DH(n) denote the maximum possible cardinality of a family of graphs

on [n] containing no two members whose symmetric difference is a copy of H. Is it

true that DH(n) = o(2(n
2)) for any such H? We discuss this problem, compute the

value of DH(n) up to a constant factor for stars and matchings, and discuss several

variants of the problem including ones that have been considered in earlier work.

1 Introduction

1.1 The problem

The symmetric difference of two graph G1 = (V,E1) and G2 = (V,E2) on the same set of

vertices V is the graph (V,E1 ⊕ E2) where E1 ⊕ E2 is the symmetric difference between

E1 and E2, that is, the set of all edges that belong to exactly one of the two graphs. Put

V = [n] = {1, 2, . . . , n} and let H be a family of graphs on the set of vertices [n] which is

closed under isomorphism. A collection of graphs F on [n] is called an H-(graph)-code if

it contains no two members whose symmetric difference is a graph in H. For the special

case that H contains all copies of a single graph H on [n] this is called an H-code. Here

we are interested in the maximum possible cardinality of such codes for various families

H. Let DH(n) denote this maximum, and let

dH(n) =
DH(n)

2(n2)

denote the maximum possible fraction of the total number of graphs on [n] in an H-code.

If H consists of all graphs isomorphic to one graph H, we denote dH(n) by dH(n). Note

that if H consists of all graphs with less than d edges, then DH(n) is simply the maximum
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possible cardinality of a binary code of length
(
n
2

)
and minimum distance at least d. This

motivates the terminology “graph-codes” used here.

The case H = K where K is the family of all cliques is of particular interest. This case

is motivated by a conjecture of Gowers raised in his blog post [10] in 2009 and is discussed

briefly in the comments of that blog. If H consists of all graphs with independence number

at most 2, then dH(n) ≥ 1/8 for all n ≥ 3, as shown by the family of all graphs on [n]

containing a triangle on the set of vertices {1, 2, 3}. An interesting result of Ellis, Filmus

and Friedgut [7], settling a conjecture of Simonovits and Sós, asserts that this is tight

for all n ≥ 3. The corresponding result, that dH′(n) = 1/26 for all n ≥ 4, where H′ is

the family of all graphs with independence number at most 3, is proved in [4]. A more

systematic study of the parameters DH(n) and dH(n) for various families of graphs H
appears in the recent paper [1]. The families H considered in this work include the family

of all disconnected graphs, the family of all graphs that are not 2-connected, the family

of all non-Hamiltonian graphs and the family of all graphs that contain or do not contain

a spanning star. Additional families studied are all graphs that contain an induced or

non-induced copy of a fixed graph T , or all graphs that do not contain such a subgraph.

In this note we focus on the case that H consists of a single graph H and the case that

H is the family of all cliques, or all cliques up to a prescribed size. Note that trivially,

if every member of H has an odd number of edges then dH(n) ≥ 1
2 as the family of all

graphs on [n] with an even number of edges forms an H-code.

This suggests the following intriguing question.

Question 1.1. Let H be a family of graphs closed under isomorphism. Is it true that

dH(n) tends to 0 as n tends to infinity if and only if H contains a graph with an even

number of edges ? Equivalently: is it true that for any fixed graph H with an even number

of edges, dH(n) tends to 0 as n tends to infinity ?

We also study the linear variant of these problems, where the H-codes considered are

restricted to linear subspaces, that is, to families of graphs on [n] closed under symmetric

difference.

1.2 Results

Recall that K is the family of all cliques. Let K(r) denote the set of all cliques on at most

r vertices. Let K1,t denote the star with t edges and let Mt denote the matching of t edges.

Theorem 1.2. For every positive integer k,

dK1,2k
(n) = Θk(1/nk) and dM2k

(n) = Θk(1/nk).

Proposition 1.3. For every integer r ≥ 1,

dK(4r+3)(n) ≥ Ω(
1

nr
).
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Proposition 1.4. For the family K of all cliques, dK(n) ≥ 1
2[n/2] .

Proposition 1.5. Let H be a fixed graph obtained from two copies of a graph H ′ by

identifying the vertices of an independent set of H ′. Then

dH(n) ≤ |V (H)|
n

for all n ≥ |V (H)|.

In particular, dH(n) tends to 0 as n tends to infinity.

Remark: All lower bounds are proved by constructing linear codes, that is, families of

graphs closed under symmetric difference. Using a simple Ramsey-theoretic argument it

is not difficult to show that for any such linear code the maximum possible cardinality

is at most a fraction O(log log n/ log n) of all graphs on n vertices whenever the defining

family contains a fixed graph with an even number of edges.

Since all lower bounds are obtained by what may be called linear graph-codes one can

study this separately, as done for standard error correcting codes. For the family of all

cliques K we get here an exact result (strengthening the assertion of Proposition 1.4).

Theorem 1.6. For any n ≥ 2, the minimum possible co-dimension of a linear space of

graphs on n vertices that contains no member of K is exactly [n/2].

2 Proofs

2.1 Upper bounds

For a family of graphs H and an integer n, the Cayley graph C(n,H) is the graph whose

vertices are all graphs on the n vertices [n], where two are adjacent iff their symmetric

difference is a member of H. This is clearly a Cayley graph over the elementary abelian

2-group ZN
2 with N =

(
n
2

)
. The function DH(n) is just the independence number of this

graph, dH(n) is the so called independence ratio. Since the graph C(n,H) is vertex tran-

sitive, its independence ratio is exactly the reciprocal of its fractional chromatic number.

See, for example, [11] for some background about this notion. A simple property of the

fractional chromatic number of a graph is that it is at least that of any subgraph of it.

This implies that in order to prove an upper bound of β for the independence ratio of the

Cayley graph above it suffices to exhibit a set S of vertices that contains no independent

set of size larger than β|S|. This applies also to weighted sets of vertices, but we will not

use weights here.

Proof of Proposition 1.5: Let a+ b denote the number of vertices of H ′ where b is the

size of its independent set so that H is obtained from two copies of H ′ by identifying the
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vertices in this independent set. Thus the number of vertices of H is 2a + b. Consider

the following set of m = b(n − b)/ac copies of H ′ on subsets of the vertex set [n]. All of

them contain the same independent set on the vertices {n − b + 1, n − b + 2, . . . , n}, and

the additional vertices of copy number i are the vertices {(i− 1)a+ 1, (i− 1)a+ 2, . . . , ia},
where 1 ≤ i ≤ m. Each of these copies can be viewed as a vertex of the Cayley graph

C = C(n, {H}). Since the symmetric difference of every pair of such copies forms a copy

of H, this set forms a clique of size m in C, implying that dH(n) ≤ 1
m ≤ |V (H)|/n. �

The proofs of Theorem 1.2 for stars and for matchings are very similar. We describe the

proof for stars and briefly mention the modification needed for matchings. The upper

bound in Theorem 1.2 for the star K1,2 is a special case of the result above (with H ′ being

a single edge). The upper bound for any prime k can be proved using the following result

of Frankl and Wilson.

Theorem 2.1 ([9]). Let p be a prime, and let a0, a1, . . . , ar be distinct residue classes

modulo p. Let F be a family of subsets of [n] and suppose that |F | ≡ a0 mod p for all

F ∈ F and that for every two distinct F1, F2 ∈ F , |F1∩F2| ≡ ai mod p for some 1 ≤ i ≤ r.
Then |F| ≤

∑r
i=0

(
n
i

)
.

Suppose k is a prime, n ≥ 2k and consider the family G of all stars K1,2k−1 with

center 1 and 2k − 1 leaves among the vertices {2, 3, . . . , n}. Thus |G| =
(
n−1
2k−1

)
. If two

such stars share exactly k− 1 common leaves then their symmetric difference is a copy of

K1,2k. A subset of G which is independent in the Cayley graph C(n,K1,2k) corresponds to

a collection of subsets of the set {2, 3, . . . , n}, each of size 2k− 1, where the intersection of

no two of these subsets is of cardinality k−1. Therefore, each of these sets is of cardinality

−1 modulo k and no intersection is of cardinality −1 modulo k. By the Frankl-Wilson

Theorem (Theorem 2.1) the cardinality of such a family is at most
∑k−1

i=0

(
n−1
i

)
. Therefore,

for every prime k,

dK1,2k
(n) ≤

∑k−1
i=0

(
n−1
i

)(
n−1
2k−1

) ≤ Ok(
1

nk
).

In order to prove the upper bound for all k we need the following result of Frankl and

Füredi.

Theorem 2.2 ([8]). For every fixed positive integers ` > `1+`2 there exist n0 = n0(`) and

d` > 0 so that for all n > n0, if F is a family of `-subsets of [n] in which the intersection

of each pair of distinct members is of cardinality either at least ` − `1 or strictly smaller

than `2, then

|F| ≤ d` · nmax{`1,`2}.

Proof of Theorem 1.2, upper bound: The proof for stars is essentially identical to

the one described above for prime k, using Theorem 2.2 instead of Theorem 2.1. Let
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G be the family of all stars K1,2k−1 with center 1 and 2k − 1 leaves among the vertices

{2, 3, . . . , n}. Thus |G| =
(
n−1
2k−1

)
. If two such stars share exactly k − 1 common leaves

then their symmetric difference is a copy of K1,2k. Therefore, by Theorem 2.2 above with

` = 2k−1, `1 = `2 = k−1, the maximum cardinality of a subset of G which is independent

in the Cayley graph C(n,K1,2k) is at most some ck(n − 1)k−1 for all sufficiently large n.

This supplies the required upper bound

ck(n− 1)k

|G|
≤ Ok(

1

nk
),

for dK1,2k
(n). The proof for matchings is similar, starting with the family of all subsets

of cardinality 2k − 1 of a fixed matching of cardinality bn/2c. The symmetric difference

of any two matchings that share exactly k − 1 common edges is a copy of M2k. Thus the

proof can proceed exactly as in the case of stars. �

2.2 Lower bounds

In order to lower bound the independence number of a Cayley graph C = C(n,H) it

suffices to upper bound its chromatic number. One way to do so is to assign to each edge

e of the complete graph on [n] a vector ve ∈ Zr
2 for some r, so that for every H ∈ H,∑

e∈E(H) ve 6= 0, where the sum is computed in Zr
2 . Given these vectors, we can assign

to each graph G on [n] the color
∑

e∈E(G) ve (computed, of course, in Zr
2). This is clearly

a proper coloring of C by at most 2r colors. Note that the matrix whose columns are

the
(
n
2

)
vectors ve is the analogue of the parity-check matrix of a linear error correcting

code in the traditional theory of codes, and the color defined above is the analogue of the

syndrome of a word, see, e.g., [12] for more information about these basic notions. The

same book contains also a discussion of BCH codes which are used in the proofs below.

Proof of Theorem 1.2, lower bound: For stars, it suffices to show that the chromatic

number of the Cayley graph C = C(n,K1,2k) is at most O(nk). Let s be the smallest

integer so that 2s − 1 ≥ n. As shown by the columns of the parity check matrix of a

BCH-code with designed distance 2k + 1 there is a collection S of 2s − 1 binary vectors

of length r = ks so that no sum of at most 2k of them (in Zks
2 ) is the zero vector. Fix a

numbering of these vectors and a proper edge-coloring c of Kn by n colors. For each edge

e let ve be the vector of S with number c(e). This gives the desired lower bound for stars.

For matchings we use essentially the same construction, starting with a (non-proper) edge

coloring of Kn by n colors in which each color class forms a star. �

Proof of Proposition 1.3, lower bound: As in the previous proof, but the initial

edge-coloring now is defined by c(ij) = i for all i < j and the binary vectors selected are

taken from the columns of the parity check matrix of a code with designed distance 2r+2.
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These are binary vectors of length rs+ 1, where s = dlog2 ne. Let U be the set of vertices

of a clique of size at least 2 and at most 4r + 3. Then U contains at least 1 and at most

2r + 1 vertices i for which there is an odd number of vertices of U with index strictly

larger than i. Therefore the sum of vectors corresponding to the edges of the clique on U

is equal to a sum of at most 2r + 1 column vectors of the parity check matrix, which is

nonzero. �

Proof of Proposition 1.4, lower bound: This follows from the construction in the

proof of Theorem 1.6 described in the next section.

3 Linear graph-codes

Proof of Theorem 1.6: The theorem is equivalent to the statement that for all n ≥ 2

the minimum possible r = r(n) so that there are graphs G1, . . . , Gr on the vertex set [n]

such that every clique on a subset of cardinality at least 2 of [n] contains an odd number

of edges of at least one graph Gi, is r = [n/2]. Indeed, the code is simply the set of all

graphs that have an even number of edges of each Gi. Therefore, a graph belongs to the

code if and only if the characteristic vector of the set of its edges is orthogonal (over Z2)

to the characteristic vectors of the sets of edges of all the graphs Gi. These r graphs can

be chosen so that the above r vectors form a basis for the orthogonal complement of the

code.

In order to show that the minimum possible value of r is bn/2c it clearly suffices to

prove the upper bound for odd n (that imply the result for n − 1) and the lower bound

for even n (implying the result for n+ 1). The upper bound is described in what follows.

Let n ≥ 3 be odd. Split the numbers [n− 1] = {1, 2, . . . , n− 1} into the (n− 1)/2 blocks

Bi = {2i − 1, 2i} for 1 ≤ i ≤ (n − 1)/2. Let Gi be the graph consisting of all edges of

the n− 2i triangles with a common base Bi on the vertices Bi ∪ {j} for 2i < j ≤ n. Our

family of graphs is the set of these (n− 1)/2 graphs Gi. Let K be an arbitrary clique on

a subset A of at least 2 vertices in [n]. If A contains a full block Bi for some i, then it

contains exactly 2x+1 edges of Gi, where x is the cardinality of the intersection of A with

{2i+1, 2i+2, . . . , n}. As this is odd for all x ≥ 0 we may assume that A contains no block

Bi. In this case, let j be the second largest element in A (recall that |A| ≥ 2). Clearly

j ≤ n − 1, hence it is contained in one of the blocks Bi. But in this case Gi contains

exactly one edge of the clique K, completing the proof of the upper bound. Note that it

is simple to give additional constructions with the same properties as any set of graphs

that spans the same subspace as the graphs above will do. In particular, we can replace

one of the graphs Gi by the complete graph Kn, which is the sum of all graphs Gi.

To prove the lower bound assume n is even and let G1, . . . Gn/2−1 be a family of n/2−1

graphs on [n]. We have to show that there is a clique on at least 2 vertices containing an
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even number of edges of each Gi. We show that in fact there is such a clique on an even

number of vertices. To do so we apply the classical theorem of Chevalley and Warning

(cf., e.g., [2] or [15]). Recall that it asserts that any system of polynomials with n variables

over a finite field in which the number of variables exceeds the sum of the degrees, which

admits a solution, must admit another one (in fact, the number of solutions is divisible by

the characteristics). Associate each vertex i with a variable xi over Z2 and consider the

following homogeneous system of polynomial equations over Z2. For each graph Gs in our

family, ∑
ij∈E(Gs)

xixj = 0.

In addition, add the linear equation
∑n

i=1 xi = 0.

The sum of the degrees of the polynomials here is 2(n/2 − 1) + 1 = n − 1, which

is smaller than the number of variables. Since the system is homogeneous it admits

the trivial solution xi = 0 for all i. Any other solution (which exists by the Chevalley

Warning Theorem) gives a clique on the set of vertices {i : xi = 1} which is nonempty, of

even cardinality, and contains an even number of edges (possibly zero) of each Gi. This

establishes the lower bound and completes the proof of Theorem 1.6. �

4 Concluding remarks and open problems

• Question 1.1, which is equivalent to the problem of deciding whether or not for any

fixed nonempty graph H with an even number of edges dH(n) tends to 0 as n tends

to infinity, remains wide open.

An interesting special case is whether or not dK4(n) = o(1). It is also interesting to

decide whether or not dK4(n) ≥ 1
no(1) . It is not difficult to show that the latter can

be deduced from the existence of an edge coloring of Kn by no(1) colors with no copy

of K4 in which every color appears an even number of times. Indeed, such a coloring

together with the columns of the parity check matrix of a BCH code with designed

distance 7 supplies the lower bound above using the reasoning in the proofs of some

of the results here. We have learned recently from Zach Hunter and Dhruv Mubayi

that such an edge coloring is described in [6], modifying the constructions in [13],

[5]. Therefore dK4(n) ≥ 1
no(1) . Even more recently, Bennett, Heath and Zerbib [3]

found a similar coloring for K5, implying that dK5(n) ≥ 1
no(1) .

• Gowers conjectured in [10] that any family of a constant fraction of all graphs on [n],

where n is sufficiently large, contains two graphs G1, G2 such that G2 is a subgraph

of G1 and the symmetric difference of the two graphs (that is, the set of all edges of

G1 that are not in G2) forms a clique. This is clearly stronger than the conjecture

that dK(n) tends to 0 as n tends to infinity, which is also open. As explained in
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[10] the question of Gowers can be viewed as the first unknown case of a polynomial

version of the density Hales-Jewett Theorem.

• As mentioned in the remark following the statement of Proposition 1.5, it is not

difficult to show that for every graph H with an even number of edges the maximum

possible cardinality of a linear family of graphs on [n] in which no symmetric differ-

ence is a copy of H, is o(2(n2)). As the proof applies Ramsey’s Theorem, it provides

very weak bounds. It will be interesting to establish tighter bounds for the linear

case. Theorem 1.6 provides an example of a tight result of this form.

• The problem considered above can be extended to hypergraphs. More generally, it

can be extended to other versions of problems about binary codes, where the coordi-

nates of each codeword are indexed by the elements of some combinatorial structure,

and the forbidden symmetric differences correspond to a prescribed family of sub-

structures. Here is an example of a problem of this type. What is the maximum

possible cardinality of a collection of binary vectors whose coordinates are indexed

by the elements of the ordered set [n], where no symmetric difference of two dis-

tinct members of the collection forms an interval of length which is a cube of an

integer? The corresponding Cayley graph here has 2n vertices, and it is triangle-free

by Fermat’s last Theorem for cubes. Its independence number, which is the answer

to the question above, is o(2n). Indeed, this follows from the Furstenberg-Sárközy

Theorem and its extensions [14], by considering the maximum possible cardinality

of an independent set in the induced subgraph on the set of all vertices that are

characteristic vectors of an interval [i] = {1, . . . , i} for 0 ≤ i ≤ n.

• Some of the discussion here suggests the problem of determining or estimating the

smallest number of colors in an edge coloring of Kn in which every copy of a given

graph H (or every copy of any member of a prescribed family H of graphs) intersects

at least one of the color classes by an odd number of edges. This appears to be an

interesting variant of classical questions in Ramsey Theory and deserves further

study.
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