
1 János Pach
Twin primes—Eli Goodman
(1933-2021)
and Ricky Pollack (1935–
2018)

In my eyes, Eli (Jacob) Goodman and Ricky Pol-
lack were inseparable. Exactly when and where they
first met was a matter of discussion between them.
Was it in the alcoves of City College, playing chess
or in the NYU library, listening to recordings of clas-
sical music? Eli’s father was a well-known secular
Jewish scholar, who published extensively in two lan-
guages: Yiddish and English. Ricky was one of the
“red diaper babies,” his parents were communists,
constantly harassed by the authorities. Both of them
were passionately interested in mathematics, in mu-
sic, and in literature. Both of them played the piano,
Eli at a semi-professional level. After attending the
Bat Mitzva of one of Eli’s daughters and listening to
the band Klezmatics, Ricky started taking clarinet
lessons from David Krakauer. He would not travel
anywhere without his clarinet. Eli went even further:
he got a degree in composition and he co-founded
the New York Composers Circle. His pieces were
performed by leading musicians and were recorded.

Both of them had brilliant supervisors, but they
did not have an easy start in mathematics. Eli’s
supervisor was Heisuka Hironaka, who later got the
Fields Medal for groundbreaking discoveries in alge-
braic geometry. For many years, Eli worked relent-
lessly on a conjecture that turned out to be false.
His favorite teacher at NYU was Harold N. Shapiro,
a famous number theorist, who collaborated with
Paul Erdős and Richard Bellman, and loomed large
in mathematical circles. Ricky became his student.
They spent a lot of time together. It was easy to learn
from Shapiro, but difficult to shine next to him. By
the mid-seventies, both Eli and Ricky were ready to
venture into a new field that they felt was their own.

They were lucky: during their sabbaticals they hit

Figure 1: Eli and Ricky, the main organizers of the
2008 Discrete Geometry Conference in Oberwolfach,
Germany. (From the Archives of the Mathematisches
Forschungsinstitut Oberwolfach.)

on roughly the same subject and shortly after they
found out about their common interest. At McGill
University, Montreal, Willy Moser told Ricky about
the Happy Ending problem of Erdős, Esther Klein
and George Szekeres, and he almost instantly got ob-
sessed with it. Is it true that any set of 2n−2 + 1
points in general position in the plane has n elements
that form the vertex set of convex n-gon? If yes,
this bound would be best possible. We still do not
know the answer to this question, but a few years
ago Andrew Suk showed that (2 + o(1))n points al-
ways suffice. Eli had been searching for a simple
geometric question that can be approached by en-
coding the underlying configurations and translat-
ing the problem into a purely combinatorial one.
The Happy Ending problem appeared to be a per-
fect candidate. They started to explore these ideas
by introducing (rediscovering) the notions of order
types and allowable sequences. They did not get
any closer to the proof of the Erdős-Szekeres conjec-
ture, but the approach quickly yielded fruits. They
proved Grünbaum’s conjecture that every set of 8
pseudolines is stretchable [7], and continued to make
progress related to a number of other questions raised
in Branko Grünbaum’s classic 1972 treatise, “Ar-
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rangements and Spreads” [14]. However, the most
elegant early application of the method of allowable
sequences was found by Peter Ungar [18], a legendary
problem solver of Hungarian origin. He proved that
any set of n points in the plane, not all of which
are collinear, determine at least n distinct directions,
provided that n is even. His argument was reproduced
by Aigner and Zieglerin their popular volume “Proofs
from the Book.” Erdős often said as a joke that God
kept a Book with only the most elegant mathemati-
cal arguments, and he rarely allows anyone to have a
glance into it.

In 1980, Ricky and Eli started a geometry seminar
at Courant Institute (NYU) which was attended by
faculty and students of many universities from the
Greater New York area, including Rutgers, Prince-
ton, Columbia, CUNY, Stony Brook, and Pace Uni-
versity, and by researchers from Bell Labs, AT&T,
and IBM. Over the years, when passing through the
Big Apple, almost all important figures working in
combinatorics, discrete geometry, computational ge-
ometry, or convexity gave a talk in this seminar.
The abstracts of these talks were widely circulated.
In the pre-internet era, anyone following these an-
nouncements had a pretty good overview of the most
exciting new developments in our field. It was in
this seminar, where Peter Ungar learned about al-
lowable sequences, which enabled him to prove his
above mentioned theorem on directions, originally
conjectured by Scott.Twenty five years later, Rom
Pinchasi, Micha Sharir and myself managed to set-
tle Scott’s problem in 3 dimensions [15]. All three of
us attended the meetings of this seminar for years.
I also had the privilege to co-organize it in the first
decade of the 21st century.

In the beginning, it was not clear whether such a
seminar would ever fly. As Joe Malkevitch recalls,
Ricky doubted if anyone would show up if they “put
out a shingle.” Yet people did come, and they came in
ever growing numbers. Why? It is hard to deny that
the charismatic personalities of Ricky and Eli played
a big role in this. They picked the right speakers
and fascinating topics, and they had a good nose for
significant new developments in the subject. Some-
times they were wrong, especially Ricky, who easily

Figure 2: János Pach, Ricky Pollack, and Eli Good-
man at the International Conference on Intuitive Ge-
ometry, Siófok, Hungary, 1985. (Photo by J. Pach.)

fell in love with a new problem. But this only added
to the thrill of novelty and discovery. The topics cov-
ered in the seminar have opened up new avenues of
research for most participants, including many es-
tablished senior mathematicians and computer sci-
entists. A touch of luck has also contributed to the
remarkable success of the seminar. The early 1980s
witnessed an explosive surge in computing power,
which resulted in a sustained appreciation for al-
gorithmic techniques, an appreciation that has only
grown stronger over time. NYU had a Robotics Lab,
co-directed by Jack Schwartz and Micha Sharir, who
laid the mathematical foundations for motion plan-
ning. As a recognition of their work, in 1986, they
were invited to speak at the International Congress
of Mathematicians in Berkeley. Many practical ques-
tions such as the so-called Piano Movers’ problem,
visibility and ray-shooting problems, more or less di-
rectly, raised deep questions about arrangements of
points, lines, curves, convex sets, and other geometric
objects in Euclidean spaces. It turned out that some
closely related questions, with deep ties to number
theory, functional analysis, discrete geometry, and
information theory, had been investigated before by
Gauss, Hilbert, Minkowski, Fejes Tóth, Rogers, Con-
way, Erdős, Lovász, Spencer, Szemerédi, Trotter, and
others. Many of their results proved to be applica-
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ble in the design of efficient geometric algorithms. A
new field was born: computational geometry. It was
also popularized by Ron Graham and Frances Yao’s
concise and elegantly written survey, titled ‘A whirl-
wind tour of computational geometry,’ published in
the American Mathematical Monthly.

The number of graduates in computer science
far surpassed the number of mathematics gradu-
ates. The new generation of computer scientists were
equally well-versed in discrete mathematics and ge-
ometry as their counterparts in mathematics. They
were familiar with the Happy Ending problem and
the Probabilistic Method (or the Random Sampling
technique, as it was called in computer science), they
learned about the Szemerédi-Trotter theorem on the
number of incidences between points and lines and
Lovász’ theorem on halving lines. And they not
only knew about these results, but soon improved on
them! In particular, in a seminal paper presented at
the 2nd Annual Symposium on Computational Ge-
ometry in 1986, David Haussler and Emo Welzl bor-
rowed a technique for set-systems of bounded Vapnik-
Chervonenkis dimension, and applied it to a wide
range of questions in geometry. This paved the way
for a series of new discoveries, including far-reaching
extensions of the Szemerédi-Trotter theorem and a
substantial improvement of Lovász’ upper bound on
the number of halving lines (by Clarkson, Edelsbrun-
ner, Guibas, Sharir and Welzl, and by Dey, all of
whom are computer scientists!) The relationship be-
tween discrete geometry and computational geome-
try proved to be mutually beneficial and resulted in
remarkable breakthroughs on both sides.

It was perhaps Ron Graham, who first suggested
that the time was ripe to launch a journal devoted
entirely to discrete geometry. He must have talked
to some publishers, as in 1984, Cambridge University
Press, Wiley, and Springer-Verlag all expressed their
interest in such a project. Ricky and Eli negotiated
with all of them. Forty years ago, scientific publish-
ing was a completely different business from what it
is today. Almost all mathematics editors held PhDs.
They were deeply embedded in the mathematics com-
munity, they had a good sense of scholarly quality
and commercial value. Striking a balance between

Figure 3: Participants of the first Computational
Geometry conference at Bellairs Institute of McGill
University, Holetown, St. James, Barbados, in 1986.
Micha Sharir in the middle, Ricky Pollack above him,
in red shirt, on the top. (Courtesy of J. Pach.)

the two was, of course, crucial, but their primary
goal was the advancement of science. Finally, the
project was embraced by the late Walter Kaufmann-
Bühler from Springer, about whom Ricky and Eli al-
ways spoke with the greatest admiration. Confident
that the marriage of the classical subject of discrete
geometry and the newly emerging field of compu-
tational geometry will be fruitful and long-lasting,
they named the new journal Discrete & Computa-
tional Geometry (DCG). This turned out to be a self-
fulfilling prophecy: Through their seminar, the orga-
nization of numerous conferences, and their ground-
breaking mathematical and editorial work, Ricky and
Eli nurtured a thriving community that kept the sub-
ject and the journal as fresh and vibrant as ever. Af-
ter all these years, it still fills me with pride to have
contributed two papers to the inaugural issue of Dis-
crete & Computational Geometry in 1986 and to have
had the honor of serving for several years, alongside
Ricky and Eli, as Co-Editor-in-Chief of the journal
they founded.

Ricky and Eli made many important discoveries
in discrete and computational geometry, convexity,
geometric transversal theory, and real algebraic ge-
ometry. (Some of their achievements will be men-
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tioned below, by Micha Sharir, Noga Alon, and An-
dreas Holmsen.) However, they always considered
their most important legacy to be the creation of the
journal and a large, friendly community of researchers
around it, working in the field. In their own ways,
both of them were fundamentally social creatures,
for whom mathematics, as Ricky’s son, Danny, once
put it, was an “intensely social enterprise.” They
were born in New York, and until the very last years
of their lives, they both lived in New York. They
could not imagine moving anywhere else. New York
was their natural cultural and mathematical habi-
tat. Shortly before his death, Eli completed his ex-
cellent novel, which has just appeared in print [5].
The protagonist is a professor of mathematics from
New York City, who mysteriously disappears from
his Manhattan apartment. From a short article pub-
lished in the Times, one can learn that “He was last
seen there three weeks ago at a party in his honor, but
failed to show up for his classes the following Mon-
day. A police spokesman indicated that no signs of
disturbance were found in his apartment and that no
correspondence has turned up that might indicate his
whereabouts.” Eli and Ricky have disappeared from
the New York scene, but their huge social and profes-
sional footprints are destined to linger for generations
to come.

2 Micha Sharir
A tribute to Ricky Pollack
and Eli Goodman

Richard Pollack (Ricky) and Jacob E. Goodman (Eli)
were, in many aspects, the founding fathers of Dis-
crete and Computational Geometry, as a thriving,
active, and mainly interactive research area.
Before turning to their scientific achievements, I

would like to highlight two aspects of their leadership
and influence on the field, which were not emphasized
in the above summary.

A. The Discrete and Computational Geometry
conference series. Computational Geometry was a
young field in 1986 when Eli and Ricky launched the
journal DCG. Discrete Geometry had been around

Figure 4: A group of participants of the Monte Verità
Conference on Discrete and Computational Geome-
try, in Ascona, Switzerland, 1999. In the middle,
Ricky Pollack, wearing a red shirt. Eli Goodman is
the 4th from the right. (Photo by Emo Welzl.)

for several decades, but bringing the two fields to-
gether was to a large extent the work of Eli and
Ricky. Alongside with the journal, they have also
launched, at the same year, a scientific conference,
also called Discrete and Computational Geometry,
at Santa Cruz, CA. It had a huge impact in defin-
ing and directing the field, as a common discipline.
It was so successful that they have continued the
tradition, by organizing two follow-up conferences,
one at Mt. Holyoke, MA (Discrete and Computa-
tional Geometry Ten Years Later, 1996), and one at
Snowbird, UT (Discrete and Computational Geom-
etry Twenty Years Later, 2006). A fourth confer-
ence, Discrete and Computational Geometry Thirty
Years Later, has been organized (by others) at Monte
Verita, Switzerland, in 2016.

B. The Books. Each of them has contributed a
major book in this area. Eli (with Joe O’Rourke) has
edited the Handbook of Discrete and Computational
Geometry [6], a monumental 1500-page collection of
papers surveying basically all aspects of the field. It
has later mushroomed into an even bigger collection
(1937 pages), with Csaba Tóth as a third editor.

Ricky was a co-author, with Saugata Basu and
Marie-Françoise Roy, of another extremely influential
book, Algorithms in Real Algebraic Geometry [2], on
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which I will remark later in this note.

The major networking ventures undertaken by Eli
and Ricky, and their effect on the community had
been enormous. Their technical contributions to dis-
crete and computational geometry has been equally
influential. They spanned many topics, including or-
der types and allowable sequences, Helly-type results,
algorithms in real algebraic geometry, and a variety
of applications in computational geometry.
A common thread in many of their works is the

use of topological considerations in the analysis of
structures in discrete geometry. Most notably, they
looked for topological generalizations of standard
concepts, such as pseudolines instead of lines, topo-
logical planes, and more. Perhaps the first example
of such studies is their groundbreaking work on al-
lowable sequences, which I will mention shortly.
In the remainder of this note I would like to com-

bine a brief review of some of the major achievements
of Eli and Ricky with illustrations of how these works
have influenced my own research. I divide the discus-
sion into four themes.

1. Allowable sequences and order types. Take
a set P of n points in the plane, and project it onto
a line ℓ. In general, we get a sequence P ∗ of n dis-
tinct points on ℓ. As we rotate ℓ, the sequence does
not change combinatorially, except at certain criti-
cal orientations of ℓ, at which a block of consecutive
elements of P ∗, or several blocks simultaneously col-
lapse into points and then are reversed. This evo-
lution of P ∗ as ℓ rotates is called an allowable se-
quence; see [11]. Many interesting properties of P can
be deciphered out of its allowable sequence, but the
most intriguing question is whether a given allowable
sequence (a sequence that obeys the evolution rule
given above) is realizable, that is, whether it comes
out of an actual set P of n points. The answer is that
most sequences are not realizable, and that deciding
whether a given sequence is realizable is PSPACE-
complete (a computational complexity term, mean-
ing, roughly, “intractable”). This however was not
known at the time when they were working on the
problem, and they were very excited about finding
an effective solution to the decidability problem. As
a matter of fact, the first time I ever met Ricky, in

1982, he gave me right away, very enthusiastically, a
‘research announcement’ (as these things were called
those days) where he and Eli have obtained an effec-
tive (albeit, sadly, wrong) solution.

Let me switch to the related topic of order types,
which generalizes these concepts to higher dimen-
sions. For example, in the plane, the order type
of a set P of n points specifies the orientation (left
turn, right turn, or straight) of every ordered triple
of points of P . Order types, introduced by Eli and
Ricky, can be regarded as a concise purely discrete
way of representing the “essence” of point configu-
rations or, dually, of arrangements of lines (in the
plane) or of hyperplanes (in higher dimensions). In
fact, in this dual setting, order types can naturally
be defined for arrangements of more general curves
and surfaces, most notably for arrangements of pseu-
dolines and pseudo-hyperplanes. Again, the question
of the realizability of order types was a major topic
of study. It was another manifestation of their inter-
est in how basic discrete and combinatorial properties
can be studied in a purely topological context, that
had motivated many of their joint works.

Let me mention a fairly fresh result (Com-
put. Geom., 2023), which is based on Eli and Ricky’s
pioneering work on order types. We studied sub-
quadratic algorithms for some 3Sum-hard geometric
problems in the algebraic decision tree model. These
are problems that are at least as hard as the 3Sum
problem: determine whether a set of n real numbers
has a triple that sums to zero. These problems in-
clude collinearity testing, i.e., determining whether
a set of n points in the plane has a collinear triple.
This problem is not known to have a subquadratic
solution in the standard real-RAM model, and our
work gave such a solution, for a restricted kind of
collinearity testing (also known to be 3Sum-hard),
in the algebraic decision tree model, where we only
count algebraic sign tests involving the input data.

We worked in the dual plane, where we have a set
L of n lines (or other curves), and we want to pre-
process the arrangement A(L) for fast point location.
This is of course a well known problem, which can be
solved with O(n2) storage and O(log n) query time,
using line sweep and persistent search trees. How-
ever, to achieve this performance, one needs, among
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other things, to sort the vertices of A(L) by their x-
order, and each comparison in this sorting involves
four input lines, two for each of the two vertices that
are being compared. For our application, we wanted
to obtain algebraic comparisons involving the input
data that depend on a smaller number of elements,
and for that it was crucial to reduce the number of
lines involved in a comparison. The theory of order
types was the tool that we needed. The order type
information gives us the order of the vertices of A(L)
along each line of L, and each comparison that these
sortings perform involves only three lines. This seem-
ingly unimportant difference was crucial in improving
the running time of our algorithm.

This is just one, personal application, among many
others, of the beautiful theory of order types; see [11].

2. k-sets. Eli and Ricky’s papers on this topic have
opened up a rich area of research on k-sets in con-
figurations of points, and of levels in arrangements
of curves and surfaces, in the plane and in higher di-
mensions. A k-set of a set P of n points in the plane,
say, is a subset of size k that can be cut off its comple-
ment by a half-plane. In a dual setting, the k-level in
an arrangement of a set L of n lines (or other curves)
in the plane, say, is the set of all vertices and edges of
the arrangement A(L) of L that have exactly k lines
below them.

What Eli and Ricky had shown was that the num-
ber of at-most-k-sets, namely the overall number of j-
sets, for j = 0, 1, . . . , k, is O(nk), which is an asymp-
totic worst-case tight bound; another proof with a
tighter bound was given later by Alon and Győri.

As it turned out, this notion plays a crucial role
in the analysis of randomized algorithms in compu-
tational geometry, and in many other computational
and combinatorial problems in geometry; such as the
celebrated probabilistic analysis technique of Clark-
son and Shor.

3. Hadwiger-type theorems and geometric
permutations. Hadwiger’s theorem gives a neces-
sary condition for a finite collection of pairwise dis-
joint convex sets in the plane to have a line transver-
sal, namely a line that crosses of all of them: If there
exists a linear ordering of the sets such that every

triple of sets are met by a directed line in the corre-
sponding order, then the entire collection has a line
transversal. In a remarkable work, Eli and Ricky have
extended this result to arbitrary dimensions, giving a
condition for the existence of a hyperplane transver-
sal in terms of the multi-dimensional order type of
the input sets, replacing the one-dimensional sorted
order.

Eli and Ricky were also interested in line transver-
sals in higher dimensions; see [13]. A line transversal
to any collection of disjoint convex sets meets all the
sets in a given order or its reverse, depending on the
direction of the transversal. This pair of orders (per-
mutations) is called a geometric permutation. The
study of geometric permutations, mainly to derive
upper and lower bounds on the number of such per-
mutations, took off from their pioneering work, and
I have been involved in some of these studies. There
are still many open challenges to understand better
the structure of geometric permutations.

4. Algorithms in real algebraic geometry. A
real semi-algebraic set is a region in Rd that is de-
fined by a Boolean combination of a finite number
of polynomial equalities and inequalities. Given such
a set A, how can we process it algorithmically? For
example, how do we determine whether A is empty?
Compute its connected components? Find a point in
each connected component? These and many other
basic problems in Computational Real Algebraic Ge-
ometry have been studied by Ricky, together with
his colleague Marie-Françoise Roy and his student
Saugata Basu. These works have culminated in their
monumental book Algorithms in Real Algebraic Ge-
ometry [2], which has become, in a sense, the bible of
this area, containing all the basic tools, techniques,
and algorithms in computational real algebra and al-
gebraic geometry. It is remarkable that the book is
publicly available via open access, as demanded by
the authors.

I would like to finish this note by mentioning some
of my joint works with Eli and Ricky, most of them
are with Ricky only. An exception is a work with
both of them on the space of hyperplane transversals
to a family of n separated and strictly convex sets in
Rd, where we show that the maximum combinatorial
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complexity of this space is Θ
(
n⌊d/2⌋). A main feature

of the analysis, mainly contributed by Eli and Ricky,
is the analysis of the topology of the space of common
tangents, of a special kind, of a collection of such
sets. It is yet another manifestation of their interest
in studying topological aspects of discrete geometry.
Of the works with Ricky, I would like to men-

tion the one on counting and cutting cycles of lines
in space. This was a notoriously difficult problem,
which has been solved only much later, where the goal
was to break the lines in a set of n lines in R3 into the
smallest (or, at least, a small) number of pieces, so as
to eliminate all the depth cycles between them. The
newly derived upper bound is close to n3/2, which is
nearly tight in the worst case. However, back when
the paper with Ricky appeared, only very partial re-
sults were known. The paper was accompanied by
another work of Pach, Pollack and Welzl, in which
they have shown that a 4×4 pattern of lines in space
cannot be completely weaving, namely that it is im-
possible for each line to alternate between passing
above and below the lines in the other set in order.
To experiment with this finding, they went out to
buy some toy sticks to physically test how they can
weave. Without thinking too much, they naturally
bought 4× 4 = 16 sticks...
Several other works with Ricky are on quasi-planar

graphs, on arrangement of Jordan arcs with three in-
tersections per pair, and various problems on simple
polygons. All this goes to show that Ricky and Eli
had been very curious and open-minded, and were in-
terested in basically everything. Working with them
was both fun and very inspiring.
The community at large, and I personally, are still

reeling from the loss of both of them, and sorely miss
their leadership and great science, not to mention
friendship.

3 Noga Alon
Eli Goodman, Ricky Pollack,
and Semivarieties

The friendship and collaboration between Eli Good-
man and Ricky Pollack has been rare and produc-

Figure 5: Ricky Pollack, Eli Goodman, and Peter
McMullen at the AMS-IMS-SIAM Summer Research
Conference on Discrete and Computational Geome-
try, Santa Cruz, CA, July 1986. (Photo by J. Pach.)

tive, spanning decades of joint work and including
the foundation of a leading journal and the organi-
zation of meetings and an active research seminar.
Their joint papers stimulated a considerable amount
of follow-up work. In this section we focus on one of
their beautiful contributions and describe some of its
many subsequent developments. The basic idea ap-
pears in a remarkable short note [9], where Goodman
and Pollack observed that a Theorem of Milnor in real
algebraic geometry can be used to provide an elegant
nearly tight asymptotic estimate for the number of
(simplicial) polytopes with n vertices in Rd. Their
approach paved the way to a significant amount of
additional results in combinatorics, discrete and com-
putational geometry and related areas, obtained by
applying powerful tools from real algebraic geome-
try. It is natural to speculate that the background of
Goodman in algebraic geometry demonstrated by his
influential early work in the subject [3] helped in the
early development of this approach. Below I describe
the background to Goodman and Pollack’s work on
convex polytopes, followed by their results, and two
research directions inspired by their work.

1. Connected components and sign patterns.
There are several known results that provide up-
per bounds for the number of connected compo-
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nents of real varieties or semivarieties. Following
such estimates by Olĕınik–Petrovski (1949), Milnor
(1964) and Thom (1965), Warren [19] proved that if
m ≥ ℓ ≥ 2, and {Pi(x1, . . . , xℓ), 1 ≤ i ≤ m} is a set
of m polynomials in ℓ real variables, then the number
of connected components of the semivariety

V = {(x1, . . . , xℓ) ∈ Rℓ, Pi(x1, . . . xℓ) ̸= 0

for all 1 ≤ i ≤ m}
is at most (4ekm/ℓ)ℓ.
For each point x = (x1, x2, . . . xℓ) ∈ V , the sign

pattern of the polynomials Pi at the point x is the
vector (sign(P1(x)), . . . , sign(Pm(x))) ∈ {−1, 1}m.
Let s(P1, . . . , Pm) denote the total number of dis-
tinct sign patterns of the polynomials Pi, as x
ranges over all points of V . Since the sign of each
polynomial cannot change in any connected compo-
nent of V , it follows that for m and ℓ as above,
s(P1, . . . , Pm) ≤ (4ekm/ℓ)ℓ. In applications it is
sometimes desirable to bound the number of sign pat-
terns (sign(P1(x)), . . . , sign(Pm(x)) ∈ {−1, 0, 1}m,
where here x ranges over all points of Rℓ (including
those in which some of the polynomials Pi vanish).
It is not difficult to show (see [1]) that the result
of Warren implies that this number does not exceed
(8ekm/ℓ)ℓ.

2. Counting polytopes and configurations.
Let c(n, d) denote the number of (combinatorial
types of) d-polytopes on n labeled vertices and let
cs(n, d) denote the number of simplicial d-polytopes
on n labeled vertices (that is, polytopes in which all
facets are simplices). The problem of determining
or estimating these two functions (especially for 3-
polytopes) has been the subject of much effort and
frustration of nineteenth-century geometers as de-
scribed, for example, in the book Convex Polytopes of
Grünbaum. Despite these efforts, for any d ≥ 4 (and
large n) the best known upper bound for both cs(n, d)
and c(n, d) has been exponential in n⌊d/2⌋ log n. This
estimate follows from the upper bound theorem for
convex polytopes. The remarkable result of Good-
man and Pollack [8, 9] improved it dramatically to
a bound exponential in d2n log n. They started by
bounding the number of order types of configurations
of n (labeled) points in Rd, defined in what follows.

If (p0, p1, . . . , pd) is a sequence of d+1 points in Rd,
with pi = (xi1, . . . , xid) for each i, we say they have
a positive orientation if the determinant of the ma-
trix (xij)0≤i,j≤d where xi0 = 1 for each i, is positive.
If the determinant is negative they have a negative
orientation, and if the determinant is zero they lie on
a common hyperplane. The order type of a configu-
ration C of n labeled points p1, p2, . . . , pn in Rd is a
function w from the set of all (d+1)-subsets of [n] =
{1, 2, . . . , n} to {0,±1}, where for S = {i0, i1, . . . , id}
with 1 ≤ i0 < i1 < . . . < id ≤ n,w(S) is +1,−1 or 0
according to the orientation of the points pi0 , . . . , pid .

Let t(n, d) denote the number of distinct order
types of configurations of n labeled points in Rd.
Note that t(n, d) is the number of sign patterns of(

n
d+1

)
polynomials of degree d in the dn real vari-

ables (xi1, . . . , xid), i = 1, . . . , n, which are the co-
ordinates of the points. The polynomials are just
all the determinants det(xikj), 0 ≤ k, j ≤ d, where
xik0 = 1 for all k and 1 ≤ i0 < i1 < · · · < id ≤ n.
Therefore, the estimate of Warren (and its slight ex-
tension for the total number of sign patterns) shows

that t(n, d) ≤ n(1+o(1))d2n.

This supplies immediately a similar bound for the
number c(n, d) of d-polytopes on n points. Indeed,
the order type of a configuration that spans Rd de-
termines which sets of its points lie on supporting
hyperplanes of its convex hull. Hence, the order type
of a configuration on a set of n points in Rd which is
the set of vertices of a convex polytope P determines
its facets and its complete combinatorial type.

3. Signrank. The sign-pattern of an m by n real
matrix A with nonzero entries (aij)1≤i≤m,1≤j≤n is an
m by n matrix Z(A) = (zij) of 1,−1 entries where
zij = sign aij . For an m by n matrix Z of 1,−1 en-
tries, let r(Z) denote the minimum possible rank of
a matrix A such that Z(A) = Z. Define r(n,m) =
max{r(Z) : Z is an m by n matrix over {1,−1}}.
The problem of determining or estimating r(n,m),
and in particular r(n, n), was raised by Paturi and
Simon in the early 80s, motivated by the study of
the so-called unbounded-error probabilistic commu-
nication complexity of a Boolean function of n + n
bits. Alon, Frankl and Rödl (cf. [1]) proved in 1985
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that
n

16
≤ r(n, n) ≤ n

2
+ 3

√
n

and that if m/n2 → ∞ and (log2 m)/n → 0 then

r(n,m) =

(
1

2
+ o(1)

)
n .

The lower bounds in both estimates are derived
from the estimate of Warren by a simple counting
argument.

4. Semialgebraic properties. A graph property
is any family of graphs F closed under isomorphism.
Such a family is called semialgebraic if every vertex is
a point in a real space of bounded dimension, and the
adjacency of two vertices is determined by the signs
of a finite set of bounded degree polynomials in the
coordinates of the corresponding points. This can be
extended to hypergraphs too, but for simplicity we
focus here only on the case of graphs. Natural spe-
cial cases of such properties are intersection graphs
of simple geometric objects, like segments or disks
in the plane, boxes in R3 and more. The speed of
a family F is the function f(n) = |Fn|, where Fn

is the set of all graphs with n vertices in the fam-
ily. The results about the number of sign patterns
of polynomials described here imply that the speed
f(n) of any semialgebraic family of graphs satisfies
f(n) ≤ 2cn logn, where c = c(F) is a constant that de-
pends on the dimension and the degrees of the poly-
nomials in the definition of the property. Several spe-
cific examples can be found in [1] and the references
therein. A result of Sauermann [17] shows that un-
der some mild conditions the estimate obtained for
the constant c = c(F) by applying Warren’s Theo-
rem is tight. Besides their modest speed functions,
it turns out that semialgebraic graph properties are
simpler than general families of graphs in many re-
spects. The study of their Ramsey properties and
the investigation of additional extremal questions for
such families received a considerable amount of atten-
tion in the last decade. It will surely keep being the
subject of future research, like additional related top-
ics initiated by the work of Eli Goodman and Ricky
Pollack.

4 Andreas Holmsen
Eli Goodman, Ricky Pollack,
and Geometric Transversal
Theory

A specific branch of combinatorial geometry in which
the work of Eli and Ricky had a tremendous impact
is what we call “geometric transversal theory”. This
line of research, an offshoot of Helly’s theorem, was
initiated in the 1930’s by Vincensini and Santaló, and
explored further in the 50’s and 60’s by a number of
prominent geometers such as Grünbaum, Hadwiger,
Klee, and Danzer. The famous survey, “Helly’s theo-
rem and its relatives”, gives a detailed account of the
state of affairs in 1963, and motivated further study
throughout the 70’s and 80’s.

Eli and Ricky’s 1988 paper “Hadwiger’s transver-
sal theorem in higher dimensions” stands as one of
the milestones of geometric transversal theory. Their
beautiful result related the (at the time) novel no-
tion of order types to the classical study of geometric
transversals, and paved the way for research direc-
tions in discrete and computational geometry which
bear fruit to this day.

The study of geometric transversals originated
with Helly’s theorem, which asserts that for a family
of at least d + 1 compact convex sets in Rd, if every
d + 1 members can be intersected by a point, then
the entire family can be intersected by a point. Can
a similar theorem be true if the property “intersected
by a point” is replaced with “intersected by a line”,
or by a plane, or more generally by a k-dimensional
affine flat?

This was the problem, posed by Vincensini in 1935,
that initiated the study of geometric transversals, but
it did not take long before Santaló realized that no
such “Helly-type” theorem can exist for k-flats when
k > 0. While this situation may seem somewhat
discouraging, it did not prevent further study of ge-
ometric transversals. Indeed, Santaló showed that if
we restrict ourselves to families of axis parallel boxes
in Rd, then the “Helly number” for line transversals
becomes 2d−1(2d−1), and for hyperplane transversals
it becomes 2d−1(d + 1). In fact, there has been ex-
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Figure 6: The line transversal induces the ordering
1 ≺ 2 ≺ 3 ≺ 4.

tensive work on geometric transversals which investi-
gates Helly-type theorems under various restrictions
on the geometric shapes of the sets in the family.
Rather than focusing on the geometric shape of the

sets, Hadwiger’s approach has a more combinatorial
flavor. Suppose a finite family of pairwise disjoint
convex sets admits a line transversal. By orienting
this line, it induces an ordering on the family, namely
the order in which it meets the sets. In particular,
any three members of the family are met by a line
which is consistent with the given ordering. (See Fig-
ure 6.) What Hadwiger showed is that, in the plane,
this obvious necessary condition is also sufficient:

Theorem. A finite family F of pairwise disjoint con-
vex sets in the plane admits a line transversal if and
only if there exists a linear ordering of F such that
every three members of F are met by a line consistent
with the ordering.

By the mid 1980’s, Eli and Ricky had been inves-
tigating order types of point configurations in Rd for
several years, when it dawned upon them that the lin-
ear ordering in Hadwiger’s transversal theorem was
simply a 1-dimensional order type. They noticed that
by making a bijection between a finite set and a point
configuration in Rk, then the order type of the point
configuration induces what they called a k-ordering
of the set, which for k = 1 is precisely a linear order-
ing. This meant that they had just the right tool to
generalize Hadwiger’s transversal theorem to higher
dimensions! All that was missing was the right ana-
logue of pairwise disjointness, and the natural con-
dition they found was to define a family of at least
k + 1 convex sets in Rd to be (k − 1)-separated if no

k + 1 of them admit a (k − 1)-transversal. In partic-
ular, being 0-separated means that no two members
have a 0-transversal, i.e., the members are pairwise
disjoint. A consequence of the definition is the fol-
lowing: If a (k − 1)-separated family of convex sets
in Rd admits a k-transversal, then by choosing one
point from each set within the given k-transversal,
we obtain a point configuration in Rk, and the order
type of this configuration is independent of the choice
of points. In this way, a k-transversal naturally in-
duces a k-ordering of the family. These observations
led Eli and Ricky to their celebrated generalization
of Hadwiger’s theorem:

Theorem ([10]). A finite (d− 2)-separated family F
of convex sets in Rd admits a hyperplane transversal
if and only if there is a (d−1)-ordering of F such that
every d + 1 members of F are met by a hyperplane
consistent with the (d− 1)-ordering.

Another important development was made a cou-
ple years later by Wenger, a PhD student of Ricky,
who was able to remove the disjointness assumption
from Hadwiger’s transversal theorem. This requires
a clarification of what it means for a line to intersect
a family of convex sets consistently with an ordering,
since such an ordering may no longer be uniquely de-
termined. Wenger showed that it suffices for some
choice of points to be consistent with the ordering,
and shortly after, Pollack and Wenger extended this
to higher dimensions as well. By an elegant proof
from “the book”, which combines order types, com-
binatorial convexity, and the Borsuk–Ulam theorem,
they proved what we now call the Goodman–Pollack–
Wenger theorem:

Theorem ([16]). A finite family F of convex sets in
Rd admits a hyperplane transversal if and only if for
some k, 0 ≤ k < d, there is a k-ordering of F such
that every k + 2 of the sets are met by some k-flat
consistent with the k-ordering.

Over the years there have been a number of fur-
ther generalizations and extensions of Eli and Ricky’s
breakthrough result. Some of the highlights include:

▷ Anderson and Wenger (1996): Replaces the k-
ordering by the more general concept of an acyclic
oriented matroid.
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▷ Arocha et al. (2003): Shows that not only do
we get a single hyperplane transversal, but in fact
“many” of them, captured by what they call a vir-
tual k-transversal.

▷ Arocha et al. (2008): Gives a colorful version of
Hadwiger’s transversal theorem in the spirit of the
Bárány–Lovász “colorful Helly theorem”.

▷ Cheong et al. (2023): Proves the colorful version of
the Goodman–Pollack–Wenger theorem conjectured
by Arocha et al.

▷ McGinnis (2023): Establishes an analogue of the
Goodman–Pollack–Wenger theorem for hyperplane
transversal in Cd.

For nearly two decades, Eli and Ricky (with var-
ious collaborators) continued working on geomet-
ric transversals, exploring Helly-type theorems, the
topological structure and combinatorial complexity
of the space of transversals, and convexity on the
affine Grassmannian. Their survey [13] joint with
Wenger, documented the explosion of work in geo-
metric transversal theory that had taken place in the
years following their breakthrough papers on the gen-
eralizations of Hadwiger’s transversal theorem.
In the paper “Foundations of a theory of convexity

on affine Grassmann manifolds”, Eli and Ricky asked
whether there is a convex hull operator, convk(·), on
the space of k-dimensional affine flats in Rd, which
naturally extends the standard convex hull operator
for points, and satisfies general properties such as:
monotonicity, idempotence, antiexchange, and affine
invariance. (For precise definitions see [12] or the
expository article [4].)
Their solution was as natural as the question: Fix

an integer 0 ≤ k < d. For a set L of k-flats in Rd,
define its dual, L∗, to be the family of all convex
(point) sets which meets every flat in L. For a family
F of convex (point) sets, define its dual, F∗, to be
the set of all k-transversals to the family F . Now
define the convex hull of a set L of k-flats in Rd to
be its double dual, that is, convk L = L∗∗.

It turns out that this notion of convexity satisfies
the four properties stated above, and indeed, when
restricted to the case k = 0, it reduces to the stan-
dard convexity. For k > 0 a rich theory emerges
which is closely tied to central questions in geometric

transversal theory, and their paper explores a num-
ber of interesting examples ranging from rulings on
a hyperboloid to certain Schubert varieties. In fact,
many sophisticated constructions and counterexam-
ples in geometric transversal theory can be traced
back to this convexity structure.

Today geometric transversal theory is an active
area of research. In the last decade, we have wit-
nessed an emergence of new and exciting directions
motivated by recent trends in discrete and computa-
tional geometry, as well as developments on research
problems dating back to Eli and Ricky’s seminal work
in the area.
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