
1

EXTENDED VC-DIMENSION, AND RADON AND TVERBERG
TYPE THEOREMS FOR UNIONS OF CONVEX SETS

NOGA ALON⋆ AND SHAKHAR SMORODINSKY‡

Abstract. We define and study an extension of the notion of the VC-dimension of a hypergraph
and apply it to establish a Tverberg type theorem for unions of convex sets. We also prove a new
Radon type theorem for unions of convex sets and settle a well-known open problem posed by Kalai
in the 1970s.

1. Introduction. Radon’s theorem states that any set of d+2 points in Rd can
be partitioned into two subsets whose convex hulls intersect. Formally, given a set
P = {x1, x2, . . . , xd+2} ⊆ Rd, there exists a partition of P into two disjoint subsets
P1 and P2 (P = P1 ∪ P2) such that CH(P1) ∩ CH(P2) ̸= ∅, where here and in what
follows CH(X) denotes the convex hull of a set of points X. The bound d+2 is tight
as one can easily see by taking any set of d+ 1 affine-independent points in Rd, that
is, the vertices of the d-dimensional simplex.

This fundamental theorem is a cornerstone in discrete geometry, providing insights
into the structure of point sets and their convex combinations. It implies various
fundamental theorems in geometry including the classical Helly’s Theorem, the center
point theorem, and more. Its implications extend to machine learning, statistical
learning and computational geometry, influencing algorithms for geometric separation,
point location, and convex hull computations. An example of such implication is the
existence of small so-called ε-nets or ε-approximations for range-spaces defined by
semi-algebraic sets which are a core notion in those areas. The combinatorial notion
of VC-dimension is, in fact, the analog of Radon’s bound for abstract set-systems.

An equivalent formulation of Radon’s theorem states that for any set P of d+ 2
points in Rd, there exists a partition of the set into two subsets P1 and P2 such
that any convex set containing P1 must intersect any convex set containing P2. This
perspective highlights the strong separation properties that are impossible for sets of
d+ 2 points in Rd.

Moreover, Radon’s theorem serves as a basis for numerous generalizations and
related results, such as the following classical and beautiful theorem of Tverberg [20],
which further enriches our understanding of geometric configurations.

Theorem 1.1. [Tverberg’s Theorem[20]] Let r ≥ 2 be a fixed integer and d ≥ 1.
Then for any set P of (r−1)(d+1)+1 points in Rd there exists a partition of P into
r pairwise disjoint sets P =

⋃r
i=1 Pi such that

⋂r
i=1 CH(Pi) ̸= ∅.

Note that Radon’s theorem is the special case of Tverberg’s theorem with r = 2.
Tverberg’s Theorem has far-reaching implications in discrete and computational

geometry and beyond. Combined with the colorful Carathéodory’s theorem of Bárány
[6] it implies, for example, the so-called first selection Lemma (see, e.g., [15]).

∗© 2026 Society for Industrial and Applied Mathematics. This is the authors’ version. The
definitive version will appear in the Proceedings of the 2026 ACM-SIAM Symposium on Discrete
Algorithms (SODA).

⋆Department of Mathematics, Princeton University, Princeton, NJ 08544, USA and Schools of
Mathematics and Computer Science, Tel Aviv University, Tel Aviv, Israel. Research supported in
part by NSF grant DMS-2154082. nalon@math.princeton.edu

‡Institute for the Theory of Computing, Faculty of Computer and Information Science, Ben-
Gurion University of the NEGEV, Be’er Sheva 84105, Israel. Research partially supported by the
Israel Science Foundation (grant no. 1065/20). shakhar@bgu.ac.il

1



An equivalent formulation of Tverberg’s theorem states that for any set P of
(r − 1)(d + 1) + 1 points in Rd, there exists a partition of the set into r pairwise
disjoint sets P =

⋃r
i=1 Pi such that for any family of convex sets C1, . . . , Cr with

Pi ⊂ Ci for every i ∈ [r] we have that
⋂r

i=1 Ci ̸= ∅.
In this paper we settle an old open problem posed already in the 70’s by Gil Kalai

and reiterated in later surveys (e.g., [7, 14]) that asks for a generalization of Radon’s
Theorem (and Tverberg’s Theorem) to sets which are not necessarily convex nor even
connected, but are the union of a bounded number of convex sets.

Definition 1.2. Let s ≥ 1 be an integer. A set C in Rd is said to be s-convex if
it is the union of s convex sets.

Problem 1.3. [[7]-problem 6.6] What is the least integer f = f(d, s, t) such that
for any set P of f points in Rd there is a partition P = A∪B such that any s-convex
set containing A must intersect any t-convex set containing B.

A more general problem is the following:
Problem 1.4. What is the least integer f = fr(d, s1, . . . , sr) such that for any

set P of f points in Rd there is a partition into r pairwise disjoint sets P =
⋃r

i=1 Pi

such that for any family of sets C1, . . . , Cr with Pi ⊂ Ci where Ci is an si-convex set
for every i ∈ [r] we have that

⋂r
i=1 Ci ̸= ∅.

Notice that Radon’s theorem is equivalent to f(d, 1, 1) = d+2 and more generally
Tverberg’s theorem is equivalent to fr(d, 1, . . . , 1) = (r − 1)(d+ 1) + 1.

Bárány and Kalai showed that f(d, s, t) is always finite. However, their upper
bound is roughly twrd(θ(s + t)) where twrd is the d-fold tower function. This huge
upper bound is due to their proof technique involving hypergraph Ramsey theory.
Despite substantial attention, this problem remained unsolved for nearly sixty years.

1.1. The main results. Our first main result is a fairly simple proof of the
following near-optimal upper bound:

Theorem 1.5. f(d, s, t) = O(dst log(st+ 1))
Our second main result is an extension of the theorem above to the following

version of Tverberg’s theorem for unions of convex sets and any r ≥ 2:
Theorem 1.6. fr(d, s1, . . . , sr) = O

(
dr2 · log r) ·Πr

i=1si · ln(1 +Πr
i=1si)

)
A notable feature of our proofs is that they are mainly combinatorial and therefore

work for abstract separable convexity spaces with bounded Radon numbers:
Definition 1.7. An abstract convexity space is a pair (X, C) where X is a set

and C ⊆ 2X is a family of subsets of X called convex sets, satisfying the following
axioms:

1. X ∈ C and ∅ ∈ C.
2. C is closed under intersections, i.e., if D ⊆ C, then

⋂
D ∈ C.

This generalizes the notion of convex sets in Rd. Abstract convexity spaces arise natu-
rally in combinatorics, geometry, and lattice theory, and provide a unifying framework
to study convexity. For more on abstract convexity spaces, see, e.g., [13, 16, 21].

For a subset P ⊂ X in an abstract convexity space (X, C) define its convex hull
CH(P ) to be CH(P ) =

⋂
P⊂S,S∈C S.

For a set P ⊂ X we say that P = P1 ∪ P2 is a Radon partition if CH(P1) ∩
CH(P2) ̸= ∅. We say that an r partition P =

⋃r
i=1 Pi is an r-Tverberg partition of

P if
⋂r

i=1 CH(Pi) ̸= ∅. The Radon number r(X, C) of a space (X, C) is the minimum
integer n such that any subset P ⊂ X with |P | ≥ n admits a Radon partition. If
n is unbounded then the Radon number is ∞. Similarly, the r’th Tverberg number
Tr(X, C) is the minimum integer n such that any subset P ⊂ X with |P | ≥ n admits
an r-Tverberg partition.
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A convex set H ∈ C in an abstract convexity space (X, C) is called a halfspace if
its complement is also a convex set i.e., X \H ∈ C.

We say that an abstract convexity space (X, C) is separable if for any two disjoint
sets there exists a separating halfspace. Formally, for any C1 ∈ C and C2 ∈ C if
C1 ∩ C2 = ∅ then there exists a halfspace H such that C1 ⊂ H,C2 ⊂ X \H.

Our proof technique of Theorem 1.5 and Theorem 1.6 works for abstract convexity
spaces which are separable and have a bounded Radon number. Let (X, C) be a
separable abstract convexity space with Radon number d = r(X, C). Call a subset
A ⊂ X s-convex if it is the union of s convex sets in C. Let F = F (d, s, t) be the
minimum integer so that any set P of cardinality at least F in a separable abstract
convexity space (X, C) with Radon number d admits a partition P = P1 ∪ P2 such
that any s-convex set containing P1 must intersect any t-convex set containing P2.
We have:

Theorem 1.8. F (d, s, t) = O(dst log (st+ 1)).

More generally let F = Fr(d, s1, . . . , sr) be the minimum integer so that any set
P of cardinality at least F in a separable abstract convexity space (X, C) with Radon
number d admits a partition P =

⋃r
i=1 Pi into r pairwise disjoint sets P =

⋃r
i=1 Pi

such that for any family of sets C1, . . . , Cr with Pi ⊂ Ci where Ci is an si-convex set
for every i ∈ [r] we have that

⋂r
i=1 Ci ̸= ∅.

Theorem 1.9. Fr(d, s1, . . . , sr) = O
(
dr2 · log r ·Πr

i=1si · ln(1 +Πr
i=1si)

)
.

Our Theorem 1.9 for the special case si = 1 for all i provides an upper bound of
O(dr2 log r) on the so-called Tverberg number in separable abstract convexity spaces
in terms of its Radon number d. This improves the upper bound of c(d)r2 log2 r by
Bukh [9] who proved it for the more general setting of (not necessarily separable)
abstract convexity spaces. In [18] Pálvölgyi provided an upper bound of the form

O(dd
dlog d

r) which is linear in r but super exponential in d.

We describe here the proofs of Theorem 1.5 and Theorem 1.6. Essentially the
same proofs establish the corresponding results, Theorem 1.8 and Theorem 1.9, for
abstract separable convexity spaces.

1.2. Tools and preliminaries. Our proof of Theorem 1.5 is based on some
simple properties of the VC-dimension and the shatter function of the relevant hy-
pergraphs. In order to prove Theorem 1.6 we define an extended version of the
VC-dimension and show how to bound it in terms of the usual dimension.

The Vapnik-Chervonenkis dimension of a hypergraph is a measure of its complexity,
which plays a central role in statistical learning, computational geometry, and other
areas of computer science and combinatorics (see, e.g., [3, 2, 4, 8, 17]). Many graphs
and hypergraphs that arise in geometry have bounded VC-dimension.

Definition 1.10 (VC-dimension). The Vapnik-Chervonenkis dimension V C(H)
of a hypergraph H = (V,E) is the largest integer d such that there exists a subset
S ⊆ V (not necessarily in E) with |S| = d that is shattered by E. A subset S is said
to be shattered by E if, for every subset T ⊆ S, there exists a hyperedge e ∈ E such
that e ∩ S = T .

Remark 1.11. Note that in a hypergraph H = (V,E) a subset S is shattered if,
equivalently, for every partition S = A∪B (with A∩B = ∅) it holds that there exists
two hyperedges e1 ∈ E and e2 ∈ E such that A ⊂ e1, B ⊂ e2 and e1 ∩ e2 ∩ S = ∅.
We will need a generalization of this notion to partitions into r sets and such a
generalization is given below in Definition 1.14.

Note that by the fact that every two disjoint convex sets in Rd are separable by a

3



halfspace, Radon’s Theorem implies that no set of d+2 points in Rd is shattered with
halfspaces. Namely, if Hd is the family of all halfspaces in Rd then the VC-dimension
of the hypergraph (Rd,Hd) is at most d+ 1. This simple observation holds for every
separable abstract convexity space (X, C) with Radon number d. In that case the
VC-dimension of the hypergraph (X,H) where H is the family of all halfspaces in C
is at most d− 1.

Definition 1.12.

The primal shatter function of a hypergraph H = (V,E) is the following function
πH : N → N:

πH(m) = max
S⊆V,|S|=m

|{S ∩ e : e ∈ E}|.

The value πH(m) represents the maximum number of distinct subsets of a set S of
cardinality m that can be realized as intersections with hyperedges in E.

The following lemma, known as the Sauer-Shelah-Perles lemma, provides an upper
bound on the shatter function for hypergraphs with bounded VC-dimension (See, e.g.,
[15]):

Lemma 1.13 (Sauer-Shelah-Perles). Let H = (V,E) be a hypergraph with VC
dimension d. Then

πH(m) ≤
d∑

i=0

(
m

i

)
.

In particular, if m > d, then πH(m) ≤ ( emd )d.

In order to tackle Problem 1.4 we need to develop an analogous notion of a
shattered set in hypergraphs with bounded VC-dimension to partitions with more
than 2 parts. The relevant definition follows. The motivation for this definition will
become clear from its application in the study of Problem 1.4

Definition 1.14. Let H = (V,E) be a fixed hypergraph. A subset S ⊂ V is
said to be r-shattered by E if for any partition of S into r pairwise disjoint sets
S =

⋃r
i=1 Si there exists hyperedges e1, . . . , er ∈ E such that Si ⊂ ei for all i ∈ [r]

and S ∩
⋂r

i=1 ei = ∅.
The following combinatorial lemma provides an extension of the Sauer-Shelah-

Perles Lemma and might be of independent interest:

Lemma 1.15. There exists an absolute constant C such that for every integer d
and any hypergraph H = (V,E) with VC-dimension d and every integer r ≥ 2, every
r-shattered set has size at most Cdr2 log r. This bound is nearly optimal: for every
d and r there is a hypergraph with VC-dimension d that admits an r-shattered set of
size Ω(dr2).

The proof of the upper bound in the lemma is described in Section 3. The proof
of the lower bound is given implicitly in Theorem 4.2 as explained in the remark
following it.

1.3. Structure. The rest of this short paper is organized as follows. In Section
2 we describe the proof of Theorem 1.5. The proof of Theorem 1.6 is given in Section
3. After a discussion of lower and upper bounds for the relevant functions for various
ranges of the parameters in Sections 4 and 5 we suggest several open problems in the
final Section 6.
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2. Proof of Theorem 1.5. Before proceeding to the proof of Theorem 1.5 we
need the following two easy Lemmas.

Lemma 2.1. Let C1 be an s-convex set in Rd and C2 a t-convex set. Assume
that C1 ∩ C2 = ∅. Then there exist s convex polytopes K1, . . . ,Ks with a total of at
most st-facets whose union covers C1 so that the complement of the union covers C2.
Namely, C1 ⊂

⋃s
i=1 Ki and C2 ⊂

⋃s
i=1 Ki.

Proof. Since C1 is s-convex it can be written as C1 =
⋃s

i=1 Xi for some convex sets

X1, . . . , Xs. Similarly C2 =
⋃t

j=1 Yi for t convex sets Y1, . . . , Yt. Since C1∩C2 = ∅, for
every i ∈ [s], j ∈ [t] we have that Xi ∩ Yj = ∅ and therefore there exists a hyperplane
hi,j strictly separating Xi and Yj . Assume without loss of generality that the positive
open halfspace h+

i,j bounded by hi,j contains Xi and the negative open halfspace h−
i,j

contains Yj . For every i ∈ [s] let Ki be the convex polytope which is the intersection⋂t
j=1 h

+
i,j . Note that Ki is a convex polytope with at most t facets containing Xi and

its complement Ki contains C2. So the union of the polytopes
⋃s

i=1 Ki contains C1

and its complement
⋃s

i=1 Ki contains C2. Moreover, the total number of facets of
these polytopes is at most st. This completes the proof of the lemma.

Lemma 2.2. Let l be an integer and let H = (P,E) be a hypergraph where P is a
set of points in Rd and S ∈ E is a hyperedge if and only if there exists a set K1, . . . ,Ki

of convex polytopes with a total of at most l facets such that S = P ∩ (
⋃i

j=1 Kj).
Namely, S can be cutoff from P by intersecting it with a set consisting of a union of
convex polytopes with a total of l facets. Then the VC-dimension of H is bounded by
O(dl log(l + 1)).

Proof. The proof is rather standard and follows from e.g., [15](Proposition 10.3.3).

Proof of Theorem 1.5: Put l = st. Let H = (Rd, E) be the hypergraph as in
Lemma 2.2. Let n = O(dl log(l + 1)) = O(dst log(st + 1)) be its VC-dimension. We
claim that f(d, s, t) ≤ n + 1. Indeed, Let P be a set of n + 1 points in Rd. Since P
cannot be shattered by the hyperedges in H there exists a non-trivial subset A ⊂ P
such that no hyperedge S ∈ E has the property that S ∩ P = A. In other words
there does not exists a set K which is the union of convex polytopes with a total of
at most l facets such that K ∩ P = A. We claim that the partition P = A ∪ (P \ A)
has the property that every s-convex set containing A must intersect any t-convex set
containing P \A. Indeed, assume to the contrary that there exists an s-convex set C1

containg A and a t-convex set C2 containing P \ A such that C1 ∩ C2 = ∅. Then by
Lemma 2.1 there exists a set K which is the union of convex polytopes with a total of
at most l = st facets containing C1 with complement K containing C2. In particular,
K contains A and K contains P \ A so K ∩ P = A, a contradiction. This completes
the proof. □

3. Generalized Tverberg’s Theorem. In this section we tackle Problem 1.4.
In what follows we provide a bound on fr(d, s1, . . . , sr). For the sake of simplicity of
computations, we assume that s1 = s2 = · · · = sr = s and abuse the notation writing
fr(d, s) for fr(d, s, s, . . . , s). Our proof technique can be easily modified to make the
bound sensitive to any r integer parameters s1, . . . , sr in the more general setting.

Our argument is based on the notion defined in 1.14, which is an extension of the
notion of VC-dimension to partitions with more than 2 sets.

We need Lemma 1.15. We proceed with its proof.
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Proof. Let r ≥ 2 be an integer. Suppose that(
d∑

i=0

(
f

i

))r

<

(
r

r − 1

)f

(3.1)

Then any subset S of f vertices cannot be r-shattered. Namely, there exists a
partition S =

⋃r
i=1 Si so that whenever we have r hyperedges e1, e2, . . . , er ∈ E such

that Si ⊂ ei for all i ∈ [r] it must hold that S ∩
⋂r

i=1 ei ̸= ∅.
Note that the inequality (3.1) holds for f = Cdr2 log r for some absolute constant

C so any r-shattered set has size at most f − 1.
Suppose the statement of the lemma is false and there is a set S that violates the

condition. For every (ordered) r-tuple of hyperedges e1, e2, . . . , er with no common
intersection in S, every point of S belongs to at most r − 1 of these hyperedges.
Therefore, these fixed r hyperedges can be used to provide at most (r−1)f partitions
into r sets S1, . . . , Sr. Indeed every point among the f points of S has at most r − 1
options to decide to which part of the partition it belongs - if, for example, a point lies
in all hyperedges e1 and e2 up to er−1 it can be in the partition in either S1 or S2 up
to Sr−1 but not in Sr, and similarly for each other case. By the Sauer-Shelah-Perles
Lemma 1.13, the number of ordered r-tuples of intersections of hyperedges with S is
at most

(
d∑

i=0

(
f

i

))r

Since we have to cover all rf ordered partitions of S into r parts we get

(
d∑

i=0

(
f

i

))r

· (r − 1)f ≥ rf

This contradicts the assumption (3.1) and completes the proof.
We also need the following simple geometric result where we prove that disjoint

s-convex sets can each be enclosed in an s-convex polytope such that all those s-
convex polytopes are also disjoint. Moreover, we provide an upper bound on the total
number of facets of each such enclosing s-convex polytope.

Lemma 3.1. Let C1, C2, . . . , Cr be r sets in Rd where each set is an s-convex set.
Assume that

⋂r
i=1 Ci = ∅. Then there exist r sets K1, . . . ,Kr where each Ki is the

union of s convex polytopes with a total of at most sr-facets such that Ci ⊂ Ki for all
i ∈ [r] and

⋂r
i=1 Ki = ∅.

Proof. Since Ci is s-convex for any i ∈ [r] ,it can be written as Ci =
⋃s

j=1 Xi,j

for some convex sets Xi,1, . . . , Xi,s. Since
⋂r

i=1 Ci = ∅, then for every i ∈ [r] we have
that Ci is disjoint from Bi =

⋂
j ̸=i Cj . Note that each such Bi is the union of at most

sr−1 convex sets since it is an (r− 1)-fold intersection of unions of s-convex sets. We
construct the sets K1, . . . ,Kr one by one. First, we replace C1 by K1 separating it
from the union of at most sr−1 convex sets B1 =

⋂
j>1 Cj . As before, this can be done

with K1 which is the union of s convex polytopes with a total of at most sr facets. In
particular K1 is also s-convex. Also C1 ⊂ K1. Moreover, K1 ∩

⋂
j>1 Cj = ∅. We then

apply the same argument to C2 as the intersection of K1, C2, .., Cr is empty and all
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the sets are s-convex. So we can find a set K2 which is s-convex and consists of the
union of s convex poytopes with a total of at most sr facets and such that C2 ⊂ K2

and K1 ∩K2 ∩
⋂

j>2 Cj = ∅. Continuing in the same manner we conclude that each
Ci can be replaced with such a Ki so that Ci ⊂ Ki for all i ∈ [r], each Ki is the union
of s convex polytopes with a total of sr factes and

⋂r
i=1 Ki = ∅. This completes the

proof of the lemma.
We are now ready to prove the following theorem extending Theorem 1.5 to

partitions with r > 2 parts, and generalizing Tverberg’s theorem to s-convex sets:
Proof. [Proof of Theorem 1.6 (for s1 = s2 = . . . = sr = s)] Put l = sr. Let

H = (Rd, E) be the hypergraph as in Lemma 2.2. Let d′ = O(dl log(l+ 1)) be
its VC-dimension. Let n be the maximum size of an r-shattered set. Note
that by Lemma 1.15 n = O(d′r2 log r) = O(dr2log r · sr · log(sr + 1))

We claim that fr(d, s) ≤ n+ 1. Indeed, let P be a set of n+ 1 points in
Rd. Since P cannot be r-shattered by the hyperedges in H there exists a
partition P =

⋃r
i=1 Pi such that whenever we have r hyperedges e1, . . . , er ∈ E

with Pi ⊂ ei for each i ∈ [r] it follows that P ∩
⋂r

i=1 ei ̸= ∅. In other words
there do not exist sets K1, . . . ,Kr each of which is the union of convex
polytopes with a total of at most sr facets such that Pi ⊂ Ki for every
i ∈ [r] and

⋂r
i=1 Ki = ∅. We claim that the partition P =

⋃r
i=1 Pi has the

property that for every family of r sets C1, . . . , Cr such that for each i ∈ [r]
Pi ⊂ Ci and each Ci is an s-convex set it must hold that

⋂r
i=1 Ci ̸= ∅. Indeed,

assume to the contrary that there exist C1, . . . , Cr such that for each i ∈ [r]
Pi ⊂ Ci, each Ci is an s-convex set and such that

⋂r
i=1 Ci = ∅. Then by

Lemma 3.1 there exist sets K1, . . . ,Kr for which Ci ⊂ Ki, ∀i ∈ [r] and each
Ki is the union of convex polytopes with a total of at most l = sr facets
and

⋂r
i=1 Ki = ∅, a contradiction. This completes the proof.

4. A lower bound for fr(d, s). In the title of this section as well as in its
content and in the next two sections we denote the function fr(d, s1, s2, . . . , sr) in
which si = s for all i by fr(d, s). An easy lower bound for the function fr(d, s) can be
proved by taking s translated copies of an extremal example for the classical theorem
of Tverberg with pairwise disjoint convex hulls. This gives the following.

Proposition 4.1. fr(d, s) > s(d+ 1)(r − 1)
This is, of course, tight for s = 1, as Tverberg’s Theorem is tight. In this section

we show that, somewhat surprisingly, for s ≥ 3 the lower bound becomes quadratic
in r. As we show in the next section, this is the case even in dimension d = 1, where
the lower bound is tight up to a constant factor for all r and s ≥ 3. For convenience
we describe the proof for even r, a similar bound for odd r follows from the one for
r − 1.

Theorem 4.2. For every d ≥ 1, s ≥ 3 and even r ≥ 2,

fr(d, s) >
1

4

(⌊
d

2

⌋
+ 1

)⌊
s− 1

2

⌋
r2

Proof. Put m = (⌊d
2⌋ + 1)r/2, p = ⌊ s−1

2 ⌋r/2 and n = mp. Let P be a set of n
points on the moment curve in Rd consisting of the n points zi = (ti, t

2
i , . . . t

d
i ), where

0 < t1 < t2 < . . . < tn < 1. Let I1, I2, . . . , Ip be p open intervals that cover (0, 1) and
appear on it in this order, where the left endpoint of each interval Ij+1 is just slightly
smaller than the right endpoint of Ij for each j. The intervals are chosen so that each
ti belongs to exactly one such interval, and each interval contains exactly m points
tj .
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In order to complete the proof we show that for any coloring of the points of P
by r colors there are s-convex sets Ci, with Ci containing all points of color i, so that
the intersection of all the sets Ci is empty. Each set Ci will be defined as the union of
at most s convex sets, where each of the convex sets will be the convex hull of points
of color i with first coordinate lying in a union of some consecutive intervals Iq. The
crucial property of the definition of these convex sets is that for each interval Iq there
will be an index i so that one of the convex sets in the definition of Ci will be the set
of all points zj = (tj , t

2
j , . . . , t

d
j ) of color i for which tj lies in this single interval Iq.

Moreover, this will be done in a way that ensures that the number of such points is
always at most ⌊d/2⌋.

Note that if such a choice indeed exists, then the intersection of the corresponding
r sets Ci will be empty as needed. Indeed, otherwise the intersection is some point
z ∈ Rd (not necessarily on the moment curve). Let t denote the first coordinate of
this point z. Suppose first that t belongs only to one interval Iq, and let i be the
color chosen for Iq so that there are at most ⌊d/2⌋ points of color i with their first
coordinate in Iq. Then z has to lie in the convex hull of these points (as any other
convex set among the ones defining Ci either has all its points with first coordinate
smaller than t or all its points with first coordinate larger than t). Since any finite
subset of the moment curve is ⌊d/2⌋-neighborly1, this convex hull is disjoint from the
convex hull of all the other points of P , implying that z cannot lie in any other set Cg

besides Ci. If t belongs to two intervals, say Iq−1 and Iq and i is defined as before,
then z cannot lie in Ci, since in this case any convex set among those defining Ci

either has all its points with first coordinate smaller than t or all its points with first
coordinate larger than t.

It thus only remains to show that we can choose for every interval Iq a color i
with the required properties, making sure that no fixed color is chosen more than
⌊(s− 1)/2⌋ times (as this way each set Ci will be the union of at most s convex sets).
To do so we go over the intervals Iq one by one, in an arbitrary order (for example,
from left to right). When dealing with the interval Iq after handling several previous
ones, we first note that since there are exactly m = (⌊d/2⌋ + 1)r/2 points with first
coordinate in Iq, there are at least r/2 colors that appears at most ⌊d/2⌋ times in
Iq. As so far we have selected the colors i for at most p − 1 = ⌊(s − 1)/2⌋r/2 − 1
intervals, there are less than r/2 colors i that have already been chosen ⌊(s − 1)/2⌋
times. It follows that there is at least one color i that can be chosen for the interval
Iq, implying that the process terminates successfuly. This completes the proof of the
theorem.

Remark 4.3. Note that for d = 1, any hypergraph whose vertices are an arbitrary
set of points on the line, and whose hyperedges are the intersections of this set of
points with union of s intervals, has VC-dimension at most 2s. Indeed, it is easily
verified that no set of size 2s + 1 is shattered. Assume to the contrary that there
is a set P = {x1, . . . , x2s+1} that is shattered where the points are indexed by their
increasing order along the line. Notice that every union of s-intervals that contains
only the s+1 points with odd indices {x1, x3, . . . , x2s+1} must have one of its intervals
containing two consecutive such points and hence also a point with an even index, a
contradiction. Therefore, Theorem 4.2 in dimension 1 provides a hypergraph with

1A set of points is r-neighborly if any subset of at most r points form a face of the convex-hull
of the set.
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VC-dimension bounded by D = 2s and an r-shattered set of size at least

1

4

⌊
s− 1

2

⌋
r2 =

1

4

⌊
D − 2

4

⌋
r2.

This establishes the claimed lower bound in Lemma 1.15

5. Improved bounds in special cases. In this section we establish improved
upper and lower bounds for the functions f and fr in several special cases.

Theorem 5.1.

f(2, s, 1) = 2s+ 2

and for every d ≥ 4

f(d, s, 1) = Θ(ds log(s+ 1))

Proof. Let l denote the VC-dimension of a hypergraph defined by points in Rd with
respect to convex polytopes with at most s facets. We first show that f(d, s, 1) = l+1.
Combined with the known bounds on the VC-dimension of such hypergraphs we get
the claimed bounds. If l is the VC-dimension of such a hypergraph then there exists
a shattered set P of size l. Then for any parition P = P1 ∪ P2 there is a polytope K
with at most s facets such that P2 ⊂ K and K ∩P1 = ∅. In particular P1 is contained
in the union of the at most s complement halfspaces supporting the facets of K, which
is an s-convex set (consisting of the at most s complement halfspaces), and P2 lies in
its complement. Since this holds for any partition it follows that f(d, s, 1) ≥ l + 1.
In order to show equality we need to show that every l + 1 point set in Rd admits a
partition that cannot be realized by intersections with disjoint convex and s-convex
sets. This follows by the same argument from the fact that any set P of l + 1 points
cannot be shattered in the corresponding hypergraph and therefore there is at least
one partition P = P1 ∪ P2 so that no polytope with at most s facets can contain P2

while being disjoint from P1. Hence any s-convex set C containing P1 must intersect
the convex hull CH(P2) for otherwise by separation arguments as above there would
be a polytope which is the intersection of s half spaces containing P2 and disjoint
from P1, a contradiction. It is a simple exercise to see that in the plane (d = 2), the
VC-dimension is l = 2s + 1 and thus f(2, s, 1) = l + 1 = 2s + 2. The statement for
any fixed d ≥ 4 follows from the results in [10].

Theorem 5.2.

f(2, s, s) ≥ 4s

Proof. Let P be a set of 4s − 1 points placed along a cycle U in the plane. We
have to show that for any partition of P into two disjoint sets A and B there are
disjoint s-convex sets C1 and C2 so that A ⊂ C1 and B ⊂ C2. Partition the set of
points P into disjoint subsets, where each subset is a maximal subset of P consisting
of consecutive points along U that are all in A or all in B. Let this partition be
A1, B1, A2, B2, . . . , At, Bt, where each Ai is a subset of A and each Bi is a subset of
B, and the sets appear in this order along U . Clearly t ≤ 2s − 1, since each of the
sets Ai, Bj is nonempty. If t < 2s− 1 define Aj = Bj = ∅ for all t < j ≤ 2s− 1. Let
C1 consist of the union of the following s convex sets (some of which may be empty):
the convex hull of A1∪A2∪ . . .∪As, the convex hull of As+1, the convex hull of As+2,
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. . ., the convex hull of A2s−1. Then C1 is s-convex and contains A. Similarly, let C2

be the union of the following s convex sets: the convex hull of Bs∪Bs+1∪ . . .∪B2s−1,
the convex hull of B1, the convex hull of B2, . . ., the convex hull of Bs−1. Then C2

is clearly s-convex and contains B. It is easy to check that C1 and C2 are disjoint,
completing the proof.

Theorem 5.3.

f(3, s, 1) ≤ 4s+ 1

Proof. We need to prove that for every set P of 4s + 1 points there exists a
partition P = A ∪ B such that any convex set containing A must intersect any s-
convex set containing B. Notice that by the above arguments it is enough to prove
that the VC-dimension of the hypergraph H = (P,E) where E is the family of all
intersections of P with a convex polytope with at most s facets is bounded by 4s.
This fact is proved in [11]. For completeness we include a proof based on an argument
in [19]. Assume to the contrary there there exists a set P ⊂ R3 of size 4s + 1 that
is shattered by H. In particular, for any partition P = A ∪ B if A can be separated
from B by a convex polytope with at most s facets, then there exists a set of s half
spaces whose union contains B but none of the points in A.

Next, we need the following fact which was proved in [19]: There exists a 4-
coloring of the points of P such that no halfspace that contains at least two points of
P is monochromatic.

Consider such a coloring. By the pigeonhole principle there is a monochromatic
set B ⊂ P of size at least s+1. We claim that B cannot be separated from A = P \B
with a union of only s halfspaces. Indeed, if such s halfspaces exist then one of them
must contain at least 2 points of B and none of the points in A so such a halfspace
cuts off a monochromatic set of points, a contradiction. This completes the proof.

We next show that g(3, s, s) is super-linear in s.
Theorem 5.4.
There exists a function g(s) tending to infinity as s tends to infinity so that

f(3, s, s) ≥ sg(s)

Proof. We make no attempt to optimize the function g(s), and only show that
it can be chosen as a function tending to infinity with s. Following the approach
in [1], the proof applies the result of Furstenberg and Katznelson [12] known as the
density Hales-Jewett Theorem. For an integer k ≥ 2, put [k] = {1, 2, . . . , k} and let
[k]d denote the set of all vectors of length d with coordinates in [k]. A combinatorial
line is a subset L ⊂ [k]d so that there is a set of coordinates I ⊂ [d] = {1, 2, . . . , d},
I ̸= [d], and values ki ∈ [k] for all i ∈ I for which L is the following set of k members
of [k]d:

L = {ℓ1, ℓ2, . . . , ℓk}

where

ℓj = {(x1, x2, . . . , xd) : xi = ki for all i ∈ I and xi = j for all i ∈ [d] \ I}.

Thus a combinatorial line is a set of k vectors all having some fixed values in the
coordinates in I, where the jth vector has the value j in all other coordinates. In this
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notation, the Furstenberg-Katznelson Theorem is the deep result that for any fixed
integer k and any fixed δ > 0 there exists an integer d0 = d0(k, δ) so that for any
d ≥ d0, any set Y of at least δkd members of [k]d contains a combinatorial line.

Fix a small positive real δ, a large integer k and a huge integer d = d0(k, δ) defined
as above. View the points of [k]d as points in the d-dimensional real space Rd and call
a (geometric) line in this space special if it contains all k points of a combinatorial
line.

By the claim in the proof of Theorem 1.3 in [1] the only points that belong to
at least two special lines are the points of [k]d. Equivalently, if two such lines do not
have a common point of [k]d then the full geometric lines are disjoint.

Now project all the configuration of the n = kd points above randomly to the
3-dimensional space R3. This gives a set P of n points in R3. With probability 1,
the condition about the intersection of the projected special lines still holds: if two of
them do not have a point of P in common, then they are disjoint.

Fix a partition of P into two disjoint sets A and B. The following procedure
partitions each of these sets into less than δkd + kd−1 pairwise disjoint subsets, which
also have pairwise disjoint convex hulls.

Starting with the full set A, as long as it contains at least δkd points choose a
combinatorial line in it. Define a subset consisting of the projected images of the
points of this line, and remove all these points from A. Once the remaining size of A
is smaller than δkd take every single point as a subset. Handle B in the same way.
Defining s as s = δkd+kd−1, this shows that f(3, s, s) > n = kd. Since δ is arbitrarily
small and k is arbitrarily large, this shows that the ratio g(s) = f(3, s, s)/s tends
to infinity as s tends to infinity, completing the proof. It is worth noting that the
estimate for the growth of g(x) can be improved using the same reasoning together
with the results in [5], but this will still leave a large gap between the upper and lower
bounds we know for f(3, s, s).

The following simple result shows that the lower bound for fr(d, s) proved in
Section 4 is tight up to a constant factor in dimension d = 1.

Theorem 5.5.

fr(1, s) ≤ r(r − 1)(s+ 1) + 1

Proof. Put n = r(r − 1)(s + 1) + 1 and let 0 < p1 < p2 < . . . < pn < 1 be a set
of n points on the line. We have to show that there is a coloring of these points by r
colors 0, 1, 2, . . . , r − 1, so that for any r sets Ci, where each Ci is a union of at most
s intervals that covers all points of color i, there is a point that lies in all sets Ci.
Naturally, the coloring we choose colors the points periodically, that is, the color of pi
is defined to be i mod r. Let Ci be collections of intervals as above. Note that each Ci

must contain all points of P besides at most (s+ 1)(r − 1). Indeed, since it contains
all points colored i, the gap between any two consecutive intervals in it contains at
most r − 1 points, and the same holds for the gap between 0 and its leftmost point
and between 1 and its rightmost point. (We note that here we can slightly improve
the bound since, for example, the gap between 0 and the leftmost point of Ci can
contain at most i points pi). It follows that if n > r(r − 1)(s + 1) then there is a
point (of P , although that’s not needed) that belongs to all sets Ci. This completes
the proof.

6. Concluding remarks and open problems. We established extensions of
Radon’s Theorem and Tverberg’s Theorem for unions of convex sets. The main tools
in the proofs are upper bounds for the shatter functions of range spaces with a bounded
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VC-dimension as well as an extension of these results. This extension, defined and
studied here, is useful in the study of partitions with more than 2 parts, which are
the ones considered in the classical definition of the VC-dimension.

As mentioned in the introduction, already for si = 1 for all i the upper bound
provided in our Theorem 1.9 is O(dr2 log(r + 1)). It improves the upper bound of
c(d)r2 log2(r + 1) by Bukh [9] who proved it for the more general setting of (not
necessarily separable) abstract convexity spaces. In [18] Pálvölgyi provided an upper

bound of the form O(dd
dlog d

r) which is linear in r but super exponential in d. It will
be interesting to decide if one can get rid of the separability assumption.

While our upper and lower bounds for the functions f(d, s, t) and fr(d, s1, s2, . . . , sr)
proved here are not very far from each other, the problem of determining them pre-
cisely remains open for most values of the parameters. It will be interesting to close
the gap between the upper and lower bounds. The following specific questions are
particularly intriguing.

Problem 6.1.

Is f2(s, s) linear in s ?

Problem 6.2.

Is fr(d, s) upper bounded by a polynomial in r,d and s ?
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