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Abstract

The following asymptotic result is proved. For every ε > 0, and for every positive integer h,

there exists an n0 = n0(ε, h) such that for every graph H with h vertices and for every n > n0,

any graph G with hn vertices and with minimum degree d ≥ (χ(H)−1
χ(H) + ε)hn contains n vertex

disjoint copies of H. This result is asymptotically tight and its proof supplies a polynomial time

algorithm for the corresponding algorithmic problem.

1 Introduction

All graphs considered here are finite, undirected and simple. If H is a graph on h vertices and G

is a graph on hn vertices, we say that G has an H-factor if it contains n vertex disjoint copies of

H. Thus, for example, a K2-factor is simply a perfect matching, whereas a C4-factor is a spanning

subgraph of G every connected component of which is a cycle of length 4.

Let H be a graph on h vertices and let G be a graph on hn vertices. There are several known

results that show that if the minimum degree d = d(G) of G is sufficiently large, then G contains

an H-factor. Indeed, if H is a path of length h−1 then, by Dirac’s Theorem on Hamiltonian cycles

(cf. [4]), d ≥ hn/2 suffices for the existence of an H-factor. Corrádi and Hajnal [5] proved that

for H = K3, d = 2n suffices and Hajnal and Szemerédi [7] proved that for H = Kh, d = (h − 1)n

guarantees an H-factor. All these results are easily seen to be best possible.

A conjecture of Erdös and Faudree [6] asserts that d = 2n suffices for a C4-factor. If true, this

value is clearly optimal. In this paper we come close to proving the conjecture, and show that a
∗Research supported in part by the Fund for Basic Research administered by the Israel Academy of Sciences
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minimum degree of d = (2 + o(1))n suffices. In fact, we prove a much more general result, that

shows that d = (1− 1/χ(H) + o(1))hn suffices for the existence of an H-factor, for any fixed graph

H. (As usual, χ(H) denotes the chromatic number of H). The exact statement of the result is the

following.

Theorem 1.1 For every ε > 0 and for every positive integer h, there exists an n0 = n0(ε, h) such

that for every graph H with h vertices and for every n > n0, any graph G with hn vertices and with

minimum degree d(G) ≥ (1− 1/χ(H) + ε)hn has an H-factor.

The proof of Theorem 1.1 is based on an asymptotic result proved in [3], as well as on some

probabilistic arguments, and various combinatorial ideas. In section 2 we introduce the necessary

lemmas that are used in the proof. A short outline of the proof is presented in section 3. The proof

itself is described in detail in section 4. The tightness of the results, their algorithmic aspects and

some concluding remarks and open problems are discussed in the final section.

2 Preliminary lemmas

In order to prove our theorems, we require an asymptotic result obtained in [3] which enables us to

cover almost all of the vertices of a (large) graph L with vertex disjoint copies of a (small) graph

S.

Lemma 2.1 ([3]) For every δ > 0 and for every integer s0, there exists an l0 = l0(δ, s0) such that

for every graph S with s ≤ s0 vertices and chromatic number χ(S) and for every l > l0, any graph

L with l vertices and minimum degree d ≥ χ(S)−1
χ(S) l contains at least (1− δ)l/s vertex disjoint copies

of S. 2

The following probabilistic lemma is used in order to partition a dense graph M into three

dense induced subgraphs. The (simple) proof uses a large deviation result of Chernoff.

Lemma 2.2 Let γ > 0. There exists an m0 = m0(γ) such that for every m > m0, if m1+m2+m3 =

m and M is a graph with m vertices and minimum degree d = d(M), then its vertices can be

partitioned into three pairwise-disjoint sets M1,M2,M3 whose sizes are m1,m2,m3 respectively,

such that every vertex has at least mid/m− γm neighbors in Mi for i = 1, 2, 3.

Proof Let m0 be chosen such that for all m ≥ m0, (3m+ 6)e−γ
2m/2 < 0.5. Let M be a graph on

m ≥ m0 vertices. Let M = M ′1 ∪M ′2 ∪M ′3 be a random partition of M into three subsets obtained

by letting each vertex, independently, be a member of M ′i with probability mi/m. Let Xi be the
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number of vertices in M ′i . Clearly, E[Xi] = mi. By the large deviation result of Chernoff (see, e.g.,

[2], Appendix A, Theorem A.4) we have

Prob(|Xi −mi| > γm/2) < 2e−γ
2m/2.

For a vertex v, Let Xv
i be the number of neighbors of v in M ′i . Clearly, E[Xv

i ] ≥ dmi/m. Once

again, by the Chernoff estimates:

Prob(Xv
i < dmi/m− γm/2) < e−γ

2m/2.

By our choice of m0, with probability at least 0.5 we have that

|Xi −mi| ≤ γm/2

and

Xv
i ≥ dmi/m− γm/2

for all vertices v ∈M and for i = 1, 2, 3. We can therefore transfer at most γm/2 vertices to or from

each M ′i such that the adjusted sets, denoted by Mi, have mi vertices for i = 1, 2, 3 and clearly,

every vertex has at least mid/m− γm neighbors in Mi. 2

The next simple lemma gives a minimum degree bound which guarantees that a bipartite graph

contains a perfect star-matching. We note that although the lemma can easily be proved by Hall’s

Theorem, we prefer the following proof since it can be implemented efficiently.

Lemma 2.3 Let B be a bipartite graph with c vertices in the first vertex class and cr vertices in

the second vertex class. Suppose also that every vertex is connected to at least half of the vertices

of the opposite class. Then B contains c vertex-disjoint stars on r+ 1 nodes, where the root of each

star is a vertex of the first vertex class.

Proof We reduce this problem to a perfect matching problem. Replace each vertex v of the first

vertex class by r copies, and connect each copy to the original neighbors of v. The new graph is

bipartite, has cr vertices in each vertex class and minimum degree at least rc/2. It clearly suffices

to show that this new graph has a perfect matching. Let F be a maximum matching in it. If

|F | = rc we are done. Otherwise let u and v be two unmatched vertices, that lie in distinct vertex

classes. Let N(u) and N(v) be the neighbor sets of u and v respectively. Since F is maximal, every

vertex of N(u) ∪ N(v) is matched. Since N(u) ≥ rc/2 and N(v) ≥ rc/2 we must have an edge

f = (u′, v′) ∈ F with u′ ∈ N(u) and v′ ∈ N(v). This, however, contradicts the maximality of F

since we can replace f with the two edges (u, u′) and (v, v′), and obtain a larger matching. 2

The final lemma in this section is a somewhat technical variant of the previous lemma.
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Lemma 2.4 Let F be a bipartite graph on the classes of vertices C and B, where |C| = c, |B| =
b ≥ rc, and r is a positive integer. If the degree of each B-vertex is at least a, and the degree of

each C-vertex is at least rc then F contains a spanning subgraph F ′ consisting of a union of stars

which satisfies the following.

1. The degree of each B-vertex in F ′ is precisely 1.

2. The degree of each C-vertex in F ′ is at least r and at most (b+ rc)/a.

3. The degrees in F ′ of all but at most (r − 1)c/(a+ r − 2) C-vertices are 0 mod r.

Proof We begin by greedily assigning to each C-vertex r B-vertices among its neighbors. This can

be done since the degree of each C-vertex is at least rc. We are now left with a set B′ of unassigned

B-vertices, where |B′| = b − rc. Pick an assignment of the elements of B′ to their neighbors,

so as to maximize the number of C-vertices to which 0 mod r B-vertices have been assigned. If

there is more than one such assignment, we pick the one having the maximum possible number of

B-vertices assigned to good C-vertices, i.e., to C-vertices to which 0 mod r B-vertices have been

assigned. Let d0 denote the number of good C-vertices, which we denote by C1, . . . , Cd0 and let the

other C-vertices be Cd0+1, . . . , Cc. The maximality of d0 implies that each non-good Ci has been

assigned at least one B-vertex Bi that is not adjacent to any other non-good C-vertex. Therefore,

Bi is adjacent to at least a − 1 good C-vertices, for i = d0 + 1, . . . , c. Hence, there exists a good

C-vertex which is adjacent to at least (c − d0)(a − 1)/d0 of the Bi’s. By the maximality of the

number of B-vertices assigned to good C-vertices we must have (c − d0)(a − 1)/d0 ≤ r − 1 which

implies c− d0 ≤ (r − 1)c/(a+ r − 2).

It remains to show that it is possible to ensure that less than (b+ rc)/a B-vertices will be assigned

to any C-vertex. Put x = (b + rc)/a. Assume that there exists a C-vertex Ci to which x or

more B-vertices have been assigned. We will show how to transfer exactly r B-vertices from Ci

to another C-vertex Cj to which less than x − r B-vertices have been assigned. We may then

repeat this process until there are no more C-vertices to which x or more B-vertices have been

assigned. Let t denote the number of C-vertices to which x − r or more B-vertices have been

assigned. Clearly t(x− r) ≤ b, so t ≤ b/(x− r). Each B-vertex assigned to Ci can be assigned to

at least a − t C-vertices to which less than x − r B-vertices have been assigned. Hence there is a

C-vertex among these, which is adjacent to at least (a − t)x/(c − t) B-vertices of Ci. It remains

to show that (a − t)x/(c − t) ≥ r. Since c ≥ a, we can replace t with its upper bound b/(x − r)
and hence we must show that (a− b/(x− r))x/(c− b/(x− r)) ≥ r. This, indeed, is always true for

x = (b+ rc)/a. 2
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3 Outline of the proof

Given graphs H and G as in the theorem, we first omit several vertex disjoint copies of H from G

(which exist by some standard results from Extremal Graph Theory), in order to make sure that

the number of missing copies of H is divisible by some large integer, chosen appropriately. Let

k = χ(H) denote the chromatic number of H and let K denote the complete k-partite graph with

h-vertices in each color class. Let S denote the complete k-partite graph with h/ε4 vertices in each

color class. Note that K contains an H-factor and hence it suffices to show that the remainder

of G contains a K-factor. The existence of such a K-factor is proven by covering almost all the

remainder of G by pairwise vertex disjoint copies of S to which we carefully connect the remianing

vertices in a way that enables us to split each copy of S together with the vertices attached to it

into vertex disjoint copies of K.

In order to obtain the above mentioned required copies of S we apply Lemma 2.2 to split the

remaining vertices of G into three parts M1,M2 and M3 of specified sizes, where each vertex has

sufficiently many neighbors in each part. Applying Lemma 2.1 to the large part M1, we cover most

of this part by vertex-disjoint copies of S. Let these copies be denoted by S1, . . . , Sc. The vertices

of M1 that do not lie in any of the Si’s are transferred to M2. Next, we assign the vertices of (the

adjusted) M2 (considered as B-vertices in the language of Lemma 2.4) to the copies of S found in

M1 (which play the role of the C-vertices) using Lemma 2.4, where a vertex is adjacent to a copy

Si in the bipartite graph considered in the lemma if it has sufficiently many neighbors in each color

class of Si. By Lemma 2.4 (with r = (k− 1)kh) almost all the copies are assigned 0 mod (k− 1)kh

vertices of M2. Finally we assign the vertices of M3 to the Si’s in such a way that each vertex of

M3 assigned to Si has sufficiently many neighbors in all color classes of Si but at most one. This is

done using Lemma 2.3, where the specific choice of the vertices of M3 which are being assigned to

each Si is chosen carefully in order to guarantee that the total number of vertices assigned to each

Si is divisible by kh and that the vertices from M3 have enough neighbors in the required color

classes of Si.

To complete the proof we show that each Si together with the vertices assigned to it from M2

and M3 contains a K-factor. To do so we repeatedly remove copies of K from Si and the vertices

assigned to it by picking such an assigned vertex together with h of its neighbors in all color classes

of Si but one, and together with h− 1 vertices of Si in this remaining color class. The vertices of

M2 assigned to Si are helpful in performing this task successfully, as they have enough neighbors

in all color classes of Si. Therefore, we can choose from which class to take h− 1 vertices in order

to guarantee that the remaining part of Si, after removing the copies of K containing all vertices

that have been attached to it, will contain the same number of vertices in each color class and will
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thus contain a K-factor.

The final required H-factor of G consists of the intial copies of H omitted from G together with

all the H-factors of the K-factor of the remainder of G.

The detailed proof requires a careful choice of various parameters and some tedius computation,

and is described in the next section.

4 The proof of the main result

Let h > 1 be an integer and let ε > 0 be a small real number satisfying ε < 1/(800h). We may

clearly assume that 1/ε is an integer. Let δ = ε6/2, γ = ε5/16. Let m0 = m0(γ) be chosen as in

Lemma 2.2, let l0 = l0(δ, h2/ε4) be chosen as in Lemma 2.1 and denote

g =
1
ε4

+ 1 +
8
ε
.

We prove the theorem with

n0 = n0(ε, h) = max{4l0
h
,
m0

h
+

2h
ε
g,

512h3

ε6
}. (1)

Let H be a graph with h vertices and χ(H) = k ≤ h. Let G be a graph with hn vertices, n > n0,

and minimum degree d = d(G) ≥ (k−1
k + ε)hn. We must show that G contains an H-factor.

We denote by K the complete k-partite graph consisting of h vertices in each color class. Note

that K has an H-factor. We denote by S the complete k-partite graph consisting of h/ε4 vertices

in each color class. Note that S contains a K-factor, and thereby also an H-factor. Let s = kh/ε4

be the number of vertices of S. Let p = n mod (kg).

Claim 1: G contains p vertex disjoint copies of H.

Proof Since S contains k/ε4 pairwise-disjoint copies of H, it suffices to show that G contains two

disjoint copies of S. Note that hn > hn0 > l0. We may therefore apply Lemma 2.1 with L = G and

obtain that G contains at least (1− δ)hn/s > 0.5hn/s ≥ 0.5nε4/k > 1 copies of S. This concludes

the proof of the claim. (Note that the claim can also be deduced from the known Turán type results

since the graph G contains enough edges, much more than the number needed to guarantee two

disjoint copies of S).

By the last claim, we may delete from G a set of p vertex-disjoint copies of H, together with

their vertices. We denote the remaining graph by M . Clearly, it suffices to prove that M contains

a K-factor. M contains

m = hn− hp = h(n− p) = chkg (2)
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vertices, for some positive integer c. We claim that the minimum degree of M satisfies d(M) ≥
(k−1
k + ε/2)m. Indeed, by our choice of n0,

d(M) ≥ (
k − 1
k

+ ε)hn− hp > (
k − 1
k

+ ε)hn− hk(
1
ε4

+ 1 +
8
ε

) ≥ (
k − 1
k

+
ε

2
)hn ≥ (

k − 1
k

+
ε

2
)m.

We also note that m > hn − hkg > h(m0/h + kg) − hkg = m0. We may therefore apply Lemma

2.2 to the graph M . The values of m1,m2 and m3 that we use are:

m1 = dckh
ε4

(1 + ε6)e

m2 = b8ckh
ε

(1− ε3

8
)c

m3 = ckh.

We obtain a partition of the vertices of M into three disjoint sets, M1,M2 and M3 as guaranteed

by the lemma. Replacing d(M) with the lower estimate of (k−1
k + ε/2)m, and γ with ε5/16 we have

dM1(v) ≥ m1d(M)
m

− γm ≥ (1 + ε6)
ckh

ε4
(
k − 1
k

+ ε/2)− ε5

16
m > (3)

ckh

ε4
(
k − 1
k

+ ε/2)− ε5

16
m ≥ ckh

ε4
(
k − 1
k

+ ε/4) +
ckh

4ε3
− ε5

16
ckh(

1
ε4

+ 1 +
8
ε

) ≥

ckh

ε4
(
k − 1
k

+ ε/4) +
ckh

4ε3
− ε5

8
ckh

ε4
≥ ckh

ε4
(
k − 1
k

+ ε/4) + ckh

Similar computations show that

dM2(v) >
8ckh
ε

(
k − 1
k

+ ε/4) + ckh, (4)

dM3(v) ≥ ckh(
k − 1
k

+ ε/4). (5)

Note that dMi(v) denotes the number of neighbors of a vertex v of M in Mi, for i = 1, 2, 3. Let L

be the subgraph of M induced on M1. Our first goal is to obtain c vertex disjoint copies of S in L.

This will be done by applying Lemma 2.1 to L. In order to do so we need to show that m1 > l0

and that d(L) ≥ k−1
k m1. Indeed, by our choice of n0,

m1 >
ckh

ε4
> m/2 > hn/4 > hn0/4 > l0.

By (3) we have

d(L) ≥ ckh

ε4
(
k − 1
k

+ ε/4) + ckh ≥ ckh

ε4
k − 1
k

+ (ε2ckh+ 1)
k − 1
k
≥ k − 1

k
m1
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Having shown the above, we obtain by Lemma 2.1 that L contains at least (1−δ)m1/s disjoint copies

of S. We need to show that (1− δ)m1/s ≥ c. By our choice of δ, we know that (1− δ)(1 + 2δ) > 1.

Hence,

(1− δ)m1/s ≥ (1− δ)ckh
ε4

(1 + ε6)/s = (1− δ)c(1 + ε6) = (1− δ)c(1 + 2δ) > c.

Having obtained at least c disjoint copies of S in L, we pick c such copies denoted by S1, . . . , Sc.

We denote the vertex classes of Si by Sji for j = 1, . . . , k. Let C1 be the set of vertices of all

these copies. Note that C1 ⊂ M1 and |C1| = cs = ckh/ε4. Put C2 = M2 ∪ (M1 \ C1). Clearly,

|C2| = 8ckh/ε. For the sake of completeness, we put C3 = M3. We claim that for every vertex v:

dCi(v) ≥ (
k − 1
k

+ ε/4)|Ci| (6)

for i = 1, 2, 3. To see this, note first that for i = 3, this follows from (5). For i = 1, this follows

from (3) and from the fact that |M1 \ C1| = dckhε2e < ckh. For i = 2 this follows from (4) and

from the fact that |C2 \M2| = dckhε2e < ckh.

For the rest of the proof, let q = 100h2k/ε2. We say that a vertex v ∈ C2 is strongly assignable

to Si if v has at least q neighbors in each vertex class of Si. We say that v is weakly assignable to

Si if v has at least q neighbors in each vertex class of Si, but at most one.

Claim 2: Every vertex v ∈ C2 is strongly assignable to at least ckε/8 of the Si’s in C1. Fur-

thermore, for each Si, i = 1, . . . , c there is a set of at least ck2h vertices of C2 that are strongly

assignable to it.

Proof Let v ∈ C2, and let x denote the number of Si’s in C1 to which v is strongly assignable. v

has at most xs = xkh/ε4 neighbors in the Si’s to which it is strongly assignable. It has at most

(c− x)((k − 1)h/ε4 + q) neighbors in the other Si’s. By (6) we have

x
kh

ε4
+ (c− x)[

(k − 1)h
ε4

+
100kh2

ε2
] ≥ (

k − 1
k

+
ε

4
)
ckh

ε4
.

This inequality is equivalent to

x ≥ ckε/4− 100khε2

1− 100ε2kh
This, in turn, implies that x ≥ ckε/8 since ε < 1/(800h).

For the second part of the claim, fix Si and denote by y the number of vertices v ∈ C2 that are

strongly assignable to Si. Once again, by (6), for i = 2, we have

y
kh

ε4
+ (

8ckh
ε
− y)[

(k − 1)h
ε4

+
100kh2

ε2
] ≥ (

k − 1
k

+
ε

4
)
8ckh
ε

kh

ε4
.

As before, we obtain y ≥ ck2h for ε < 1/(800h). This completes the proof of the claim.

8



We may now apply Lemma 2.4 where the C-vertices are S1, . . . , Sc, the B-vertices are the

vertices of C2, r = (k − 1)kh and a = ckε/8. Here a member of C2 is connected to an Si if it is

strongly assignable to it. Note that by the last claim, the degree of each B-vertex is at least a,

and the degree of each C-vertex is at least ck2h ≥ rc. By Lemma 2.4 we obtain an assignment of

the vertices of C2 to the graphs S1, . . . , Sc with the following properties (ai denotes the number of

vertices of C2 that are assigned to Si):

(k − 1)kh ≤ ai ≤
c(k − 1)kh+ 8ckh/ε

ckε/8
≤ 72h

ε2
. (7)

ai = 0 mod (k − 1)kh, for i = t+ 1, . . . , c. (8)

t ≤ ((k − 1)kh− 1)c
ckε/8 + (k − 1)kh− 2

≤ 8kh
ε
. (9)

Note that c − t denotes the number of C-vertices to which 0 mod (k − 1)kh B-vertices have been

assigned, and that without loss of generality we assume here that S1, . . . , St are the C-vertices that

have not been assigned 0 mod (k − 1)kh vertices of C2.

Our next mission is to assign the vertices of C3 to the graphs Si. This will be done in three

stages. Put ui = ai mod kh, wi = kh − ui, zi = wi mod k for i = 1, . . . , t. We say that a vertex

v ∈ C3 is l-assignable to Si if v has at least q neighbors in each vertex class of Si except, maybe,

Sli.

We now proceed with the first stage. In this stage we assign vertices of C3 to the Si’s as follows.

For all i = 1, . . . , t and for all l = 1, . . . , k if l ≤ zi we pick a set of dwi/ke vertices of C3 that have

not yet been assigned and that are l-assignable to Si. If l > zi we pick bwi/kc such vertices. Note

that the total number of vertices that are assigned in this process is
∑t
i=1wi ≤ tkh ≤ 8k2h2/ε,

where the last inequality follows from (9). Therefore, in order to show that this process can be

completed it is enough to show that there are at least 8k2h2/ε vertices of C3 that are l-assignable

to Si, for i = 1, . . . , t and l = 1, . . . , k. Indeed, let x be the number of vertices of C3 having this

property. Then by (6) we have

x
kh

ε4
+ (ckh− x)[(k − 1)

h

ε4
+ q] ≥ (

k − 1
k

+
ε

4
)ckh

kh

ε4

which implies, as in the proof of Claim 2, that x ≥ ck2hε/8. However, by our choice of n0,

c =
m

khg
>
nε4

4kh
≥ 128h

ε2
.

Hence, x ≥ 16k2h2/ε. (Note that 8k2h2/ε vertices suffice here, but the remaining ones will be used

in the second stage.)
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Having assigned
∑t
i=1wi vertices of C3 to the graphs S1, . . . St in the first stage, we now proceed

to the second stage. Note that
∑t
i=1wi = 0 mod kh. This is true since, clearly, |C2| = 8ckh/ε =

0 mod kh and hence
∑t
i=1 ai = 0 mod kh which, in turn, implies that

∑t
i=1 ui = 0 mod kh. Put

t′ =
∑t

i=1
ui

kh . Since ui ≤ kh for all i, t′ ≤ t. For all i = 1, . . . , t′ and all l = 1, . . . k we assign

exactly h vertices of C3 that have not yet been assigned and that are l-assignable to Si. The total

number of vertices we need to assign in this second stage is
∑t
i=1 ui = t′kh ≤ tkh ≤ 8k2h2/ε.

We have already shown that the number of vertices x of C3 that are l-assignable to Si is at least

x ≥ 16k2h2/ε, and that at most 8k2h2/ε of them have been assigned in the first stage. Hence, the

second stage can be completed successfully.

The total number of vertices of C3 that have been assigned until now is
∑t
i=1(ui + wi) = tkh.

In the third and final stage we assign the remaining (c− t)kh vertices of C3 (denoted by C ′3) to the

graphs St+1, . . . , Sc. We will assign exactly kh vertices to each Si for i = t + 1, . . . c, where each

assigned vertex has the property that it is weakly assignable to Si. In order to show that this is

possible it is enough to show that each vertex of C ′3 is weakly assignable to at least (c− t)/2 of the

graphs St+1, . . . , Sc and that each such graph has at least (c− t)kh/2 vertices of C ′3 that are weakly

assignable to it. This will enable us to apply Lemma 2.3 and obtain the desired assignment. (One

side of the bipartite graph is C ′3 and the other side are the graphs St+1, . . . , Sc, its edges denote

weak-assignability.) In fact we will show something slightly stronger; namely, that every v ∈ C3

is weakly assignable to at least (c+ t)/2 of the graphs S1, . . . , Sc and that each such graph has at

least (c+ t)kh/2 vertices in C3 that are weakly assignable to it.

For v ∈ C3 let x denote the number of graphs Si to which v is weakly assignable. By (6) we

have:

x
kh

ε4
+ (c− x)[(k − 2)

h

ε4
+ 2q] ≥ (

k − 1
k

+
ε

4
)
khc

ε4
.

This implies that x ≥ c(0.5 + εk/10) ≥ c/2 + t/2. Similar calculations show that if y is the number

of vertices that are weakly assignable to Si then y ≥ (c+ t)kh/2.

Finally, we need to show that for each i = 1, . . . , c, the graph Si together with the ai vertices of

C2 assigned to it and the vertices assigned to it from C3 in the three stages, contains a K-factor.

Consider first an Si where 1 ≤ i ≤ t′. Si has been assigned ai = ui + yikh vertices of C2, each

of these vertices being strongly assignable to Si, and therefore they are also l-assignable to it for

all l = 1, . . . , k. For each l = 1, . . . , zi, Si has been assigned dwi/ke + h vertices of C3 that are

l-assignable to it. (Recall that dwi/ke vertices have been assigned in the first stage and h in the

second stage). For l = zi + 1, . . . , k, Si has been assigned bwi/kc + h vertices of C3 that are l-

assignable to it. Hence the set of assigned vertices to Si, whose size is ai+wi+kh = (yi+ 2)kh can

be partitioned into k sets T 1
i , . . . , T

k
i each of size (yi + 2)h, where each element of T li is l-assignable
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to Si. (Here we used the fact that dwi/ke ≤ (yi + 2)h, since wi ≤ (yi + 2)kh.) We now perform

the following process. For each l = 1, . . . , k and for each v ∈ T li , we select h neighbors of v in

Sji that have not yet been selected, for j = 1, . . . , l − 1, l + 1, . . . , k, and we select h − 1 vertices

of Sli that have not yet been selected (these vertices need not be neighbors of v). Clearly, if we

manage to do this, v together with these kh − 1 selected vertices, form a copy of K. To see that

this process can be completed, we note that when we handle v, at most ((yi + 2)kh− 1)h vertices

have already been selected from Sli, and, if v /∈ T li , we may need to select h neighbors of v in Sli

which have not yet been selected. Since v has at least q = 100h2k/ε2 neighbors in Sli, it suffices to

show that 100h2k/ε2 ≥ (yi+2)kh2. This, however is true since by (7), yi+2 < ai/h ≤ 72/ε2. After

completing this process, we have selected exactly (kh2 − h)(2 + yi) vertices from Sli. Hence the set

of non-selected vertices of Si form a complete k-partite graph with h/ε4− (kh2−h)(2 + yi) vertices

in each color class. Since this number is a multiple of h, we have a K-factor in the remainder of Si.

The case where t′ + 1 ≤ i ≤ t is similar to the above (and even easier, since Si has only been

assigned vertices of C3 in the first stage, and hence yi + 2 should be replaced by yi + 1 in all of the

computations above).

We remain with the case t+1 ≤ i ≤ c. In this case, Si has been assigned ai vertices of C2 where

ai = 0 mod (k − 1)kh and ai > 0. Hence it has been assigned yikh vertices of C2 where yi ≥ k − 1

and yi = 0 mod (k−1), where these vertices are strongly assignable to Si. Si has also been assigned

exactly kh vertices of C3 that are weakly assignable to it. These kh vertices may be partitioned

into k sets T 1
i , . . . , T

k
i where each element of T li is l-assignable to Si. Note that |T li | ≤ kh. We

may now arbitrarily assign the yikh strongly assignable vertices to the sets T li in such a way that

|T li | = (yi + 1)h ≥ kh. We remain with the property that each element of T li is l-assignable to

Si. We may now proceed as in the two cases above to obtain the K-factor in Si and its assigned

vertices. 2

5 Concluding remarks and open problems

1. Theorem 1.1 is essentially best possible in the sense that the quantity 1− 1/χ(H) appearing

there cannot be replaced by any smaller constant. This is easily seen by letting G be a

complete k-partite graph with non-equal color classes where H is any uniquely-colorable

k-partite graph with equal color classes. Furthermore, some error term is needed in the

statement of Theorem 1.1, i.e., the statement of the theorem becomes false if we omit the ε.

To see this, let G be the graph obtained from two vertex disjoint complete graphs on hn/2+1

vertices each by identifying two vertices of the first with two vertices of the second. Then in
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G all the degrees are at least hn/2. Let H be a 3-connected bipartite graph on h = 2l vertices

(e.g., any complete bipartite graph Ka,b, where a + b = 2l, a ≥ b ≥ 3), and suppose that

n = 2s+ 1, for some integer s. Clearly, every copy of H in G must be contained completely

in one of the two complete graphs forming G. However, by the assumptions hn
2 = l mod h

and hence h does not divide hn/2 − 1, hn/2 or hn/2 + 1, implying that G does not have an

H-factor. Note that in this example H does not have to be a complete bipartite graph and

may have color classes of different sizes.

Another example showing that some error term is needed in Theorem 1.1 is the following; let

H be the complete bipartite graph Kl,l, where l ≥ 3 is odd, and let G be the graph obtained

from the complete bipartite graph with color classes of sizes l(2s+ 1) + 1 and l(2s+ 1)− 1 by

adding a perfect matching on the vertices of the larger color class. Here, again, the number

of vertices of H, which is h = 2l divides the number of vertices of G, which is (2s+1)2l = hn,

and the minimum degree in G is hn/2. It is, however, easy to check, that G does not have

an H-factor. This example can be easily extended to show that some error term is needed in

Theorem 1.1 for certain graphs H of any desired chromatic number.

2. By the above remark, some error term is needed in any strengthening of Theorem 1.1. The

following strengthening seems true.

Conjecture 5.1 For every integer h there exists a constant c(h) such that for every graph H

with h vertices, any graph G with hn vertices and with minimum degree d ≥ (1−1/χ(H))hn+

c(h) contains an H-factor.

3. By the Hajnal-Szemerédi result stated in the introduction, the error term in Theorem 1.1

is not needed in case H is a complete graph. As mentioned in the introduction this is also

trivially the case if H is a path. It would be interesting to find additional nontrivial graphs

H for which no error term is needed. A possible interesting example is the case H = C4, as

conjectured by Erdös and Faudree [6].

4. The proof of Theorem 1.1 is algorithmic. That is, for any fixed ε and any fixed graph H we

can find an H-factor in a graph G with hn > hn0 vertices and d(G) ≥ (1− 1/χ(H) + ε)hn in

O(n2.376) time. This is true since it is shown in [1] that Lemma 2.1 is algorithmic. (Lemma

2.1 uses the Regularity Lemma of Szemerédi [10], for which an algorithmic version is described

in [1]). In particular, the (1 − δ)l/s copies of S can be found in O(l2.376) time. Lemma 2.2

clearly has an O(m2) randomized algorithm, since one needs only to compute the degrees in

the resulting M ′1, M ′2 and M ′3 graphs. The expected number of trials until the conditions
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in the Lemma are met is constant. By a standard application of the method of conditional

expectations (see, e.g., [9]), it can be shown that the randomized algorithm used in Lemma

2.2 can be derandomized, thereby obtaining an o(m2.376) deterministic algorithm for Lemma

2.2. Lemma 2.3 can be implemented in linear (that is O((cr)2)) time, with the appropriate

data structures. Lemma 2.4 can also be implemented in O(b2) time, where b is the number

of B-vertices. Combining all of these together, the O(n2.376) algorithm follows.

5. The value of l0 in Lemma 2.1 is a rather huge function of δ and s0. (In this case, log∗ l0
is a polynomial function of 1/δ and s0). This is due to the large constants that appear in

the proof of the Regularity Lemma [10]. However, in the special case when the graph H in

Theorem 1.1 is a tree, one can avoid using Lemma 2.1 in the proof, and hence the dependency

of n0 on ε and h is moderate. (In fact, in this case n0 is a polynomial function of 1/ε and

h). We omit the details. For trees, however, a result much stronger than Theorem 1.1 can

be proved. In [8] it is proved that for every positive integer ∆ and any real ε > 0, there is a

constant n0 = n0(∆, ε) such that every graph G with n > n0 vertices and d(G) ≥ (0.5 + ε)n

contains every tree with n vertices and maximum degree ∆ as a spanning subgraph. This

result cannot, however, be extended to general bounded degree bipartite graphs. Even for

∆ = 3 this is not true. There are examples of 3-regular bipartite graphs on n vertices that are

not subgraphs of the graph G on n vertices with d(G) ≥ 0.51n that is obtained by identifying

0.02n vertices of two vertex disjoint cliques of size n/2 + 0.01n each. This is because there

are 3-regular expanders (see, e.g., [2]) on n vertices in which for every set Y of 0.49n vertices,

the set consisting of all vertices of Y and their neighbors is of cardinality strictly greater than

0.51n.
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