
On graphs with subgraphs having large independence numbers

Noga Alon ∗ Benny Sudakov †

Abstract

Let G be a graph on n vertices in which every induced subgraph on s = log3 n vertices has
an independent set of size at least t = log n. What is the largest q = q(n) so that every such G

must contain an independent set of size at least q ? This is one of several related questions raised
by Erdős and Hajnal. We show that q(n) = Θ(log2 n/ log log n), investigate the more general
problem obtained by changing the parameters s and t, and discuss the connection to a related
Ramsey-type problem.

1 Introduction

What is the largest f = f(n) so that every graph G on n vertices in which every induced subgraph
on log2 n vertices has an independent set of size at least log n, must contain an independent set of
size at least f ? This is one of several related questions considered by Erdős and Hajnal in the late
80s. The question appears in [3], where Erdős mentions that they thought that f(n) must be at least
n1/2−ε, but they could not even prove that it is at least 2 log n. As a special case of our main results
here we determine the asymptotic behavior of f(n) up to a factor of log log n, showing that in fact
it is much smaller than one may suspect (and yet much bigger than log n):

Ω(
log2 n

log log n
) ≤ f(n) ≤ O(log2 n). (1)

Another specific variant of the above question, discussed in [3], is the problem of estimating the
largest q = q(n) so that every graph G on n vertices in which every induced subgraph on log3 n

vertices has an independent set of size at least log n, must contain an independent set of size at least
q. Here, too, one may tend to believe that q(n) is large, and specifically it is mentioned in [3] that
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probably q(n) > log3 n, but the correct asymptotic behavior of q(n) is smaller. In this case, our
results determine the asymptotic behavior of q(n) up to a constant factor, implying that

q(n) = Θ(
log2 n

log log n
). (2)

Both problems above are special instances of the general problem of understanding the asymptotic
behavior of the function f(n, s, t) defined as follows. For n > s > t, let f = f(n, s, t) denote the
largest integer f so that every graph G on n vertices in which every induced subgraph on s vertices
has an independent set of size at least t, must contain an independent set of size at least f . In this
note we investigate the asymptotic behavior of f , and obtain rather tight bounds for this behavior
for most interesting values of the parameters. Our results provide much less satisfactory information
about a closely related Ramsey-type problem of Erdős and Hajnal discussed in [3], which is the
following. For which functions h(n) and g(n), where n > g(n) ≥ h(n)2 � 1, is there a graph on n

vertices in which every induced subgraph on g(n) vertices contains a clique of size h(n) as well as
an independent set of size h(n) ? In particular, Erdős and Hajnal conjectured that there is no such
graph for g(n) = log3 n and h(n) = log n; our results here do not settle this conjecture, and only
suffice to show that there is no such graph with g(n) = c log3 n/ log log n and h(n) = log n, for some
absolute positive constant c.

The rest of this note is organized as follows. In Section 2 we state our main results concerning
the behavior of the function f(n, s, t). The proofs are described in Section 3. The final Section 4
contains a few remarks, including the (simple) connection between the study of f and the Ramsey-
type question discussed above.

Throughout the note we omit all floor and ceiling signs, whenever these are not crucial. We
always assume that the number n of vertices of the graphs considered here is large. All logarithms
are in the natural base e.

2 The main results

The following two theorems provide lower bounds for the independence numbers of graphs in which
every induced subgraph of size s contains an independent set of size t.

Theorem 2.1 Let t < s < n/2, and let G be a graph of order n such that every induced subgraph
of G on s vertices contains an independent set of size t. Denote k = b s

t−1c. Then G contains

an independent set of size at least Ω
(
kn1/k

)
if k ≤ 2 log n and of size at least Ω

(
log n

log(k/ log n)

)
if

k > 2 log n.

Theorem 2.2 Let 2t ≤ s < n/2, and let G be a graph of order n such that every induced subgraph
of G on s vertices contains an independent set of size t. Then G contains an independent set of size
at least Ω

(
t log(n/s)

log(s/t)

)
.
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The next result shows that there are graphs with relatively small independence numbers in which
every induced subgraph of size s contains an independent set of size t.

Theorem 2.3 For every sufficiently large t and 2t ≤ s ≤ n/2 there exists a graph G on n vertices
with independence number

α(G) ≤ O

(
t
(n

s

)2t/(s−t)
log(n/t)

)
such that every induced subgraph of G of order s contains an independent set of size t.

For certain values of t and s one can improve the previous result as follows.

Theorem 2.4 Let t < s ≤ n/2, where s ≤ e2t, and assume, further, that either there exists a
constant δ > 0 such that (s/t)1−δ ≥ log n or s/t = Ω(log n) and there exists a constant γ > 0 such
that log t ≥ logγ n . Then there exists a graph G on n vertices with

α(G) ≤ O

(
t

log(s/t)
log(n/t)

)
such that every induced subgraph of G of order s contains an independent set of size t.

3 The proofs

Proof of Theorem 2.1. Suppose that G contains t− 1 disjoint cliques whose union U has size at
least s. Then the size of the largest independent set in U is bounded by t− 1, since an independent
set can intersect each of the t − 1 cliques in at most one vertex. This contradicts the property of
G. Therefore if G′ is a graph obtained from G by deleting the vertices of t− 1 disjoint cliques with
maximum union we have that |V (G′)| > n − s ≥ n/2. We also have that the largest clique in G′

has size at most k = b s
t−1c. Otherwise, by the above discussion, G will contain t− 1 disjoint cliques

each of size at least k + 1, whose union has at least (k + 1)(t − 1) ≥ s vertices. To finish the proof
we apply the classical bound of Erdős and Szekeres [4] (see also [5]) for the usual graph Ramsey
numbers. This result asserts that the maximum possible number of vertices in a graph with neither
a clique of size k + 1 nor an independent set of size ` + 1 is at most

(
k+`
k

)
. By this estimate, G′

contains an independent set of size `, where
(
k+`
k

)
≥ n/2. Thus

(
e(k+`)

k

)k
> n/2 and therefore if

k ≤ 2 log n we get α(G) ≥ ` ≥ Ω
(
kn1/k

)
. On the other hand, if k > 2 log n we use the estimate(

e(k+`)
`

)`
≥
(
k+`

`

)
=
(
k+`
k

)
≥ n/2. This gives that ` ≥ Ω

(
log n

log(k/ log n)

)
and completes the proof of the

theorem. �

Proof of Theorem 2.2. Let r be the largest integer such that

n

(
t2

4e2s2

)r−1

≥ s.
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It is easy to check that r = Ω
(

log(n/s)
log(s/t)

)
. To prove the theorem we construct a sequence of pairwise

disjoint independent sets X1, . . . , Xr together with a sequence of nested subsets V0 = V (G) ⊃ V1 ⊃
. . . ⊃ Vr−1 such that the following holds. Each Xi is a subset of Vi−1 of size t/2, Xi ∩ Vi = ∅, there
are no edges between Xi and Vi and |Vi| ≥ t2

4e2s2 |Vi−1| for all 1 ≤ i ≤ r − 1. Then the union of all

sets Xi forms an independent set in G of size rt/2 = Ω
(
t log(n/s)

log(s/t)

)
.

Assuming the sets Xj , Vj have already been constructed for all j < i, construct Xi and Vi as
follows. Let m be the size of Vi−1. The inductive hypothesis implies that

m ≥
(

t2

4e2s2

)i−1

|V0| ≥ n

(
t2

4e2s2

)r−1

≥ s.

Since every subset of order s in Vi−1 contains t independent vertices and every independent set of
size t belongs to at most

(
m−s
s−t

)
subsets of size s we have that Vi−1 contains at least

(
m
s

)
/
(
m−t
s−t

)
independent sets of size t. Therefore, using that m ≥ s ≥ 2t and

(
a
b

)
≤
(

ea
b

)b, we conclude that there
exist a subset Xi of Vi−1 of size t/2 which is contained in at least(

m
s

)(
m−t
s−t

)(
m
t/2

) =
m!

(m− t)!
(s− t)!

s!

(
m

t/2

)−1

≥
(m

s

)t
(

t

2em

)t/2

=
(

mt

2es2

)t/2

=

(
e
(

t2

4e2s2 m
)

t/2

)t/2

≥
( t2

4e2s2 m

t/2

)
independent sets of size t. This implies that Vi−1 contains at least

( t2

4e2s2
m

t/2

)
subsets of size t/2

whose union with Xi forms an independent set of size t. Let Vi be the union of all these subsets.
By definition, for every vertex of Vi there is an independent set that contains it together with Xi,
so there are no edges from Xi to Vi. Also, it is easy to see that the size of Vi must be at least

t2

4e2s2 m = t2

4e2s2 |Vi−1|. This completes the construction step and the proof of the theorem. �

Proof of Theorem 2.3. We prove the theorem by considering an appropriate random graph. As
usual, let Gn,p denote the probability space of all labeled graphs on n vertices, where every edge
appears randomly and independently with probability p = p(n). We say that the random graph
possesses a graph property P almost surely, or a.s. for brevity, if the probability that Gn,p satisfies
P tends to 1 as n tends to infinity. Clearly, it is enough to show that there is a value of the edge
probability p such that Gn,p satisfies the assertion of the theorem with positive probability.

Let p = 1
4e3t

(
n
s

)−2t/(s−t). We claim that almost surely every subset of G = Gn,p of size s spans
at most s2/(2t)− s/2 edges. Indeed, the probability that there is a subset of size s that violates this
assertion is at most

P ≤
(

n

s

)(
s2/2

s2/(2t)− s/2

)
ps2/(2t)−s/2 ≤

(en

s

)s
(

e
s

s− t
tp

)s2/(2t)−s/2

≤
(en

s

)s
(

1
2e2

(n

s

)−2t/(s−t)
)s2/(2t)−s/2

≤ 2−s/2 = o(1),
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(where the o(1)-term tends to zero as s tends to infinity). This implies that with high probability
every subgraph of G on s vertices has average degree d ≤ s/t− 1. Therefore by Turán’s theorem it
contains an independent set of size at least s

d+1 ≥ t. On the other hand, it is well known (see, e.g.,
[2]), that almost surely the independence number of Gn,p is bounded by

α(Gn,p) ≤ O
(
p−1 log np

)
≤ O

(
t
(n

s

)2t/(s−t)
log(n/t)

)
.

This implies that a.s. Gn,p satisfies the assertion of the theorem and completes the proof. �

For the proof of Theorem 2.4 we need the following lemma.

Lemma 3.1 Let G = Gs,p be a random graph, assume sp →∞ and fix ε > 0. Then the probability
that the independence number of G is at most ε

p log(sp) is less than e−s(sp)1−3ε/2
.

Proof. Let k = ε
p log(sp). To prove the lemma we use the standard greedy algorithm which

constructs an independent set by examining the vertices of the graph in some fixed order and by
adding a vertex to the current independent set whenever possible. The behavior of this algorithm
for random graphs can be analyzed rather accurately (see, e.g., [2]). At iteration i of our procedure
we use the greedy algorithm to find a maximal (with respect to inclusion) independent set Ii in
the remaining vertices of G. If |Ii| ≥ k we stop. Otherwise we delete the vertices of Ii from G

and continue. We stop when the number of remaining vertices drops below s/2. Note that during
iteration number i we only expose edges incident to Ii; therefore the remaining vertices still form
a truly random graph. Given a set I the probability that a fixed vertex of G is adjacent to some
vertex of I is 1 − (1 − p)|I|. Therefore the probability that a fixed I is maximal, where |I| ≤ k, is
at most

(
1 − (1 − p)k

)s/2. By definition, when the iteration fails, the random graph must contain
a maximal independent set of size less than k (and hence also a set of size exactly k so that every
remaining vertex is adjacent to at least one of its members). Thus the probability of this event is at
most

(
s
k

)(
1− (1− p)k

)s/2. Moreover, the outcomes of different iterations depend on disjoint sets of
edges and therefore are independent. Finally note that if G has no independent set of size k, then
the number of iterations is at least s/(2k). This implies that the probability of such an event is
bounded by

P ≤
((

s

k

)(
1− (1− p)k

)s/2
)s/(2k)

≤
(es

k

)s/2
e−

s2

4k
(1−p)k

≤ e
−Ω
(
s

(sp)1−ε

log sp

)
+s log(sp) ≤ e−s(sp)1−3ε/2

. �

Proof of Theorem 2.4. Suppose that (s/t)1−δ ≥ log n for some fixed δ > 0 and consider the
random graph G = Gn,p with p = δ log(s/t)

2t . (Note that p < 1 as s ≤ e2t.) As already mentioned
above a.s. the independence number of this graph is bounded by O

(
1
p log(np)

)
= O

(
t

log(s/t) log(n/t)
)
.

Here we used that log(s/t) < s/t < n/t and hence log
(

n
t log(s/t)

)
< 2 log(n/t). Also, by Lemma 3.1
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(with ε = δ/2), the probability that G contains an induced subgraph of order s with no independent
set of size δ

2p log(sp) ≥ t is at most(
n

s

)
e−s(sp)1−3δ/4 ≤ nse−s log1+δ/4 n = o(1).

Here we used that log(s/t) → ∞ and hence (sp)1−3δ/4 ≥ (s/t)1−3δ/4 ≥ log1+δ/4 n. Therefore with
high probability G satisfies the first assertion of the theorem.

To prove the second part of the theorem suppose that s/t = Ω(log n) and log t ≥ logγ n for some
constant γ > 0. By the previous paragraph we can also assume that s/t ≤ log2 n. Let G = Gn,p with
p = γ log(s/t)

640t . Again we have that a.s. α(G) ≤ O
(

t
log(s/t) log(n/t)

)
. Since sp = Ω(log n log log n), the

probability that there is a subset of size s in G which spans at least 2s2p edges is bounded by(
n

s

)(
s2/2
2s2p

)
p2s2p ≤ ns

(
e

4p

)2s2p

p2s2p = ns
(e

4

)2s2p
≤ es log ne−Ω(s log n log log n) = o(1).

Also, since s/t ≤ sp ≤ to(1), we have that the probability that G contains a subset of order k = Θ(sp)
which spans more than k2−γ/2 edges is at most(

n

k

)(
k2/2

k2−γ/2

)
pk2−γ/2 ≤ nk(kp)k2−γ/2 ≤ ek log ne−Ω(k(s/t)1−γ/2 log t)

≤ ek log ne−Ω(k log1+γ/2 n) = o(1).

Let H be an induced subgraph of G of order s. Since the number of edges in H is a.s. at most
2s2p it contains an induced subgraph H ′ of order s/2 with maximum degree at most d = 8sp. By
the above discussion, we also have that the neighborhood of every vertex of H ′ spans at most d2−γ/2

edges and therefore every vertex of H ′ is in at most T ≤ d2−γ/2 triangles. Now we can use the known
estimate (Lemma 12.16 in [2], see also [1] for a more general result) on the independence number of
a graph containing a small number of triangles. It implies that

α(H ′) ≥ 0.1
|V (H ′)|

d

(
log d− 1

2
log T

)
≥ 0.1

s/2
d

(
log d− 1

2
log d2−γ/2

)
=

γs

80d
log d ≥ γs

640sp
log(8sp) ≥ t.

This shows that G a.s. satisfies the second assertion of our theorem and completes the proof. �

4 Remarks

Theorems 2.1 and 2.3 show that if s/t = O(1) and t > 1 then f(n, s, t) = nΘ(1), whereas if s/t � 1 and
t = no(1) then f(n, s, t) = no(1), and if s/t ≥ Ω(log n) and t ≤ (log n)O(1) then f(n, s, t) ≤ (log n)O(1).

Theorems 2.2 and 2.4 determine the asymptotic behavior of the function f(n, s, t) up to a constant
factor for a wide range of the parameters. We do not specify here all this range, and only observe
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that in particular, for every fixed µ > 0, f(n, log2+µ n, log n) = Θ( log2 n
log log n). For µ = 1 this implies

(2). The estimate (1) follows from Theorems 2.2 and 2.3.

The connection between the Ramsey-type question described in Section 1 and the function f is
the following simple fact.

Claim: If
n/2 > s > t and (t− 1)f(n/2, s, t) ≥ s, (3)

then there is no graph on n vertices in which every induced subgraph on s vertices contains a clique
of size t and an independent set of size t.

Proof: Assuming there is such a graph G, observe that by the definition of f it contains an
independent set I1 of size f = f(n/2, s, t). Omit this set, and observe that the induced graph on the
remaining vertices, assuming there are at least n/2 of them, contains another independent set I2 of
size f . Repeating this process t− 1 times (or until the union of the independent sets obtained is of
size at least n/2 > s), we get an induced subgraph of G on min{n/2, (t − 1)f} ≥ s vertices, which
is (t− 1)-colorable (as it is the union of t− 1 independent sets), and hence cannot contain a clique
of size t. This is a contradiction, proving the assertion of the claim.

In particular, for t = log n and s = c log3 n/ log log n, where c is a sufficiently small positive
absolute constant, it is not difficult to check that the assumption in (3) holds, by Theorem 2.2.

It will be interesting to close the gap between our upper and lower bounds for the function
f(n, s, t). It will also be interesting to know more about the Ramsey-type question of Erdős and
Hajnal described in the introduction, and in particular, to decide if there exists a graph on n vertices
in which every induced subgraph on, say, log100 n vertices, contains a clique of size at least log n and
an independent set of size at least log n.
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