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Abstract

Alon and Yuster [4] have proven that if a fixed graph K on g vertices is (h+ 1)-colorable, then any

graph G with n vertices and minimum degree at least h
h+1n contains at least (1− ε)ng vertex disjoint

copies of K, provided n > N(ε). It is shown here that the required minimum degree of G for this

result to follow is closer to h−1
h n, provided K has a proper (h+ 1)-coloring in which some of the colors

occur rarely. A conjecture regarding the best possible result of this type is suggested.

1 Introduction

For an infinite family of graphs F and a fixed graph K with g vertices, we say that the graphs in F

contain an almost K-factor if for any ε > 0 there exists an N = N(ε) such that if G is a graph from F

with n > N vertices, then G contains at least (1− ε)ng vertex disjoint copies of K.

When K is characterized only by its chromatic number, say h+1, it is sufficient to consider a complete

(h + 1)-partite graph, Ka0,...,ah . Moreover, it is sufficient to consider a complete (h + 1)-partite graph

with equal color classes, since we can first find copies of the complete (h+ 1)-partite graph with all color

classes of size
∑h
i=0 ai, and from them extract the required copies of Ka0,...,ah . When F is characterized

by the minimum degree of its members, the following asymptoticaly tight result was proven by Alon and

Yuster.

Theorem 1.1 ([4]) For any natural a, h and any ε > 0 there exists an N = N(a, h, ε) such that if G is

a graph with n > N vertices and minimum degree at least h
h+1n, then G contains at least (1 − ε) n

a(h+1)

vertex disjoint copies of the complete (h+ 1)-partite graph with color classes of size a each.
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Is it possible to relax the minimum degree condition on the members of F if more information is given

about a particular (h+ 1)-coloring of K? In particular, is this possible if some of the color classes in this

coloring are known to be smaller than others?

In the following we answer this question in the affirmative. We prove several results, leading to the

following conjecture.

Conjecture 1.2 For any sequence a0 ≤ a1 ≤ . . . ≤ ah of natural numbers and any ε > 0 there exists

an N = N(a0, . . . , ah; ε) such that if G is a graph with n > N vertices and minimum degree at least
1
h

(
h− 1 + a0/(

∑h
i=0 ai)

)
n, then G contains at least (1 − ε)n/(

∑h
i=0 ai) vertex disjoint copies of K =

Ka0,...,ah, the complete (h+ 1)-partite graph with color classes of sizes a0, . . . , ah.

The general conjecture remains open. Here we prove it for all bipartite K, (that is, for h = 1), and

obtain some bounds for several other cases.

It suffices to prove the conjecture for the case in which a1, . . . , ah are all equal, since then the assertion

for general a0, . . . , ah will follow by first finding copies of Kb0,...,bh with b0 = ha0 and bj =
∑h
i=1 ai for

1 ≤ j ≤ h, and then splitting each copy of Kb0,...,bh into copies of K. Also, this conjecture, if true, is

best possible, as shown by considering a G which is the complete (h + 1)-partite graph with one color

class of size ak and h color classes of size bk, a < b. G has n = (a + hb)k vertices and minimum degree

(a+(h−1)b)k = 1
h(h−1+ a

a+hb)n, and yet it has no almost K = Ka0,...,ah-factor for a0 = a,
∑h
i=1 ai < hb.

This is since each color class of a K copy must be contained in a color class of G, and hence by considering

the smallest color class of G there are no more than k vertex disjoint copies of K in G. Note that in case

all color classes of K are of equal size, the conjecture reduces to Theorem 1.1.

The rest of the paper is organized as follows. Some general lemmas needed for dealing with almost K-

factors are stated in Section 2. Section 3 presents a proof of the conjecture for the bipartite case. Section

4 contains various results about the general case. We end this paper with some concluding remarks,

mostly about the relation between the questions considered here and other known results and conjectures

about the case of equal color classes.

In order to simplify the presentation, we omit all floor and ceiling signs whenever the implicit as-

sumption that a quantity is integral makes no essential difference.

2 The General Tools

For a graph G and disjoint sets A, B of vertices of G, the density of (A,B), denoted by d(A,B), is the

number of edges from A to B divided by |A||B|. The pair (A,B) is called γ-regular if for any A′ ⊂ A,
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B′ ⊂ B satisfying |A′| ≥ γ|A|, |B′| ≥ γ|B|, the two densities d(A,B) and d(A′, B′) differ by less than γ.

The main tool for obtaining such pairs is the well known Regularity Lemma of Szemerédi:

Lemma 2.1 ([13]) For any γ > 0 and k there exists an N = N2.1(γ, k) such that the vertex set of any

graph G with n > N vertices can be partitioned into C0, . . . , Cl where k ≤ l ≤ N , such that |C0| ≤ γn,

C1, . . . , Cl are of the same size, and all but at most γl2 of the pairs (Ci, Cj) are γ-regular.

The relevance of this notion of regularity to graph packing problems is demonstrated in the following

simple result.

Lemma 2.2 ([4]) For any non decreasing sequence a0, . . . , ah and δ > 0 there exist an N = N2.2(h, ah; δ)

and γ = γ2.2(h, ah; δ) > 0 such that every family of pairwise disjoint vertex sets S0, . . . , Sh with more

than N vertices each, in which all pairs are γ-regular and of density at least δ, contains a Ka0,...,ah with

ai vertices in Si for all 0 ≤ i ≤ h.

When we need to find more than one copy of a given subgraph, the following simple and well known

lemma will enable us to apply the previous one succesively and find the required copies one by one.

Lemma 2.3 For every γ ≤ δ and 1
2 ≥ ε > 0, if (A,B) is an εγ-regular pair of density at least δ, and

R ⊂ A, S ⊂ B satisfy |R| ≥ ε|A|, |S| ≥ ε|B|, then (R, S) is a γ-regular pair of density at least 1
2δ.

The following lemma is the main tool in the proof of existence of almost K-factors, both in [4] and

here. Similar statements have been proved and applied in various other existence proofs, such as in [9]

and [10] (see also the “degree form” of the Regularity Lemma in [12]). The lemma is proved implicitly

in [4]. Here we state and prove it explicitly.

Lemma 2.4 ([4], see also [12]) For any ε > 0 there exists a δ = δ2.4(ε), such that for any k and γ > 0

there exists an N = N2.4(ε, k, γ) satisfying for all α:

If G is a graph with n > N vertices and minimum degree at least αn, then there exists a partition

C0, . . . , Cl of G, k ≤ l ≤ N , and a graph H on a vertex set v1, . . . , vl with minimum degree at least

(α − ε)l, such that |C0| < εn and if vi, vj are neighbours in H then (Ci, Cj) form a γ-regular pair in G

with density at least δ.

Proof: We may assume ε < 1. Set δ = 1
2ε0 and N = N2.1(min{γ, γ0, ε0}, 1−ε0

1−2ε0
max{k, k0}) with ε0,

γ0, k0 to be chosen later. Given G with n > N vertices, partition it into C ′0, . . . , C
′
l′ using Lemma 2.1.

Let G′ be the graph obtained from G by removing all vertices in C0 (decreasing the degrees of other

vertices by no more than γ0n), all edges which are contained in a single Ci (decreasing the degrees by
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no more than n
k0

), all edges which are contained in a pair (Ci, Cj) which is not min{γ, γ0}-regular (this

cannot decrease the degrees of more than 2γ
1
2
0 n vertices by more than γ

1
2
0 n), or in a pair (Ci, Cj) which

is γ0-regular but of density less than δ. This last step decreases the degrees of no more than γ
1
2
0 n vertices

by more than (δ + γ0 + γ
1
2
0 )n, since for a given i > 0, no more than γ0|Ci| vertices in Ci have more than

(δ + γ0)|Cj | neighbours in Cj , for a given j > 0 such that (Ci, Cj) is γ0-regular of density less than δ.

Hence, no more than γ
1
2
0 |Ci| vertices of Ci (for each i) have more than (δ + γ0)|Cj | neighbours in Cj

for more than γ
1
2
0 l
′ possible values of j such that (Ci, Cj) are such pairs. As all other vertices of Ci are

about to lose less than (δ+ γ0 + γ
1
2
0 )n neighbours in the last edge deletion step, this implies the required

result. Define a graph H ′ on w1, . . . , wl′ by declaring wi, wj to be adjacent iff there is at least one edge

in G′ from C ′i to C ′j . All vertices of G′ but at most 3γ
1
2
0 n of them were shown to be of degree at least

(α− γ0− 1
k0
− γ

1
2
0 − (δ+ γ0 + γ

1
2
0 ))n. Remembering that δ = 1

2ε0, a proper choice (depending on ε0) of γ0

and k0 will ensure that all vertices in G′ but at most ε0n of them are of degree at least (α− ε0)n in G′,

which implies that all vertices in H ′ but at most ε0
(1−ε0) l

′ of them are of degree at least (α−ε0)l′. To obtain

C0, . . . , Cl and H, we delete from H ′ the vertices which are of degree less than (α − ε0)l′, and group all

the vertices in the appropriate C ′i together with C ′0 as the new C0. H has at least k vertices, and a choice

of ε0 = ε
2+ε will ensure that |C0| ≤ εn and that H has minimum degree at least (α−ε0− ε0

1−ε0 )l′ ≥ (α−ε)l

as required. Note that ε0 and thereby δ = 1
2ε0 depend on ε only, as required. 2

Thus, by proving in the first stage the existence of appropriate subgraphs of the graph H, to which

we shall usualy refer as the partition graph, we can deduce by Lemma 2.2 and Lemma 2.3 the existence

of certain subgraphs of G (in [12] H is refered to as the reduced graph of G with respect to the given

partition). The following classical result of Hajnal and Szemerédi is often useful in finding subgraphs of

the partition graph, and will also be used here.

Lemma 2.5 ([8]) For every natural number h, any graph H with k = hl vertices and minimum degree

at least h−1
h k = (h − 1)l can be partitioned into l vertex disjoint copies of Kh, the complete graph on h

vertices.

Theorem 1.1 is proved in [4] by first applying Lemma 2.4 to G, then covering most of the partition

graph H with vertex disjoint copies of Kh using Lemma 2.5, and finally extracting the required copies of

Ka,...,a by repeated applications of Lemma 2.2, using Lemma 2.3 as well. The results here will be proven

using a similar general approach, where in each case we find in the partition graph H an appropriate

subgraph for the required purpose.

The following simple Lemma about the possibility of partitioning a graph (and the given packing

problem with it) keeping high degrees, is useful in many packing problems, and will play a role in this
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paper too.

Lemma 2.6 ([2], see also [5]) For any α > β > 0 and η > 0 there exists an N = N2.6(α, β, η) such

that if G is a graph with n > N vertices and minimum degree at least αn, then for any k, l satisfying

n = k + l, k ≥ ηn, l ≥ ηn the vertex set of G can be partitioned into sets A, B of sizes k, l respectively,

such that all vertices of G have at least βk neighbours in A and at least βl neighbours in B.

As a final remark, it should be mentioned that we could replace Lemma 2.2 and Lemma 2.3 by a

much stronger result, the Blow Up Lemma of Komlós, Sárközy and Szemerédi [11]. However, since this

heavy machinery will not simplify the proofs here considerably, we prefer to formulate them without it.

3 Almost Bipartite K-factors

In case h = 1 (bipartite graphs K), we can prove the precise statement of Conjecture 1.2, as stated in

the following.

Theorem 3.1 For any a ≤ b and ε > 0 there exists an N = N(a, b; ε) such that any graph G with n > N

vertices and minimum degree at least a
a+bn contains at least (1− ε) n

a+b vertex disjoint copies of Ka,b.

The subgraph we need in the partition graph here is described in the following lemma. Note that the

existence of any member of a rather large family of possible graphs suffices in this case.

Lemma 3.2 For every natural numbers a < b, any graph H with k vertices and minimum degree at least
a
a+bk + a contains a spanning subgraph with minimum degree at least a and maximum degree at most b.

Proof: Let L be a spanning subgraph of H with minimum degree at least a, which has a minimum number

of edges incident with vertices whose degrees exceed b, and subject to this is minimal with respect to

deleting edges. In particular, each edge of L is incident with at least one vertex of degree a. We claim that

L contains no vertices of degree exceeding b, and hence is the required subgraph. Supposing otherwise,

let v be a vertex with degree exceeding b, and w a neighbour of v in L, w being neccessarily of degree

a in L. The number of vertices of degree at least b in L is less than a
a+bk. This is since, denoting their

number by j, they have more than bj edges incident with them. As all their neighbours are of degree

a in L, this means they have more than a total of b
aj neighbours, and hence j + bj

a < k, implying that

j < a
a+bk. Thus, w has more than a neighbours in H which are of degrees less than b in L. At least one

of these neighbours is not a neighbour of w in L, and thus the edge leading to it from w can be added to

L replacing the edge from w to v. This decreases the number of edges incident with vertices of degrees

exceeding b, contradicting the choice of L and completing the proof. 2
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Corollary 3.3 For any a < b and ε > 0 there exist M = M3.3(a, b, ε) and γ = γ3.3(a, b, ε), such that any

graph H with k > M vertices and minimum degree at least ( a
a+b − γ)k contains a spanning subgraph L

with maximum degree at most b, all but at most εk of whose vertices are also of degree at least a.

Proof: We add to H a complete graph on 2(γk + a) new vertices, connecting them to all existing ones.

Then we use Lemma 3.2, and remove the newly added vertices to obtain a spanning subgraph in which

all but at most 2(γk + a)b of the degrees are at least a. A proper choice of M and γ ensures that this

last number is less than εk. 2

Proof of Theorem 3.1: We may assume ε < 1. If a = b, this is Theorem 1.1. Otherwise, we set

N = max{N1, N2}, where N1 = N2.4(ε0,M, γ0), using M = M3.3(a, b, ε4), ε0 = min{ ε2 , γ3.3(a, b, ε4)}, and

γ0 and N2 will be chosen later. Find according to Lemma 2.4 the appropriate partition C0, . . . , Cl of

G and the corresponding partition graph H. In H, find the appropriate L according to Corollary 3.3.

Define γ0 = ε
8γ2.2(1, b; 1

2δ2.4(ε0)), and let N2 be large enough to ensure for 1 ≤ i ≤ l that ε
8 |Ci| >

N2.2(1, b; 1
2δ2.4(ε0)). We can use L to extract the required Ka,b copies as follows.

Let d1, . . . , dl be the degrees of v1, . . . , vl in L. We deal with all edges in L which are incident with

at least one vertex of degree at least a (and, of course, at most b). Pick such an edge, vivj , with di ≥ dj ,

di ≥ a. We now extract vertex disjoint copies of Ka,b one by one using Lemma 2.2, occupying a total of

x = (1− ε
8) |Ci|di vertices from Ci and y = (1− ε

8) |Cj |
max{a,dj} vertices from Cj . Since 1 ≥ x

y ≥
a
b , we can do

it by picking yb−xa
b2−a2 copies with a vertices in Ci and b vertices in Cj , and xb−ya

b2−a2 copies with b vertices in

Ci and a vertices in Cj . This process can be applied and completed for all of the above mentioned edges,

since during the whole process at least ε
8 |Ci| vertices remain in Ci for each i, thus ensuring by Lemma 2.3

that Lemma 2.2 is still applicable. Moreover, at the end of this process for each vi with di ≥ a, only ε
8 |Ci|

vertices from Ci will remain unused (since for each of the di edges incident with vi, (1 − ε
8) |Ci|di vertices

from Ci were taken for the Ka,b copies corresponding to that edge).

Summing up, the Ka,b copies found this way occupy at least (1− ε
2)(1− ε

4)(1− ε
8)n > (1−ε)n vertices,

yielding the required result. 2

4 Almost (h+ 1)-partite K-factors

In case h > 1 we know less about the minimum degree required to ensure the existence of an almost

K-factor. The following proposition supplies an upper bound when one of the color classes of K is known

to be small.
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Proposition 4.1 For any natural h, g, a and any ε > 0 there exists an N = N(h, g, a; ε) such that if

G is a graph with n > N vertices and minimum degree at least 1
h(h − 1 + 1

g )n, then G contains at least

(1− ε) n
(1+hg2)a

vertex disjoint copies of K, the complete (h+ 1)-partite graph with one color class of size

a and h color classes of size g2a.

From this proposition it follows that graphs with n vertices and minimum degree at least 1
h(h−1+ 1

g )n

contain an almost K-factor for any fixed K = Ka0,...,ah satisfying
∑h
i=1 ai ≥ hg2a0, as copies of this K

can be extracted from copies of a larger graph found using Proposition 4.1. Alternatively, the proof of

the proposition itself can be slightely modified to include this more general case.

In case a second color class is known to be not too large, we can eliminate the square sign from our

estimates. This is demonstrated in the following proposition, in which, for simplicity, we make no attempt

to prove the most general result that can be obtained and merely illustrate the basic idea.

Proposition 4.2 For any natural h, g, a, b with a ≤ b ≤ 2ga and any ε > 0 there exists an N =

N(h, g, a, b; ε) such that if G is a graph with n > N vertices and minimum degree at least 1
h(h− 1 + 1

g )n,

then G contains (1 − ε) n
a+b+4(h−1)ga vertex disjoint copies of K, the complete (h + 1)-partite graph with

one color class of size a, one color class of size b and h− 1 color classes of size 4ga.

In order to prove Proposition 4.1 we define the following special graph, and then prove the existence

of many vertex disjoint copies of such graphs in our partition graph H.

Definition: For any natural numbers g, h, define an h-flower with g petals to be the graph on gh + 1

vertices consisting of g vertex disjoint copies of Kh, the complete graph on h vertices, in which all vertices

of these copies are adjacent to a single additional vertex.

Lemma 4.3 For any ε > 0 and natural h, g there exists an M = M4.3(h, g, ε) such that if H is a graph

with k > M vertices and minimum degree at least ( 1
h(h − 1 + 1

g ) + ε)k, and gh + 1 divides k, then H

contains a spanning subgraph consisting of vertex disjoint h-flowers with up to g2 petals each.

Proof: Choose M = N2.6( 1
h(h − 1 + 1

g ) + ε, 1
h(h − 1 + 1

g ), 1
gh+1). Given H, use Lemma 2.6 to partition

its vertex set into two parts A, B of sizes gh
gh+1k, 1

gh+1k, respectively, such that each vertex has at least
1
h(h − 1 + 1

g ) gh
gh+1k >

h−1
h

gh
gh+1k neighbours in A and at least 1

h(h − 1 + 1
g ) 1
gh+1k neighbours in B. Use

Lemma 2.5 to partition A into vertex disjoint copies of Kh. Simple counting shows that each of the above

mentioned Kh copies has at least k
g(gh+1) vertices in B to which all its vertices are adjacent. Similarly,

each vertex in B is adjacent to all vertices of at least k
gh+1 of these Kh copies in A. Define a bipartite

graph with color classes C, D as follows:
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C consists of one vertex corresponding to each of the above mentioned Kh copies in A, D consists of

g2 vertices corresponding to each vertex of B. Two vertices u ∈ C, w ∈ D are adjacent iff the vertex

represented by w is adjacent in H to all vertices in the Kh represented by u. Let B′ be an arbitrary

subset of D in which each vertex of B has exactly one representative. Since each vertex in D has at

least |B′| = |B| = 1
gh+1k neighbours in C, there is a matching from B′ to C. Since each vertex of C

has at least |C| = g
gh+1k neighbours in D, the last matching can be extended to a matching from C to

D, in which each vertex in B has a representative in D which is matched. The spanning subgraph of H

corresponding to this matching consists of the required h-flowers. 2

Corollary 4.4 For any ε > 0 and natural g > 1, h there exist M = M4.4(h, g, ε) and γ = γ4.4(h, g, ε)

such that if H is a graph with k > M vertices and minimum degree at least ( 1
h(h − 1 + 1

g ) − γ)k, then

H contains a subgraph with at least (1− ε)k vertices consisting of vertex disjoint h-flowers with up to g2

petals each.

Proof: Set M = max{M4.3(h, g, γ),M0}, M0 as well as γ to be chosen later. If H is a graph with k > M

vertices and minimum degree at least ( 1
h(h− 1 + 1

g )− γ)k, add to H a complete graph on l new vertices,

where 4hγk ≤ l < 4hγk + gh+ 1, connecting them to all existing ones, and ensuring that the number of

vertices in the new graph is divisible by gh + 1. A calculation shows that Lemma 4.3 can be applied to

this graph, and then the new vertices together with all flowers containing them can be removed, obtaining

a subgraph consisting of vertex disjoint flowers with more than k− (g2h+ 1)(4hγk+ gh+ 1) vertices. An

appropriate choice of M0, γ will ensure that this is at least (1− ε)k. 2

Proof of Proposition 4.1: We may assume ε < 1 and g > 1. Set N = max{N1, N2}, where N1 =

N2.4(ε0,M, γ0), using M = M4.4(h, g, ε4), ε0 = min{ ε2 , γ4.4(h, g, ε4)}, and γ0 and N2 will be chosen later.

Find according to Lemma 2.4 the appropriate partition C0, . . . , Cl of G and the corresponding partition

graph H. In H, find the h-flowers guarantied by Corollary 4.4. Define γ0 = ε
8γ2.2(h, g2a; 1

2δ2.4(ε0)), and

let N2 be large enough to ensure for 1 ≤ i ≤ l that ε
8 |Ci| > N2.2(h, g2a; 1

2δ2.4(ε0)). We can use the

h-flowers to extract the required K copies as follows.

For each vertex w of H, denote the appropriate Ci by Cw. Consider an h-flower with t petals. Let

v be the vertex adjacent to 1 ≤ t ≤ g2 copies of Kh. Consider one of the Kh copies in the h-flower,

denoting its vertices by u1, . . . , uh. We extract copies of K occupying a total of (1− ε
8) |Cv |t vertices from

Cv, and (1 − ε
8)|Cuj | vertices from Cuj , 1 ≤ j ≤ h. This process can be applied and completed for all

the Kh copies in this flower and then for all the h-flowers, since during the whole process at least ε
8 |Ci|

vertices remain in Ci for each i, thus ensuring by Lemma 2.3 that Lemma 2.2 is still applicable. At the

end of this process for each i such that vi is in a flower, only ε
8 |Ci| vertices from Ci will remain unused.
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Summing up, the K copies found this way occupy at least (1− ε
2)(1− ε

4)(1− ε
8)n > (1− ε)n vertices,

yielding the required result. 2

For the proof of Proposition 4.2, we first prove the existence of a certain structure in H, which we

define for this purpose.

Definition: For any natural h, g, define an (h, g)-bush to be a graph L consisting of a vertex set V , plus

a list of vertex disjoint copies of Kh with a vertex set U ⊂ V and an assignment of a vertex of V to each

of the Kh copies satisfying:

• Each Kh-copy is a complete graph on h vertices in L.

• The vertex assigned to each copy of Kh does not belong to that copy and is adjacent in L to all the

vertices of the copy.

• No vertex in V has more than g copies of Kh to whom it is assigned.

• No copy of Kh has more than a total of g copies of Kh to whom any of its vertices have been

assigned.

The (h, g)-bush is said to utilize the vertex set U of all vertices in the above mentioned Kh copies.

The existence lemma we need here is the following:

Lemma 4.5 If H is a graph with k vertices and minimum degree at least 1
h(h− 1 + 1

g )k, and h divides

k, then H contains an (h, g)-bush utilizing the whole vertex set of H.

Proof: First we use Lemma 2.5 to partition H into vertex disjoint copies of Kh. We call a vertex and a

(disjoint) copy of Kh adjacent iff the vertex is adjacent to all the vertices of the Kh. A simple counting

argument shows that each of the above mentioned Kh copies is adjacent to at least k
g vertices. We now

define a bipartite graph with color classes A, B as follows:

The vertices of A consist of one vertex corresponding to each of the above mentioned Kh copies, while

B consists of g vertices corresponding to each Kh. u ∈ A and w ∈ B are adjacent iff there is a vertex in

the Kh copy corresponding to w which is adjacent to the Kh copy corresponding to u.

Since each vertex in A has at least |A| = k
h neighbours in B, there is a matching from A to B.

Assigning the vertices of H to the Kh copies according to this matching yields the required (h, g)-bush.

2

Corollary 4.6 For any ε > 0 and natural g > 1, h there exist M = M4.6(h, g, ε) and γ = γ4.6(h, g, ε)

such that if H is a graph with k > M vertices and minimum degree at least ( 1
h(h− 1 + 1

g )− γ)k, then H

contains an (h, g)-bush utilizing at least (1− ε)k vertices.
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Proof: Add to H a complete graph on l new vertices, where 2hγk ≤ l < 2hγk + h, connecting them

to all vertices of H, and ensuring that the number of vertices in the new graph is divisible by h. Apply

now Lemma 4.5, and then remove the new vertices, discounting any copies of Kh (in the definition of the

bush) which contain or are assigned any of the new vertices. Since less than (g+ 1)(2hγk+ h) of the Kh

copies were discounted, the remaining bush still utilizes more than k − h(g + 1)(2hγk + h) vertices. An

appropriate choice of M , γ will ensure that this is at least (1− ε)k. 2

Proof of Proposition 4.2: We may assume ε < 1 and g > 1. As in the proof of the previous

proposition, set N = max{N1, N2}, N1 = N2.4(ε0,M, γ0), M = M4.6(h, g, ε4), ε0 = min{ ε2 , γ4.6(h, g, ε4)},

where N2 and γ0 are to be chosen later. Find according to Lemma 2.4 the appropriate partition C0, . . . , Cl

of G and the corresponding partition graph H. In H, find the (h, g)-bush guarantied by Corollary

4.6. Define γ0 = ε
8γ2.2(h, 4ga; 1

2δ2.4(ε0)), and let N2 be large enough to ensure for 1 ≤ i ≤ l that
ε
8 |Ci| > N2.2(h, 4ga; 1

2δ2.4(ε0)). We can use this (h, g)-bush to extract the required K copies as follows.

Again for each vertex w of H we denote the appropriate Ci by Cw. Consider a Kh copy of the bush,

denoting its vertices by u1, . . . , uh, the vertex assigned to it by v, and the number of Kh copies to which

u1, . . . , uh are assigned by d1, . . . , dh, respectively. Extract one by one using Lemma 2.2 vertex disjoint

copies of K, occupying a total of (1− ε
8) |Cv |2g vertices from Cv, and (1− ε

8)
(2g−dj)|Cuj |

2g vertices from each

Cuj , 1 ≤ j ≤ h. The following is a brief explanation showing how it is done, for example, for the case

b = 2ga (the general case a ≤ b ≤ 2ga is similar).

It is enough to find a particular solution of the following linear programing problem: Find x1, . . . , xh,

y1, . . . , yh, which are all non-negative and satisfy a
∑h
i=1 xi + 2ga

∑h
i=1 yi = (1 − ε

8) |Cv |2g and 2gaxj +

4ga
∑
i6=j xi + ayj + 4ga

∑
i6=j yi = (1 − ε

8)
(2g−dj)|Cuj |

2g for 1 ≤ j ≤ h. This is since each variable will

then tell us how many copies of K in a certain configuration to extract. To find one such solution, we

denote x =
∑h
i=1 xi, y =

∑h
i=1 yi, s = (1 − ε

8)
∑h
j=1

(2g−dj)|Cuj |
2g , and solve ax + 2gay = (1 − ε

8) |Cv |2g ,

(4hg − 2g)ax + (4(h − 1)g + 1)ay = s. Both x and y can be shown to be non-negative. Now, since∑h
i=1 di ≤ g, we can find the x1, . . . , xh, y1, . . . , yh which have sums x, y respectively and satisfy the

following conditions for all 1 ≤ j ≤ h, which in particular imply the conditions of the original problem:

2gaxj + 4ga
∑
i6=j xi = (4hg−2g)ax

s (1− ε
8)

(2g−dj)|Cuj |
2g , ayj + 4ga

∑
i6=j yi = (4(h−1)g+1)ay

s (1− ε
8)

(2g−dj)|Cuj |
2g .

Although the solution is usualy not integral, replacing each xi and yi by the closest integer above or

below as appropriate to the case still yields the desired result.

As usual, Lemma 2.3 guaranties that this process can be applied and completed for all the Kh copies

of the bush, since during the whole process at least ε
8 |Ci| vertices remain in Ci for each i. At the end,

for each vi which is utilized by the bush, only ε
8 |Ci| vertices from Ci will remain unused, so the K copies
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found this way occupy at least (1− ε
2)(1− ε

4)(1− ε
8)n > (1− ε)n vertices, yielding the required result. 2

5 Concluding Remarks

• As is the case with the results in [4], [5] and [2], the results here can be made algorithmic using the

algorithmic version of the Regularity Lemma in [3]. The price will be an increase of the (already

horrible) estimate of the lower bound N for the number of vertices in the graph as a function of ε.

• We can prove that for any natural h > 1 ,a > 1 there exists an η = η(h, a) > 0 such that any graph

G with n vertices and minimum degree at least ( h
h+1 − η)n contains an almost K-factor, K being

the complete (h + 1)-partite graph with one color class of size a − 1 and h color classes of size a,

so the required minimum degree can be somewhat reduced for any K with unequal color classes.

For the proof we use Theorem 1.1 and methods similar to ones appearing in [2] and [5] to prove

that the partition graph can be covered by vertex disjoint complete (h + 1)-partite graphs which

are with h color classes of size ha− 1 and one color class of size either ha− 1 or ha. We omit the

full details.

• El-Zahar [7] conjectured that if n =
∑
i∈I ci where ci ≥ 3 are integers, exactly l of which are odd,

then any graph on n vertices with minimum degree at least n+l
2 contains vertex disjoint cycles Ci,

(i ∈ I), where Ci is of length ci. Methods similar to those used in [2] can be used to obtain some

asymptotic version of this conjecture if Conjecture 1.2 holds for h = 2. See also [1] for some related

results.

• In [5] it is proven from Theorem 1.1 that any graph G on n = (h + 1)ak vertices with minimum

degree at least ( h
h+1 +ε)n contains k vertex disjoint copies of the complete (h+1)-partite graph with

a vertices in each color class, provided n > N(a, h, ε). The question arises as to whether a similar

refinment of the minimum degree condition can be achieved in this case, supposing that Conjecture

1.2 is proven. The answer is, however, negative: Taking any Ka0,...,ah such that h+ 1 divides ai for

all i, but does not divide
∑h
i=0

ai
h+1 , and G the complete (h+ 1)-partite graph with all color classes

of size (k(h + 1) + 1)
∑h
i=0

ai
h+1 (k any natural number), we see that G cannot be partitioned into

copies of Ka0,...,ah , although its minimum degree is h
h+1n, n = (k(h+ 1) + 1)

∑h
i=0 ai.

• We can formulate, in the spirit of [4], [5], the stronger conjecture that for any a0 ≤ a1 ≤ . . . ≤ ah

there exists a constant c = c(a0, . . . , ah) such that any graph G with n vertices and minimum

11



degree at least 1
h

(
h− 1 + a0/(

∑h
i=0 ai)

)
n contains at least n/(

∑h
i=0 ai) − c vertex disjoint copies

of Ka0,...,ah . This seems to be true.

• It would be interesting to see if the minimum degree condition for the existence of an almostK-factor

(or a K-factor) can be refined in different ways, when more information about K is available.
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