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Abstract

Erdős’ unit distance problem and Erdős’ distinct distances problem are among the most classical and
well-known open problems in discrete mathematics. They ask for the maximum number of unit distances,
or the minimum number of distinct distances, respectively, determined by n points in the Euclidean plane.
The question of what happens in these problems if one considers normed spaces other than the Euclidean
plane has been raised in the 1980s by Ulam and Erdős and attracted a lot of attention over the years. We
give an essentially tight answer to both questions for almost all norms on Rd, in a certain Baire categoric
sense.

For the unit distance problem we prove that for almost all norms ∥.∥ on Rd, any set of n points defines
at most 1

2d · n log2 n unit distances according to ∥.∥. We also show that this is essentially tight, by proving
that for every norm ∥.∥ on Rd, for any large n, we can find n points defining at least 1

2 (d−1−o(1)) ·n log2 n

unit distances according to ∥.∥.
For the distinct distances problem, we prove that for almost all norms ∥.∥ on Rd any set of n points

defines at least (1− o(1))n distinct distances according to ∥.∥. This is clearly tight up to the o(1) term.
We also answer the famous Hadwiger–Nelson problem for almost all norms on R2, showing that their

unit distance graph has chromatic number 4.
Our results settle, in a strong and somewhat surprising form, problems and conjectures of Brass, Ma-

toušek, Brass–Moser–Pach, Chilakamarri, and Robertson. The proofs combine combinatorial and geometric
ideas with tools from Linear Algebra, Topology and Algebraic Geometry.

1 Introduction

1.1 Unit distances

Erdős’ unit distance problem raised in 1946 in [20] (see also [8, Chapter 5]) is among the best-known open
problems in combinatorics. The problem asks about estimating the maximum possible number U∥.∥2(n) of unit
distances determined by n distinct points in the Euclidean plane R2 according to the Euclidean norm ∥.∥2.
The best bounds to date are

n1+Ω(1/ log logn) ≤ U∥.∥2(n) ≤ O(n4/3).

The lower bound appeared in the initial paper of Erdős [20], and the upper bound was first proved by Spencer,
Szemerédi and Trotter [41] in 1984, see also [45] for a short and elegant proof based on the Crossing Lemma.
More on the rich history of this problem can be found in the surveys [8, 46].

An interesting variant of the problem deals with the same question in general real normed spaces. This was
first suggested by Ulam and described explicitly by Erdős in the early 1980s [19]. We call a norm ∥.∥ on Rd a
d-norm and denote by U∥.∥(n) the maximum possible number of unit distances determined by a set of n distinct
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points in Rd. The unit distance graph of a d-norm ∥.∥ is the graph whose vertices are all points of Rd, where
two points are adjacent if and only if the distance between them is one. Thus, U∥.∥(n) is the maximum number
of edges in an n-vertex subgraph of the unit distance graph of ∥.∥. An initial, simple observation is that if the
boundary of the unit ball of a d-norm ∥.∥ contains a straight-line segment then U∥.∥(n) is quadratic in n, as
in this case there are two infinite subsets A,B of Rd so that the distance between any a ∈ A and b ∈ B is
one. On the other hand, if ∥.∥ is a 2-norm which is strictly convex (meaning that the boundary of the unit ball
contains no straight line segment), then one can extend the known proofs from the Euclidean case to show that
U∥.∥(n) ≤ O(n4/3). Valtr [48] constructed a strictly convex 2-norm in which for every n there exist n-element
point sets with at least Ω(n4/3) unit distances. See also [39] for a much more general family of norms with the
same property. This shows that the upper bound cannot be improved in general. See [8] for more details about
the history of the problem of estimating U∥.∥(n) for general norms.

It is not difficult to see that for any 2-norm ∥.∥, we have U∥.∥(n) ≥ (12 − o(1))n log2 n. Indeed, the graph of the
k-dimensional hypercube is a subgraph of the unit distance graph of any 2-norm ∥.∥ as shown by choosing k

random unit vectors u1,u2, . . . ,uk ∈ R2 and defining vS =
∑

i∈S ui for every subset S ⊆ {1, 2, . . . , k}. If two
subsets S, S′ ⊆ {1, 2, . . . , k} differ in a single element, then the distance according to ∥.∥ between vS and vS′

is one, as desired.

A remarkable, often repeated (see e.g. [8, 30, 33, 38, 43, 46]), result of Matoušek [34] from 2011 shows that
for most norms, in a Baire Categoric sense (that will be described in detail in Section 3), this is not far from
optimal. Namely for a typical 2-norm ∥.∥, U∥.∥(n) ≤ O(n log n log log n). This suggests the obvious problem of
deciding whether or not the log log n term is necessary. The question of how small U∥.∥(n) can be has already
been considered by Brass [6] in 1996, who in particular asked if there exists a 2-norm with U∥.∥(n) ≤ O(n log n).
The corresponding problem in higher dimensions has been considered as well. In particular, Brass, Moser and
Pach [8, Chapter 5, Problems 4 and 5, p. 195] conjectured that for every d ≥ 3 and every d-norm ∥.∥, U∥.∥(n)

is asymptotically larger than Ω(n log n) and asked whether or not for d ≥ 4 there is a d-norm ∥.∥ so that
U∥.∥(n) = o(n2). Note that for the d-dimensional Euclidean norm ∥.∥2 it is easy to see that U∥.∥(n) ≥ Ω(n2)

for every d ≥ 4 (and in fact, the precise constant is known as well, see [18]), showing that for the Euclidean
norms, the problem is simple in all dimensions d ≥ 4, despite being wide open in dimensions 2 and 3.

In the present paper, we settle the above-mentioned questions of Brass, of Matoušek and of Brass, Moser and
Pach in all dimensions in the following strong form.

Theorem 1.1. For any d ≥ 2, for most d-norms ∥.∥, we have

U∥.∥(n) ≤
d

2
· n log2 n

for all n. More precisely, for all d-norms ∥.∥ besides a meagre set, the following holds: For every n ≥ 1 and
every set of n points in Rd, there are at most d

2 · n log2 n unit distances according to ∥.∥ among the n points.

Theorem 1.2. Let d ≥ 2 be fixed. Then for every d-norm ∥.∥, we have

U∥.∥(n) ≥
d− 1− o(1)

2
· n log2 n.

for all large n. That is, for every d-norm ∥.∥ and every n, there exists a set of n points in Rd such that the
number of unit distances according to ∥.∥ among the n points is at least d−1−o(1)

2 ·n log2 n, where the o(1)-term
tends to zero as n → ∞.
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1.2 Distinct distances

The equally famous Erdős distinct distances problem is concerned with estimating the minimum possible
number D∥.∥2(n) of distinct distances determined by n points in the Euclidean plane R2. See for example the
book [26] focusing on this question, its history, generalisations and connections to other areas. The Erdős
distinct distances problem also traces its origins to the 1946 paper [20] of Erdős. In this paper, he considered
the same problem for higher-dimensional Euclidean spaces as well. For the planar case, Erdős proved an upper
bound of O(n/

√
log n) and conjectured this is tight. After a long sequence of improvements of the lower bound,

Guth and Katz established in [29] a nearly tight lower bound of Ω(n/ log n). For higher-dimensional Euclidean
spaces even the correct exponent of n is not known, see [40] for the best known bounds.

The Erdős distinct distances problem has a long history in the case of general d-norms as well, see [43] for a
recent survey on what is known in this direction. Given a d-norm ∥.∥ let us denote by D∥.∥(n) the minimum
possible number of distinct distances, according to ∥.∥, determined by n points in Rd. For every d-norm ∥.∥ and
every n, we clearly have D∥.∥(n) ≤ n−1 by considering any set of n points along an arithmetic progression on a
line. Brass conjectured that D∥.∥(n) = o(n) for any d ≥ 2 and any d-norm ∥.∥ (see [8, Chapter 5.4, Conjecture
5, p. 211]). Here we refute his conjecture in a strong form. For most d-norms ∥.∥, we show that D∥.∥(n) is not
only linear in n, but is in fact of the form (1− o(1))n.

Theorem 1.3. For any fixed d ≥ 2, for most d-norms ∥.∥ we have

D∥.∥(n) = (1− o(1))n

for all n. More precisely, for all d-norms ∥.∥ besides a meagre set, the following holds: For every n, among
any n points in Rd there are at least (1− o(1))n distinct distances according to ∥.∥, where the o(1)-term tends
to zero as n → ∞.

1.3 Hadwiger–Nelson Problem

The question of determining the chromatic number of the unit distance graph of the Euclidean norm in the
plane is yet another famous open problem in discrete geometry, known as the Hadwiger–Nelson problem. In
other words, this question asks how many colours are needed in order to colour all points in the plane such
that any two points with Euclidean distance one receive different colours. This problem dates back to 1950,
and it has been known for a long time that the answer is at least 4 and at most 7. In a recent computational
breakthrough [11, 22], the lower bound has been improved to 5, sparking a collaborative Polymath project [37]
focusing on the problem. See also [8, 43] for more details on the history of the Hadwiger–Nelson problem.

The analogue of this problem for other planar norms was studied by Chilakamarri [9] in 1991, who showed
that the unit distance graph of every 2-norm has chromatic number at least 4 and at most 7. In addition, [9,
Problem 5], attributed to Robertson, asks for the chromatic number of the unit distance graph of at least one
strictly convex 2-norm to be evaluated. We prove that the chromatic number of the unit distance graph of
most 2-norms equals 4.

Theorem 1.4. For all 2-norms ∥.∥ besides a meagre set, the unit distance graph of ∥.∥ has chromatic number
equal to 4.

In contrast, as mentioned above, it was recently shown [11, 22] that for the Euclidean 2-norm the chromatic
number of the unit distance graph is at least 5. Thus, the behaviour for most 2-norms is different from the
Euclidean 2-norm, which in particular disproves a conjecture of Chilakamarri [9, p. 355].
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In dimension d, our arguments give an upper bound of 2d for the chromatic number of the unit distance graph
of most d-norms. It is known that the chromatic number of the unit distance graph of any d-norm is at most
exponential in d (see [25, 32]), but the exponential base in these known bounds is much larger than 2. See also
[43] for a more detailed survey on what is known surrounding this problem. We furthermore note that results
of Frankl and Wilson [23] give an exponential lower bound for the chromatic number of the unit distance graph
of all d-norms which are invariant under coordinate permutations.

Our upper bound of 2d for most d-norms actually also holds for the chromatic number of the odd distance
graph (i.e. the graph whose edges correspond to pairs of points in Rd whose distance is an odd integer), which
is a stronger result as the unit distance graph is a subgraph of the odd distance graph. This is very different
from the Euclidean case, where by a recent result of Davies [10] already in the plane the chromatic number of
the odd distance graph is infinite.

2 Proof overview

The proofs of our theorems use arguments from combinatorics, polyhedral and discrete geometry, topology and
algebra. In this section, we give a high-level proof overview. We note that this overview is simplifying numerous
parts and omitting certain important points, since the goal of this section is to present just the general ideas
and how they come together. We begin with Theorem 1.1.

The proof of Theorem 1.1 splits into two parts. The first, more combinatorial part shows that for a norm with
a lot of unit distances among some set of n points there must be a lot of rational linear dependencies between
the corresponding unit vectors. More precisely, if the bound in Theorem 1.1 fails for some d-norm ||.||, namely
if we can find n points with more than (d/2) · n log2 n unit distances, then there is some set of unit vectors
whose Q-linear span contains a lot of other unit vectors. The second, more geometric part consists of showing
that for most norms, this situation cannot happen. In other words, for most norms, there cannot be a collection
of unit vectors from which a lot of other unit vectors can be obtained as rational linear combinations.

In the first part, we fix n points with more than (d/2) · n log2 n unit distances according to some some d-
norm ||.||. Our goal is to show that there must be a lot of rational linear dependencies between the vectors
u1, . . . ,uk with ||u1|| = · · · = ||uk|| = 1 describing these unit distances. If there are not so many rational linear
dependencies (more precisely, if for every ℓ, the Q-linear span of any ℓ of the vectors u1, . . . ,uk contains at
most d · ℓ of the vectors u1, . . . ,uk), then we can find a subset of these unit vectors that is linearly independent
over Q and accounts for a relatively large number of unit distances among the n fixed points (namely, for more
than (1/2) · n log2 n unit distances). On the other hand, for n fixed points, we can analyse for how many pairs
of points their difference can be among a given list of Q-linearly independent vectors, and it turns out that this
can happen for at most (1/2) · n log2 n pairs of points (this follows from an isoperimetric inequality for grids
due to Bollobás and Leader [5], but we also give a self-contained proof). This contradiction means that our
original set of unit vectors u1, . . . ,uk must have many rational linear dependencies, as desired.

For the second part, we need to show that there are only “few” special d-norms with the property that for
some collection of unit vectors, a lot of other unit vectors can be obtained as rational linear combinations. So
we need to show that the set of d-norms with this property can be covered by countably many nowhere-dense
subsets in the space of d-norms (with a certain natural topology, see Section 3 for more details). Roughly
speaking, our countably many subsets correspond to the different possibilities for the size of the collection of
unit vectors and the rational coefficients in the relevant rational linear combinations, as well as a lower bound
for the separation angle between any two of these unit vectors. To prove that each of these subsets is nowhere
dense in the space of all d-norms, we show that for any d-norm whose unit ball is a convex polytope with
sufficiently small facets, there is a slight perturbation (obtained by slightly translating each facet hyperplane)
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that does not appear as the unit ball of an accumulation point of the subset. Heuristically speaking, if such
a perturbation appears as the unit ball of a norm from this subset, then certain linear equations need to be
satisfied for the translation lengths for the facets containing the unit vectors appearing in the above property
(as a consequence of the linear relations between the unit vectors themselves). A generic perturbation does
not satisfy these linear equations and therefore cannot correspond to an accumulation point of norms from
this subset. This establishes that each of these subsets is indeed nowhere dense, and concludes the proof of
Theorem 1.1.

The proof of Theorem 1.3 follows a similar overall approach, but various steps become more involved and
significant new ideas are required. In the first part, for n given points with few distinct distances according to
some d-norm, we work over the field extension of Q generated by the distinct distances between these n points
(so we consider linear relations with coefficients in this extension field). We also need to establish stronger
quantitative bounds for the number of unit vectors that we find in the span of some collection of unit vectors.
Overall, the first part of the proof of Theorem 1.3 is much more involved than for Theorem 1.1. For example,
one cannot use the Bollobás–Leader edge-isoperimetric inequality anymore in this setting, since here we need a
more general statement (see Lemma 4.3) compared to the setting of Theorem 1.1 (we prove this more general
statement via combinatorial arguments). The second part of the proof of Theorem 1.3 is relatively similar to
Theorem 1.1, but requires some basic tools from algebraic geometry instead of the linear algebraic arguments
in the proof of Theorem 1.1.

For our result on the Hadwiger–Nelson problem for typical norms in Theorem 1.4, we combine the second part
of the proof of Theorem 1.1 with a modified version of the first part. In particular, we make crucial use of the
Edmonds Matroid Partitioning Theorem [14].

We note that the general idea of trying to control the number of linear dependencies between unit vectors in a
typical norm is due to Matoušek [34], and his proof of the upper bound U∥.∥(n) ≤ O(n log n log logn) for most
2-norms ||.|| similarly splits into two parts as our proof of Theorem 1.1. For the second part, showing that
for most norms there cannot be many linear dependencies between unit vectors, our approach is inspired by
his arguments. However, he uses hands-on geometric arguments in dimension 2 about “bulging” line segments
or decomposing into trapezoids, that do not seem to easily extend to higher dimensions. Therefore, to obtain
our results in any dimension, we introduced several new ideas, in particular making the proof more algebraic.
On the other hand, the first part of our proof is radically different from Matoušek’s. His proof is based on
graph theoretic “expansion” arguments via probabilistic methods, leading to his weaker bound. We develop a
completely new strategy for the first part of the proof instead, resulting in an essentially tight bound.

To prove our new lower bound on U∥.∥(n) for any d-norm ||.|| in Theorem 1.2, we consider Minkowski sums of
certain carefully chosen small point sets, such that in a grid-like fashion we obtain many unit distances. To
ensure that we can find suitable small point configurations serving as the base sets of our construction, we use
a result from dimension theory: the Hurewicz dimension lowering theorem.

Organisation. The next section contains some background and preliminary lemmas. The first part of the
proofs of Theorems 1.1 and 1.3 can be found in Section 4, and the second part in Section 5. Theorem 1.4 is
then proved in Section 6, relying on the previous sections. Finally, we prove Theorem 1.2 in Section 7 and
finish with some concluding remarks and open problems in Section 8.
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3 Geometric preliminaries

3.1 Background

We begin by setting up some notation and introducing the notions we will work with. We note that all our
logarithms are in base 2 unless specified otherwise.

For d ≥ 1, a norm on Rd is a mapping ||.|| that assigns a non-negative real number ||x|| to each x ∈ Rd such
that the following three conditions hold:

• For every x ∈ Rd, we have ||x|| = 0 if and only if x = 0.
• We have ||αx|| = |α| · ||x|| for all α ∈ R and x ∈ Rd.
• The triangle inequality holds, meaning that ||x + y|| ≤ ||x||+ ||y|| for all x,y ∈ Rd.

Each norm ||.|| on Rd is uniquely specified by its unit ball, defined as the set of all x ∈ Rd for which ||x|| ≤ 1. A
unit ball of any norm is a closed, bounded, 0-symmetric convex body containing 0 in its interior. Furthermore,
any such body appears as the unit ball of a unique norm. Let Bd denote the set of all unit balls of norms in
Rd or equivalently the set of all closed, bounded, 0-symmetric convex bodies in Rd containing 0 in the interior.
As discussed below, it is known that Bd endowed with the so-called Hausdorff metric dH forms a Baire space.

The Hausdorff distance dH(A,B) of two sets A,B ⊆ Rd is defined as

dH(A,B) := max

{
sup
a∈A

inf
b∈B

||a − b||2, sup
b∈B

inf
a∈A

||a − b||2
}
,

where ||.||2 denotes the Euclidean distance in Rd. If A,B ⊆ Rd are closed and bounded, then one can replace
the suprema and infima in the above definition with maxima and minima. So in this case the Hausdorff distance
dH(A,B) is simply the “maximum distance” of a point in A from the set B or of a point in B from the set A.
Note that the Hausdorff distance satisfies the triangle inequality.

A set S in a metric (or topological) space X is nowhere dense if every non-empty open set U ⊆ X contains a
nonempty open set V with V ∩ S = ∅. A meagre set in X is a countable union of nowhere dense sets. Note
that a subset of any meagre set is also meagre. The space X is called a Baire space if the complement of each
meagre set in X is dense. It is known that Bd endowed with the Hausdorff metric dH forms a Baire space (this
follows for example from [28, Theorem 6.4] together with the Baire Category Theorem).

The diameter of a non-empty bounded closed subset S ⊆ Rd (with respect to the Euclidean distance) is defined
as

diam(S) = max
a,b∈S

||a − b||2

(note that this maximum is indeed well-defined since S is closed and bounded).

A half-space in Rd is the closed subset of Rd given by the solutions x ∈ Rd to some linear inequality of the
form a · x ≤ b for some a ∈ Rd and some b ∈ R (geometrically, this is the set of points on one side of the affine
hyperplane given by a ·x = b, including the hyperplane itself). A polytope P ⊆ Rd is an intersection of finitely
many half-spaces in Rd. Note that every polytope P is convex. Every bounded polytope P ⊆ Rd can also be
described as a convex hull of finitely many points in Rd.

Every 0-symmetric polytope P containing 0 in its interior can be written in the form

P = {x ∈ Rd : |oi · x| ≤ ti for i = 1, . . . , h}

with non-zero vectors o1, . . . ,oh ∈ Rd and positive real numbers t1, . . . , th. The facets of such a polytope are the
intersections of the form P ∩H for some hyperplane H such that the intersection P ∩H is (d− 1)-dimensional
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and P is contained in one of the closed half-spaces bounded by H. If P is 0-symmetric, then the facets appear
in pairs of opposite facets (which are parallel to each other).

A set B ⊆ Rd is strictly convex, if for all distinct a,b ∈ B and all 0 < α < 1 the point αa+ (1− α)b is in the
interior of B. For a strictly convex set B ⊆ Rd, for every point b on the boundary of B there exists a hyperplane
H with H ∩ B = {b} such that B is contained in one of the half-spaces bounded by H. The unit ball B of a
norm ||.|| on Rd is strictly convex if the triangle inequality is a strict inequality ||x + y|| < ||x|| + ||y|| for all
non-zero vectors x,y ∈ Rd that are not multiples of each other. Indeed, in this case for non-zero a,b ∈ B with
spanR(a) ̸= spanR(b) and 0 < α < 1, we have ||αa+ (1− α)b|| < ||αa||+ ||(1− α)b|| = α||a||+ (1− α)||b|| ≤
α+ (1−α) = 1. For distinct vectors a,b ∈ B with spanR(a) = spanR(b) we always have ||αa+ (1−α)b|| < 1

since we either have max{||a||, ||b||} < 1 or a = −b. And for a,b ∈ B with a = 0 or b = 0 we also trivially
have ||αa + (1− α)b|| < 1. Thus the triangle inequality for ||.|| being strict for all non-zero vectors x,y ∈ Rd

with spanR(x) ̸= spanR(y) indeed implies that B is strictly convex.

Finally, we record the following simple algebraic fact, which we will use in our proof of Theorem 1.3.

Fact 3.1. For any positive integer m, given m+1 rational functions f1, . . . , fm+1 ∈ R(x1, . . . , xm) in m variables
with real coefficients, there exists a nonzero polynomial P ∈ R[y1, . . . , ym+1] such that P (f1, . . . , fm+1) = 0.

This follows immediately from the well-known fact that the transcendence degree of the function field
R(x1, . . . , xm) over R is equal to m. Indeed, since m + 1 is larger than this transcendence degree, there
must be an algebraic relationship between f1, . . . , fm+1.

3.2 Geometric lemmas

This section contains some basic geometric lemmas. Although most of the content of this section is well-known,
we include some of the proofs for the reader’s convenience.

The first two lemmas below are only needed to prove the third lemma in this section.

Lemma 3.2. Let T ⊆ Rd be a bounded subset and let ε > 0. Then there exists a finite subset S ⊆ T such that
for every point t ∈ T there exists a point s ∈ S with ||s− t||2 ≤ ε.

We remark that such a subset S is called an ε-net of T .

Proof. Since T is bounded, it is contained in the Euclidean ball of radius R around 0 for some R > 0. Let
us consider the family of all subsets S ⊆ T with the property that ||s − s′||2 > ε for all distinct s, s′ ∈ S. We
claim that each such subset S has size |S| ≤ (2R/ε+1)d. Indeed, the Euclidean balls of radius ε/2 around the
points in S are mutually disjoint and contained in the Euclidean ball of radius R + ε/2 around 0. Hence, for
volume reasons, the set S can consist of at most (2R/ε+ 1)d points.

Note that S = ∅ vacuously satisfies the property that ||s− s′||2 > ε for all distinct s, s′ ∈ S. Hence, the family
of subsets S ⊆ T with this property is non-empty, and as all its members satisfy |S| ≤ (2R/ε+1)d, there must
be a maximal subset S ⊆ T in this family. So let S ⊆ T be a maximal subset with the property that we have
||s − s′||2 > ε for all distinct s, s′ ∈ S.

Now, let us check that for every point t ∈ T there exists a point s ∈ S with ||s − t||2 ≤ ε. If t ∈ S, we can
choose s = t. If t ̸∈ S, then by the maximality of our chosen set S we cannot add t to the set. This means
that we must have ||s − t||2 ≤ ε for some s ∈ S, as desired.
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The following lemma states that close to any B ∈ Bd we can find some strictly convex B′. This lemma can also
be deduced from a classical result of Klee [31] from 1959 which says that almost all norms on Rd are strictly
convex.

Lemma 3.3. For every B ∈ Bd and every µ > 0, there exists a strictly convex B′ ∈ Bd such that dH(B,B′) ≤ µ.

Proof. Let us denote by ||.|| the norm with unit ball B. Then B = {x ∈ Rd : ||x|| ≤ 1}. Since B is bounded,
we can choose some c > 0 such that ||x||2 ≤ c for all b ∈ B. Let ε = µ/c2.

Let us define a norm ||.||′ by ||x||′ := ||x|| + ε||x||2 for all x ∈ Rd. To check that ||.||′ is indeed a norm, note
that the triangle inequalities for ||.|| and ||.||2 imply that

||x + y||′ = ||x + y||+ ε||x + y||2 ≤ ||x||+ ||y||+ ε||x||2 + ε||y||2 = ||x||′ + ||y||′,

for all x,y ∈ Rd, so the triangle inequality also holds for ||.||′. Note in addition that we can have equality only
if ||x+y||2 = ||x||2+ ||y||2 and since the triangle inequality is strict for ||.||2 for any non-zero vectors x,y ∈ Rd

which are not multiples of each other, the same also holds for ||.||′. Thus, the unit ball B′ of the norm ||.||′ is
strictly convex.

Note that B′ ⊆ B, so for any point b′ ∈ B′ we have a point b = b′ ∈ B at Euclidean distance 0 ≤ µ from b′.
On the other hand, we claim that for any point b ∈ B we can also find a point b′ ∈ B′ with Euclidean distance
at most µ from b. If ||b||2 ≤ µ, we can simply take b′ = 0 ∈ B′. If ||b||2 > µ, we have∥∥∥∥(1− µ

||b||2

)
b
∥∥∥∥′ = (

1− µ

||b||2

)
||b||′ =

(
1− µ

||b||2

)
(||b||+ ε||b||2) ≤ (1− ε||b||2)(1 + ε||b||2) < 1,

using ε = µ/c2 ≤ µ/(||b||2)2 and ||b|| ≤ 1. So we can take b′ :=
(
1− µ

||b||2

)
b ∈ B′ and have ||b′ − b||2 =

µ
||b||2 · ||b||2 = µ. This shows that dH(B,B′) ≤ µ, as desired.

We will need the following lemma which tells us that we can approximate any B ∈ Bd with a polytope in Bd

with small facets. We note there is plenty of research concerned with similar polytope approximation problems,
see e.g. [4] and references therein, mostly concerned with minimising the number of facets needed to obtain a
good approximation. Here, we are not concerned with the number of facets of the approximating polytope,
but we need all of the facets to have small diameter.

Lemma 3.4. For every B ∈ Bd and every µ > 0, there exists a bounded 0-symmetric polytope B′ ∈ Bd

containing 0 in its interior such that dH(B,B′) < µ and all facets of B′ have diameter less than µ (with respect
to the Euclidean distance).

Note that we can endow the set of all (d−1)-dimensional hyperplanes in Rd with the natural topology induced
by Rd+1 when identifying a hyperplane described by an equation of the form a · x = b with ||a||2 = 1 with the
point (a, b). More precisely, such a hyperplane with an equation of the form a · x = b corresponds to a point
in the quotient space (a, b) ∈ (Sd−1 ×R)/{±1} (here Sd−1 is the (d− 1)-dimensional unit sphere in Rd and we
consider the quotient by the action of {±1} on (a, b) ∈ Sd−1×R, where −1 acts by sending (a, b) 7→ (−a,−b)).

We denote by dist2(p, H) the (Euclidean) distance from a point p ∈ Rd to a hyperplane H ⊆ Rd.

Proof. By Lemma 3.3, there exists a strictly convex B′′ ∈ Bd with dH(B′′, B) < µ/2. It is now sufficient
to show that there exists a bounded 0-symmetric polytope B′ ∈ Bd containing 0 in its interior such that
dH(B′, B′′) < µ/2 and all facets of B′ have diameter less than µ
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Let H be the set of all (d − 1)-dimensional hyperplanes H in Rd such that H ∩ B′′ has diameter at least µ.
Note that H is a closed and bounded subset of the set of all (d− 1)-dimensional hyperplanes in Rd (to see that
H is closed, note that diam(H ∩B′′) is a continuous function on the set of all (d− 1)-dimensional hyperplanes
H ⊆ Rd). Thus, H is compact in the induced topology.

Every hyperplane H ∈ H cuts the strictly convex set B′′ into two parts B′′
1 (H) and B′′

2 (H) (strictly speaking
these are the intersections of B′′ with the two closed half-spaces bounded by H), neither of which is contained
in H, by the strict convexity assumption on B′′. For every hyperplane H ∈ H, define

f(H) = min

{
max

b∈B′′
1 (H)

dist2(b, H), max
b∈B′′

2 (H)
dist2(b, H)

}
,

and note that f(H) > 0 for every H ∈ H. Now f is a continuous function on a compact space and so it attains
a minimum. So let η > 0 be this minimum, then f(H) ≥ η for all H ∈ H.

Now, let us apply Lemma 3.2 to the set B′′ and ε = min{µ, η}/2, i.e. let us choose an ε-net S ⊆ B′′ of B′′. By
adding up to d+ 1 additional points to S, we may assume that 0 is in the interior of the convex hull of S.

We may furthermore assume that S is 0-symmetric, meaning that −S = S (indeed, for every point s ∈ S we
may add the point −s to S if it is not already contained in S).

Now, for every hyperplane H ∈ H there exist points in S on both sides of H (more precisely, the two open
half-spaces bounded by H both contain at least one point in S). Indeed, since f(H) ≥ η, there exist points
b1 ∈ B′′

1 (H) ⊆ B′′ and b2 ∈ B′′
2 (H) ⊆ B′′ with dist2(b1, H) ≥ η and dist2(b2, H) ≥ η. Note that b1 and b2

are on opposite sides of the hyperplane H (and not on H itself). Now, we can choose points s1, s2 ∈ S with
||s1 − b1|| ≤ ε ≤ η/2 and ||s2 − b2|| ≤ ε ≤ η/2. Then s1 must be on the same side of H as b2 (and not on H

itself), and similar for s2. Thus, s1 and s2 lie on opposite sides of H in the two open half-spaces bounded by
H. So indeed for every H ∈ H the two open half-spaces bounded by H both contain at least one point in S.

Finally, let us define B′ = conv(S) to be the convex hull of S. By our assumptions on S, the set B′ is a
bounded 0-symmetric polytope containing 0 in its interior. In particular, B′ is d-dimensional

To check that dH(B′′, B′) ≤ µ/2, first note that B′ = conv(S) ⊆ conv(B′′) = B′′ (as B′′ is a convex set). So
we have supb′∈B′ infb∈B′′ ||b− b′||2 = 0 < µ. Furthermore, for every b ∈ B′′ there is a point b′ ∈ S ⊆ B′ with
||b− b′||2 ≤ ε ≤ µ/2 and hence supb∈B′′ infb′∈B′ ||b− b′||2 ≤ µ/2. This shows that indeed dH(B′′, B′) ≤ µ/2.

Finally, it remains to check that the facets of B′ all have diameter less than µ. So suppose that B′ had a facet of
diameter at least µ. Then for the (d− 1)-dimensional hyperplane H through this facet, the set H ∩B′′ (which
contains this facet) has diameter at least µ. Hence H ∈ H, but this means that the two open half-spaces
bounded by H both contain at least one point in S ⊆ B′. This is a contradiction to the fact that H is a
hyperplane through a facet of B′. Hence the facets of B′ indeed all have diameter less than µ.

Lemma 3.5. Let δ > 0 and let B,B′ ∈ Bd be such that dH(B,B′) ≤ δ. Then for every point x on the boundary
of B there exists a point y on the boundary of B′ with ||x− y||2 ≤ δ.

Proof. We distinguish three cases depending on the position of x in relation to B′. First, if x is on the
boundary of B′, we can take y = x to satisfy the statement in the lemma.

Next, assume that x ̸∈ B′. Then, as dH(B,B′) ≤ δ, we have miny′∈B′ ||x − y′||2 = infy′∈B′ ||x − y′||2 ≤ δ,
and so there exists a point y′ ∈ B′ with ||x − y′||2 ≤ δ. Now, consider the straight line segment from y′ ∈ B′

to x ̸∈ B′. This straight line segment must contain some point y on the boundary of B′, and we have
||x − y||2 ≤ ||x − y′||2 ≤ δ.

Finally, assume that x is in the interior of B′. Recalling that x is on the boundary of B, let H be a supporting
hyperplane of B through x (this means that B is contained in one of the closed half-spaces bounded by H
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and x is on H). Now consider the ray orthogonal to H, starting at x, pointing away from B. This ray needs
to contain a point y on the boundary of B′ (since the start of the ray at x is in the interior of B′ and B′ is
bounded). If ||x − y||2 > δ, then the closed Euclidean ball of radius δ around y is disjoint from the half-space
bounded by H containing B. Hence infb∈B ||b−y||2 = minb∈B ||b−y||2 > δ, which contradicts our assumption
dH(B,B′) ≤ δ. So we must have ||x − y||2 ≤ δ.

4 Point sets with many special differences

The following two lemmas encapsulate the first part of our proofs of Theorems 1.1 and 1.3, respectively (see
also the proof overview in Section 2). The first of these lemmas states, roughly speaking, that for a list of
vectors u1, . . . ,uk in some vector space V over Q and any subset of V where many differences are in the set
{±u1, . . . ,±uk}, there must be a lot of linear dependencies among the vectors u1, . . . ,uk. More precisely, the
span of some small subset of the vectors u1, . . . ,uk must contain many other vectors among u1, . . . ,uk.

When we apply Lemma 4.1 in the next section to complete the proof of Theorem 1.1, we will take u1, . . . ,uk

to be the unit vectors appearing as unit distances according to some norm in a point set in Rd. If there are
many such unit distances, then the lemma implies that the span of some small subset of the vectors u1, . . . ,uk

must contain many other vectors among u1, . . . ,uk. In Section 5 we show (as the second part of our proof)
that this is a “special” property, meaning that most norms cannot have this property (more precisely, the set
of norms with this property is a meagre set).

Lemma 4.1. Let V be a vector space over Q, and let u1, . . . ,uk ∈ V be non-zero vectors in V . Let p1, . . . ,pn ∈
V be distinct vectors, and let us consider the graph with vertex set {1, . . . , n}, where for any x, y ∈ {1, . . . , n}
we draw an edge between the vertices x and y if and only if px − py ∈ {±u1, . . . ,±uk}. For some positive
integer d, suppose that this graph has more than d

2 · n log n edges. Then there exists a subset I ⊆ {1, . . . , k},
such that we have uℓ ∈ spanQ(ui : i ∈ I) for at least d · |I|+ 1 indices ℓ ∈ {1, . . . , k}.

We will prove Lemma 4.1 later in this section, and then use it in the next section to prove Theorem 1.1. The
following lemma will in a similar fashion be used to prove Theorem 1.3. When applying this lemma, we will
take F to be the field extension of Q generated by all the distinct distances appearing in a given set of n points
according to some given norm.

Lemma 4.2. Let d ≥ 1 be an integer and let 0 < µ < 1. Suppose that n is sufficiently large with respect to
d and µ. Let F ⊆ R be a subfield of R, and let V be a vector space over R. Let u1, . . . ,uk ∈ V be non-zero
vectors in V , and let p1, . . . ,pn ∈ V be distinct vectors such that not all of p1, . . . ,pn are lying on a common
affine line in V (as a vector space over R). Suppose that for all x, y ∈ {1, . . . , n} we have px −py ∈ spanF (ui)

for some i ∈ {1, . . . , k}. Then there exists a subset I ⊆ {1, . . . , k}, such that we have uℓ ∈ spanF (ui : i ∈ I)

for at least d · |I|+ (1− µ) · n+ 1 indices ℓ ∈ {1, . . . , k}.

The proofs of Lemmas 4.1 and 4.2 rely on the following lemma, which we prove first.

Lemma 4.3. Let V be a vector space over a field F , and let u1, . . . ,uk ∈ V be linearly independent vectors
in V . For some n ≥ 1, let p1, . . . ,pn ∈ V be distinct vectors, and let G be a graph with vertex set {1, . . . , n}
satisfying the following two conditions

• For every edge xy of the graph G, we have px − py ∈ spanF (ui) for some i ∈ {1, . . . , k}.
• For each i ∈ {1, . . . , k}, the subgraph of G consisting of all edges xy with px−py ∈ spanF (ui) is a forest.

Then the graph G has at most 1
2 · n log n edges.
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In the proof of this lemma, we will use the following simple inequality.

Lemma 4.4. For any positive integers n1 ≥ n2 ≥ · · · ≥ nℓ ≥ 1 with n = n1 + · · ·+ nℓ (and ℓ ≥ 1), we have

n1 −
1

2

ℓ∑
i=1

ni log ni ≥ n− 1

2
· n log n.

Proof. Recall that the binary entropy function given by H(t) = −t log t− (1− t) log(1− t) for t ∈ (0, 1) and
H(0) = H(1) = 0 is a concave function on the interval [0, 1]. It intersects the line given by 2− 2t at t = 1

2 and
t = 1, and so for 1

2 ≤ t ≤ 1 we have H(t) ≥ 2− 2t and therefore t+ 1
2H(t) ≥ 1.

Let us now prove the desired statement by induction on ℓ. For ℓ = 1, we have n1 = n and the statement is
trivially true. So let us assume that ℓ ≥ 2 and that we already proved the lemma for ℓ − 1. Now, setting
n′
1 = n1 + nℓ ≤ 2n1, we have 1

2 ≤ n1/n
′
1 ≤ 1 and therefore

n1 −
1

2
· n1 log n1 −

1

2
· nℓ log nℓ = n1 −

1

2
· n′

1 · log n′
1 −

1

2
· n1 · log(n1/n

′
1)−

1

2
· nℓ · log(nℓ/n

′
1)

= −1

2
· n′

1 · log n′
1 + n′

1 ·
(
n1

n′
1

− 1

2
· n1

n′
1

· log(n1/n
′
1)−

1

2
· nℓ

n′
1

· log(nℓ/n
′
1)

)
= −1

2
· n′

1 · log n′
1 + n′

1 ·
(
n1

n′
1

+
1

2
·H(n1/n

′
1)

)
≥ −1

2
· n′

1 · log n′
1 + n′

1.

Thus,

n1 −
1

2

ℓ∑
i=1

ni log ni ≥ n′
1 −

1

2
· n′

1 log n
′
1 −

ℓ−1∑
i=2

ni log ni ≥ n− 1

2
· n log n,

where the last inequality follows from the induction hypothesis applied to n′
1 ≥ n2 ≥ · · · ≥ nℓ−1 (noting that

n′
1 + n2 + · · ·+ nℓ−1 = (n1 + nℓ) + n2 + · · ·+ nℓ−1 = n).

Now, we are ready to prove Lemma 4.3.

Proof of Lemma 4.3. We will prove the lemma by induction on n. If n = 1, then the graph has 0 =

(1/2) · 1 · log 1 edges.

So let us now assume that n ≥ 2, and that we have already proved the lemma for all smaller values of n. Let
G be a graph as in the statement of the lemma.

If the graph G is not connected, then we can divide it into two disconnected parts with n1 ≥ 1 and n2 ≥ 1

vertices (where n1 + n2 = n). By the induction assumption these parts have at most (1/2) · n1 log n1 and
(1/2) · n2 log n2 edges, respectively. Hence, the total number of edges in G is at most

1

2
· n1 log n1 +

1

2
· n2 log n2 ≤

1

2
· (n1 + n2) log n =

1

2
· n log n,

as desired. So let us from now on assume that G is connected.

If G has no edges, the desired conclusion trivially holds, so let us assume that G has at least one edge xy.
Then there exists some index i ∈ {1, . . . , k} with px − py ∈ spanF (ui). Upon relabelling, we may assume that
i = k, i.e. we may assume that there exists at least one edge xy in G with px − py ∈ spanF (uk).

Let us now colour any edge xy in G red if we have px − py ∈ spanF (uk). Then there is at least one red edge
in G. We remark that by the second condition on the graph G in the statement of Lemma 4.3 the red edges
form a forest.
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Let us fix an arbitrary vertex z ∈ {1, . . . , n}. Since G is connected, every vertex w ∈ {1, . . . , n} can be
reached by some path in G starting at z. For every edge xy along this path, we have px − py ∈ spanF (ui)

for some i ∈ {1, . . . , k}. Adding up px − py for all edges xy along the path now gives a representation
pw = pz + a1u1 + · · · + akuk with coefficients a1, . . . , ak ∈ F . As the vectors u1, . . . ,uk ∈ V are linearly
independent over F , for every given w ∈ {1, . . . , n} there is a unique such representation. In particular, for
every w ∈ {1, . . . , n}, the vector pw lies in exactly one of the sets pz + auk + Fu1 + · · ·+ Fuk−1 for a ∈ F .

This gives a partition of the vertices w ∈ {1, . . . , n} into subsets Wa for a ∈ F , where for each a ∈ F the
set Wa consists of those vertices w ∈ {1, . . . , n} such that pw ∈ pz + auk + Fu1 + · · · + Fuk−1. Note that∑

a∈F |Wa| = n.

If xy is an edge in G which is not red, then x and y must belong to the same set Wa. Indeed, we have
px − py ∈ spanF (ui) for some i ∈ {1, . . . , k} and so if px ∈ pz + auk + Fu1 + · · · + Fuk−1, then we have
py ∈ pz + auk + Fu1 + · · · + Fuk−1 as well. Hence, every non-red edge of G is inside one of the induced
subgraphs G[Wa] for a ∈ F with Wa ̸= ∅.

Recall that the red edges of G form a forest. We claim that for every a ∈ F the vertices in the set Wa

must all be in distinct connected components of the red forest. Indeed, suppose towards a contradiction
that for some a ∈ F there are two distinct vertices w,w′ ∈ Wa belonging to the same component of the
red forest. Then w and w′ can be connected by a path of red edges, and for all edges xy on this path we
have px − py ∈ spanF (uk). Adding this up over all edges on the path between w and w′, we conclude that
pw −pw′ ∈ spanF (uk). On the other hand, since w,w′ ∈ Wa, we have pw,pw′ ∈ pz +auk +Fu1+ · · ·+Fuk−1

and hence pw − pw′ ∈ spanF (u1, . . . ,uk−1). Since the vectors u1, . . . ,uk ∈ V are linearly independent over F ,
this implies that pw − pw′ = 0, which is a contradiction (as the points p1, . . . ,pn are distinct). So indeed, for
each a ∈ F , the vertices in Wa belong to distinct connected components of the red forest.

Recalling that there is at least one red edge in G, the two endvertices of this edge must be in different sets
Wa and Wa′ . Thus, at least two of the sets Wa for a ∈ F are non-empty, and since

∑
a∈F |Wa| = n, we have

|Wa| < n for all a ∈ F .

We can now apply the induction hypothesis to each of the graphs G[Wa] for a ∈ F with Wa ̸= ∅, and obtain
that e(G[Wa]) ≤ 1

2 · |Wa| · log |Wa| whenever Wa ̸= ∅. Hence, the number of non-red edges in G is at most∑
a∈F
Wa ̸=∅

1

2
· |Wa| · log |Wa| =

1

2

∑
a∈F
Wa ̸=∅

|Wa| · log |Wa|.

Let a∗ ∈ F be such that |Wa∗ | is of maximal size among the sets |Wa| for a ∈ F . Then we have |Wa| ≤ |Wa∗ |
for all a ∈ F .

We claim that the number of red edges in G is at most n−|Wa∗ |. Indeed, the vertices in Wa∗ are all in distinct
components of the forest formed by the red edges. Hence, this forest has at least |Wa∗ | components and can
therefore have at most n− |Wa∗ | edges.

Thus, the total number of edges in G (both red edges and non-red edges) is bounded by

e(G) ≤ n− |Wa∗ |+
1

2

∑
a∈F
Wa ̸=∅

|Wa| · log |Wa| ≤ n−
(
n− 1

2
· n log n

)
=

1

2
· n log n,

where the second inequality follows from Lemma 4.4.

Remark. The assertion of Lemma 4.3 is tight for every n which is a power of two, as shown by a generic em-
bedding of the graph of the k-dimensional hypercube. Indeed, for any linearly independent vectors u1, . . . ,uk,
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we can take p1, . . . ,pn with n = 2k to be all subset sums of {u1, . . . ,uk}. Now letting G be the k-dimensional
hypercube graph (with 1

2 · 2
kk = 1

2 ·n log n edges), all conditions in Lemma 4.3 are satisfied (each of the forests
in the second condition is a perfect matching). For the proof of Theorem 1.1 we only need a special case of
Lemma 4.3 in which G consists only of edges xy for which px −py ∈ {±u1, . . . ,±uk} (then each of the forests
in the second condition in the lemma is a collection of vertex-disjoint paths). In this case, it is easy to see that
the graph G is a subgraph of the infinite graph of all integer sequences in which two sequences are adjacent if
and only if they are equal in all coordinates but one, and in this coordinate they differ by one. The precise
maximum possible number of edges of a subgraph of n vertices of this graph is known by the isoperimetric
inequality of Bollobás and Leader [5, Theorem 15]. It implies the assertion of the lemma for this special case,
and supplies also the tight best possible value for all values of n and not only for powers of two.

The second ingredient for the proof of Lemmas 4.1 and 4.2 is the following.

Lemma 4.5. Let V be a vector space over a field F , and let u1, . . . ,uk ∈ V be non-zero vectors in V . Let
d ≥ 1 and m ≥ 0 be integers, and suppose that for every subset I ⊆ {1, . . . , k}, we have uℓ ∈ spanF (ui : i ∈ I)

for at most d · |I| +m indices ℓ ∈ {1, . . . , k}. For some real number M > 0, let λ1, . . . , λk be real numbers in
the interval [0,M ]. Then there exists a subset J ⊆ {1, . . . , k} such that the vectors uj for j ∈ J are linearly
independent (over F ) and such that ∑

j∈J
λj ≥

λ1 + · · ·+ λk −m ·M
d

.

Proof. Upon relabelling, we may assume without loss of generality that λ1 ≥ λ2 ≥ · · · ≥ λk. Let us now
construct a sequence of distinct indices j1, . . . , jr ∈ {1, . . . , k} as follows. For any s ≥ 1, having already chosen
the indices j1, . . . , js−1, choose js to be the minimum index such that ujs ̸∈ spanF (uj1 , . . . ,ujs−1) if such an
index exists. If such an index does not exist, i.e. if u1, . . . ,uk ∈ spanF (uj1 , . . . ,ujs−1), let us terminate the
sequence j1, . . . , js−1 without choosing any further terms by setting r = s − 1. Note that when the sequence
terminates we have u1, . . . ,uk ∈ spanF (uj1 , . . . ,ujr). By our assumption applied to I = {j1, . . . , jr}, this
implies that k ≤ d · |I|+m = d · r +m.

Since we have uji ̸∈ spanF (uj1 , . . . ,uji−1) for i = 1, . . . ,m, the vectors uj1 , . . . ,ujm are linearly independent.

Now, we claim that for s = 1, . . . , r, we have js ≤ (s−1)d+m+1. Indeed, suppose that for some 1 ≤ s ≤ m, we
had js > (s−1)d+m+1. By the choice of js, this would mean that u1, . . . ,u(s−1)d+m+1 ∈ spanF (uj1 , . . . ,ujs−1).
But this contradicts our assumption for the set I = {j1, . . . , js−1}. Hence, we must indeed have js ≤ (s−1)d+

m+ 1 for s = 1, . . . , r.

Let us now define J = {j1, . . . , jr}. Then the vectors uj for j ∈ J , i.e. the vectors uj1 , . . . ,ujr , are linearly
independent. Furthermore, defining 0 = λk+1 = λk+2 = . . . for notational convenience, we have

d ·
∑
j∈J

λj = d ·
r∑

s=1

λjs ≥ d ·
r∑

s=1

λ(s−1)d+m+1 ≥
r∑

s=1

(λ(s−1)d+1+m + · · ·+ λsd+m) = λm+1 + λm+2 + · · ·+ λrd+m

Here, we used that λ1 ≥ λ2 ≥ . . . and js ≤ (s − 1)d + m + 1 for s = 1, . . . , r. Recalling k ≤ rd + m and
0 = λk+1 = λk+2 = . . . , we can conclude that

d ·
∑
j∈J

λj ≥ λm+1 + λm+2 + · · ·+ λrd+m = λ1 + · · ·+ λk − (λ1 + · · ·+ λm) ≥ λ1 + · · ·+ λk −m ·M.

Rearranging now gives
∑

j∈J λj ≥ (λ1 + · · ·+ λk −mM)/d, as desired.

Remark. The assertion of the Lemma 4.5 can also be established in a shorter way by applying the matroid
partition theorem of Edmonds and Fulkerson [15]. To do so, define d+ 1 matroids M1, . . . ,Md+1 on the set of
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vectors {u1, . . . ,uk}. Each of the first d matroids M1, . . . ,Md is the usual linear independence matroid: a set
of vectors is independent if and only if it is linearly independent. In the last matroid Md+1, a set is independent
if and only if it contains at most m vectors. If every subset I of the vectors spans at most d · |I| +m of the
vectors, then for every set of vectors J the sum of ranks of J according to the d + 1 matroids M1, . . . ,Md+1

is at least |J |. By the Edmonds–Fulkerson Theorem this implies that the set {u1, . . . ,uk} can be partitioned
into d+ 1 subsets, where one of the subsets is of size at most m and all others are linearly independent sets of
vectors. This clearly supplies the conclusion of the lemma.

Now, let us prove Lemma 4.1, using Lemmas 4.3 and 4.5.

Proof of Lemma 4.1. Suppose towards a contradiction that the desired subset I ⊆ {1, . . . , k} does not exist.
Then for every subset I ⊆ {1, . . . , k}, we have uℓ ∈ spanQ(ui : i ∈ I) for at most d · |I| indices ℓ ∈ {1, . . . , k}.
Let G′ be the graph with vertex set {1, . . . , n} as in the statement of Lemma 4.1 (where for any x, y ∈ {1, . . . , n}
we draw an edge between the vertices x and y if and only if px − py ∈ {±u1, . . . ,±uk}). Furthermore, for
i = 1, . . . , k, let λi be the number of edges xy of G′ with px−py ∈ {±ui}. Then λ1+· · ·+λk ≥ e(G′) > d

2 ·n log n

by our assumption on the number of edges of G′.

Now, by Lemma 4.5 applied with F = Q and m = 0 there exists a subset J ⊆ {1, . . . , k} such that the vectors
uj for j ∈ J are linearly independent over Q and such that

∑
j∈J λj ≥ (λ1 + · · · + λk)/d. We may assume

without loss of generality that J = {1, . . . , k′} for some k′ ∈ {1, . . . , k} (otherwise, relabel the indices). Then
the vectors u1, . . . ,uk′ are linearly independent and we have λ1 + · · ·+ λk′ ≥ (λ1 + · · ·+ λk)/d > 1

2 · n log n.

Let us now apply Lemma 4.3 to F = Q, the linearly independent vectors u1, . . . ,uk′ ∈ V , the same p1, . . . ,pn ∈
V as before, and the graph G obtained from G′ by only taking the edges xy with px − py ∈ {±u1, . . . ,±uk′}.
Note that this graph G satisfies the two conditions in Lemma 4.3. Indeed, for every edge xy of G we have
px − py ∈ {±ui} ⊆ spanQ(ui) for some i ∈ {1, . . . , k′}. Furthermore, for every i ∈ {1, . . . , k′}, the edges xy

with px−py ∈ spanQ(ui) are precisely the edges with px−py ∈ {±ui} (as u1, . . . ,uk′ are linearly independent,
we cannot have px − py ∈ spanQ(ui) if px − py ∈ {±uj} for j ̸= i), and these edges form a vertex-disjoint
collection of paths and hence a forest. Thus, by Lemma 4.3 the graph G has at most 1

2 · n log n edges. On the
other hand, the number of edges of G is λ1 + · · · + λk′ >

1
2 · n log n, since for every i = 1, . . . , k′ there are λi

edges xy in G with px − py ∈ {±ui}. This is a contradiction, finishing the proof of Lemma 4.1.

For the proof of Lemma 4.2, we also use the following result, proved by Ungar [47] which states that for any n

distinct points in Rt, not all on a common line, the pairs of points define at least n− 1 different line directions.

Theorem 4.6 ([47]). Given n distinct points p1, . . . ,pn ∈ Rt, not all on one common line, there are at least
n− 1 different one-dimensional linear subspaces of Rt that are of the form spanR(px−py) with 1 ≤ x < y ≤ n.

We remark that Ungar’s result is actually slightly stronger, namely in the case of even n he proved that there
are at least n (and not only n− 1) different line directions (and in this stronger version, his bounds are tight).
Finally, let us prove Lemma 4.2, using Lemmas 4.3 and 4.5 and Theorem 4.6.

Proof of Lemma 4.2. Setting m = ⌈(1− µ) · n⌉ ≤ n, we want to prove that there is a subset I ⊆ {1, . . . , k}
with uℓ ∈ spanF (ui : i ∈ I) for at least d · |I|+m+ 1 indices ℓ ∈ {1, . . . , k}. Suppose towards a contradiction
that the desired subset I ⊆ {1, . . . , k} does not exist. Then for every subset I ⊆ {1, . . . , k}, we have uℓ ∈
spanF (ui : i ∈ I) for at most d · |I|+m indices ℓ ∈ {1, . . . , k}.

We may assume that for every i ∈ {1, . . . , k} there exist distinct x, y ∈ {1, . . . , n} with px − py ∈ spanF (ui)

since otherwise, we can just omit all indices i for which this is not the case, and relabel the remaining indices.
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By Theorem 4.6, there are at least n − 1 different line directions in spanR(p1, . . . ,pn) ⊆ V appearing among
the differences px − py with 1 ≤ x < y ≤ n. For each of these differences we have px − py ∈ spanF (ui) for
some i ∈ {1, . . . , k}. Hence, there must be at least n− 1 different vectors ui, so k ≥ n− 1.

Let us now construct a sequence of distinct indices j1, . . . , jr ∈ {1, . . . , k} recursively as follows. Let s ≥ 1,
and assume that we have already chosen the indices j1, . . . , js−1. Let us now look at the image of the point
set {p1, . . . ,pn} ⊆ V under the projection map V → V/ spanF (uj1 , . . . ,ujs−1). For every point in this image,
let us pick a preimage ph and let Hs−1 ⊆ {1, . . . , n} be the resulting set of indices h ∈ {1, . . . , n} for these
preimages. Then |Hs−1| is precisely the size of the image of {p1, . . . ,pn} in V/ spanF (uj1 , . . . ,ujs−1) and for
every x ∈ {1, . . . , n} there is exactly one h ∈ Hs−1 with px − ph ∈ spanF (uj1 , . . . ,ujs−1). If there exists an
index i ∈ {1, . . . , k} for which there is a forest on the vertex set Hs−1 with at least 3d

µ edges such that for every
edge xy of the forest we have px − py ∈ spanF (ui), then let us pick such an index i and define js = i. If there
is no such index i ∈ {1, . . . , k}, let us terminate the sequence j1, . . . , js−1 without choosing any further terms
by setting r = s− 1.

Recall that for s = 0, . . . , r, we defined Hs ⊆ {1, . . . , n} such that |Hs| is the size of the image of the point set
{p1, . . . ,pn} ⊆ V under the projection map V → V/ spanF (uj1 , . . . ,ujs), and such that for every x ∈ {1, . . . , n}
there is exactly one h ∈ Hs with px − ph ∈ spanF (uj1 , . . . ,ujs). In particular, we have n = |H0| ≥ |H1| ≥
· · · ≥ |Hr| ≥ 1. The following claim gives an upper bound on the length of our sequence j1, . . . , jr.

Claim 1: We have r ≤ µ
3d · n.

Proof. In order to show the claim, it suffices to prove that |Hs| ≤ |Hs−1| − 3d
µ for s = 1, . . . , r. Indeed, then

we have 1 ≤ |Hr| ≤ |H0| − r · 3d
µ = n− r · 3d

µ , which implies r ≤ µ
3d · n.

So let s ∈ {1, . . . , r}, and consider the set Hs−1 ⊆ {1, . . . , n}. The image of the point set {p1, . . . ,pn} in the
quotient space V ′ = V/ spanF (uj1 , . . . ,ujs−1) is the same as the image of the point set {ph : h ∈ Hs−1} in this
quotient space V ′.

Now, |Hs| is the size of this image under the additional projection given by V ′ → V ′/ spanF (ujs)

= V/ spanF (uj1 , . . . ,ujs). Recall that by the definition of js, there is a forest on the vertex set Hs−1 with
at least 3d/µ edges such that for every edge xy of the forest we have px − py ∈ spanF (ujs). For every such
edge xy, the points px and py have the same image in V ′/ spanF (ujs). So for every connected component
of this forest, the corresponding points px are mapped to the same point in V ′/ spanF (ujs). Since the forest
has at least 3d

µ edges, it has at most |Hs−1| − 3d
µ connected components. Hence, the image of the point set

{ph : h ∈ Hs−1} in V ′/ spanF (ujs) has size at most |Hs−1| − 3d
µ , meaning that indeed |Hs| ≤ |Hs−1| − 3d

µ .

Claim 2: We have |Hr| > µ
3d · n.

Proof. Suppose towards a contradiction that |Hr| ≤ µ
3d · n. Let us fix some index h∗ ∈ Hr. Then for every

h ∈ Hr by the assumption in Lemma 4.2 we can choose an index i(h) ∈ {1, . . . , k} with ph−ph∗ ∈ spanF (ui(h)).
Now, defining I = {j1, . . . , jr} ∪ {i(h) : h ∈ Hr}, we have |I| ≤ r + |Hr| ≤ 2 · µ

3d · n using Claim 1.

Note that now we have ph − ph∗ ∈ spanF (ui : i ∈ I) for all h ∈ Hr. Furthermore, for every x ∈ {1, . . . , n}
there is some h ∈ Hr with px − ph ∈ spanF (uj1 , . . . ,ujr) ⊆ spanF (ui : i ∈ I). This implies that px − ph∗ =

px−ph+ph−ph∗ ∈ spanF (ui : i ∈ I) for all x ∈ {1, . . . , n}. Thus, we obtain px−py = px−ph∗−(py−ph∗) ∈
spanF (ui : i ∈ I) for all x, y ∈ {1, . . . , n}.

Now, we claim that we have uℓ ∈ spanF (ui : i ∈ I) for all ℓ ∈ {1, . . . , k}. Indeed, for each ℓ ∈ {1, . . . , k}, we
assumed that there exist two distinct indices x, y ∈ {1, . . . , k} with px − py ∈ spanF (uℓ). Since px ̸= py, this
means that px − py = tuℓ for some t ∈ F \ {0}. But now we have tuℓ = px − py ∈ spanF (ui : i ∈ I), implying
that uℓ ∈ spanF (ui : i ∈ I) as claimed.
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Thus, the number of indices ℓ ∈ {1, . . . , k} with uℓ ∈ spanF (ui : i ∈ I) is

k ≥ n− 1 ≥ 2µ

3
· n+ ⌈(1− µ) · n⌉+ 1 = d · 2µ

3d
· n+m+ 1 ≥ d · |I|+m+ 1,

if n is sufficiently large with respect to µ. This contradicts our assumption that such a set I does not exist.

Now, for each i = 1, . . . , k, let us choose a forest Gi on the vertex set Hr with the maximum possible number
of edges such that for every edge xy of the forest we have px −py ∈ spanF (ui). Let λi be the number of edges
of this forest, and note that λi ≤ 3d

µ by our construction of the sequence j1, . . . , jr (more precisely, by the fact
that the sequence terminates at jr). In particular, the forest Gi has at most 2λi non-isolated vertices.

Recall that for any pair (x, y) ∈ Hr ×Hr with x ̸= y, we have px − py ∈ spanF (ui) for some i ∈ {1, . . . , k}.
We claim that for each i ∈ {1, . . . , k} there are at most (2λi)

2 pairs (x, y) ∈ Hr × Hr with x ̸= y such that
px − py ∈ spanF (ui). Indeed, for any such pair (x, y) the vertices x and y must lie in the same component of
the forest Gi (since otherwise we could add the edge xy to the forest Gi, which would be a contradiction to our
choice of the forest Gi). Since x ̸= y, this means that x and y are both non-isolated vertices in Gi, meaning
that there are at most 2λi choices for x and at most 2λi choices for y. So for each i ∈ {1, . . . , k}, there are
indeed at most (2λi)

2 pairs (x, y) ∈ Hr ×Hr with x ̸= y satisfying px − py ∈ spanF (ui).

Since for each of the |Hr| · (|Hr| − 1) pairs (x, y) ∈ Hr × Hr with x ̸= y there exists an index i ∈ {1, . . . , k}
with px − py ∈ spanF (ui), we can conclude that

|Hr|2

2
≤ |Hr| · (|Hr| − 1) ≤

k∑
i=1

(2λi)
2 = 4 ·

k∑
i=1

λ2
i ≤

12d

µ

k∑
i=1

λi.

Here we used that |Hr| > µ
3d · n ≥ 2, which holds by Claim 2, and that λi ≤ 3d

µ for i = 1, . . . , k. Rearranging
yields λ1 + · · ·+ λk ≥ µ

24d · |Hr|2.

Let us now apply Lemma 4.5 with M = 3d
µ , recalling our assumption that for every subset I ⊆ {1, . . . , k}, we

have uℓ ∈ spanF (ui : i ∈ I) for at most d · |I| + m indices ℓ ∈ {1, . . . , k}. By Lemma 4.5, there is a subset
J ⊆ {1, . . . , k} such that the vectors uj for j ∈ J are linearly independent over F and such that

∑
j∈J

λj ≥
λ1 + · · ·+ λk −m · 3d

µ

d
≥

µ
24d · |Hr|2 − n · 3d

µ

d
.

By Claim 2 we have n · 3dµ ≤
(
3d
µ

)2
· |Hr| ≤ µ

48d · |Hr|2 if n (and therefore also |Hr| ≥ µ
3d ·n) is sufficiently large

with respect to d and µ. So we can conclude that

∑
j∈J

λj ≥
µ
24d · |Hr|2 − n · 3d

µ

d
≥

µ
48d · |Hr|2

d
=

µ

48d2
· |Hr|2.

Finally, let G be the graph obtained by taking all edges of the forests Gj for j ∈ J . As the vectors uj for
j ∈ J are linearly independent over F , the edge sets of these forests are pairwise disjoint, and hence G has∑

j∈J λj ≥ µ
48d2

· |Hr|2 edges. On the other hand, G satisfies the assumptions in Lemma 4.3, and so Lemma
4.3 implies that G has at most 1

2 · |Hr| log |Hr| edges. Thus,

µ

48d2
· |Hr|2 ≤ e(G) ≤ 1

2
· |Hr| log |Hr|,

which is a contradiction if n (and hence also |Hr| ≥ µ
3d · n) is sufficiently large with respect to d and µ.
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5 Proofs of Theorems 1.1 and 1.3: most norms have few special distances

Fix d ≥ 2. Recall that Bd is the collection of all closed, bounded, 0-symmetric convex bodies in Rd with 0 in
the interior. The sets B ∈ Bd are in direct correspondence with the norms ||.|| on Rd (where to every norm ||.||
on Rd we associate the set B ∈ Bd arising as the unit ball of ||.||).

Let A ⊆ Bd be the set of all B ∈ Bd arising as the unit ball of a norm ||.|| on Rd such that for some n ≥ 1 there
exist n points in Rd with more than d

2 · n log n unit distances according to the norm ||.||. In order to prove
Theorem 1.1 we need to show that A ⊆ Bd is a meagre set.

For Theorem 1.3, let µ > 0 and let n0(d, µ) > 1/µ be such that the statement in Lemma 4.2 holds for all
n ≥ n0(d, µ). Now, let A∗

µ ⊆ Bd be the set of all B ∈ Bd arising as the unit ball of a norm ||.|| on Rd such that
for some n ≥ n0(d, µ) there exist n points in Rd with at most (1 − µ) · n distinct distances according to the
norm ||.||. In order to prove Theorem 1.3 it suffices to show that A∗

µ ⊆ Bd is a meagre set. Indeed, then for
most norms on Rd it is true that for all n ≥ n0(d, µ) any set of n points in Rd has at least (1− µ) · n distinct
distances appearing. This means that the number of distinct distances is of the form (1− o(1)) · n.

Let us define m = 0 in the setting of Theorem 1.1 and m = ⌈(1− µ)n⌉ in the setting of Theorem 1.3.

To show that A and A∗
µ are meagre sets, we need to show that A and A∗

µ can be covered by a countable
union of nowhere dense subsets of Bd. We will consider suitably defined subsets AA,η ⊆ Bd, indexed by a
(dℓ + m + 1) × ℓ matrix A (for a positive integer ℓ) and some rational number 0 < η < π/2. In the setting
of Theorem 1.1, i.e. to cover the set A, we will consider rational matrices A ∈ Q(dℓ+m+1)×ℓ. In the setting of
Theorem 1.3, i.e. to cover the set A∗

µ, our matrices A will have entries in the function field Q(x1, . . . , xm) (i.e.
in the field of rational functions in m variables with rational coefficients). In either case, the entries of A are
chosen from a countable field, and so there are only countably many choices for such A and η. Thus, it suffices
to show that A ⊆

⋃
A,η AA,η or A∗

µ ⊆
⋃

A,η AA,η, respectively, and that each of the sets AA,η ⊆ Bd is nowhere
dense in Bd.

Let us now define our sets AA,η ⊆ Bd, starting with the setting of Theorem 1.1 (recall that then m = 0). Given
a rational (dℓ + 1) × ℓ matrix A = (aji) and given a rational 0 < η < π/2, let AA,η ⊆ Bd consist of the unit
balls B ∈ Bd of all norms ||.|| on Rd for which there exist unit vectors u1, . . . ,udℓ+1 ∈ Rd (i.e. vectors with
endpoints on the boundary of B) satisfying the following two conditions:

• uj =
∑ℓ

i=1 ajiui for j = 1, . . . , dℓ+ 1.
• For all 1 ≤ i < j ≤ dℓ+ 1, the angle between the two lines spanR(ui) and spanR(uj) is larger than η.

In the setting of Theorem 1.3, given a (dℓ + m + 1) × ℓ matrix A = (aji) with entries in Q(x1, . . . , xm) and
given a rational 0 < η < π/2, let AA,η ⊆ Bd consist of the unit balls B ∈ Bd of all norms ||.|| on Rd for which
there exist z1, . . . , zm ∈ R and unit vectors u1, . . . ,udℓ+m+1 ∈ Rd (i.e. vectors with endpoints on the boundary
of B) satisfying the following three conditions:

• For every entry aji ∈ Q(x1, . . . , xm) of the matrix A, the evaluation aji(z1, . . . , zm) ∈ R is well-defined
(i.e. the polynomial in the denominator of aji does not evaluate to zero at (z1, . . . , zm)).

• uj =
∑ℓ

i=1 aji(z1, . . . , zm)ui for j = 1, . . . , dℓ+m+ 1.
• For all 1 ≤ i < j ≤ dℓ+m+1, the angle between the two lines spanR(ui) and spanR(uj) is larger than η.

In order to prove Theorems 1.1 and 1.3, it suffices to show that each of the sets AA,η is nowhere dense and
that A ⊆

⋃
A,η AA,η and A∗

µ ⊆
⋃

A,η AA,η, respectively. These statements will be the content of the following
lemmas.

Lemma 5.1. In the setting of Theorem 1.1, we have A ⊆
⋃

A,η AA,η, where the union is over all rational
(dℓ+ 1)× ℓ matrices A ∈ Q(dℓ+1)×ℓ for all positive integers ℓ, and all rational numbers 0 < η < π/2.
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Proof. Let B ∈ A. Then B is the unit ball of a norm ||.|| on Rd with the property that there exist distinct
points p1, . . . ,pn ∈ Rd such that there are more than d

2 · n log n unit distances according to the norm ||.||
between the points p1, . . . ,pn. Now, let u1, . . . ,uk ∈ Rd with ||u1|| = · · · = ||uk|| = 1 be the unit vectors
(signed arbitrarily) corresponding to the unit distances between the points p1, . . . ,pn. Note that u1, . . . ,uk

are non-zero vectors in distinct directions (i.e. the lines spanR(ui) for i = 1, . . . , k are all distinct).

Let us now consider Rd as an (infinite-dimensional) vector space over Q, and let us apply Lemma 4.1. As in the
lemma statement, consider the graph with vertex set {1, . . . , n}, where for any x, y ∈ {1, . . . , n} we draw an
edge between the vertices x and y if and only if px−py ∈ {±u1, . . . ,±uk}. Then the edges correspond precisely
to the unit distances according to ||.|| among the points p1, . . . ,pn, and so the graph has more than d

2 · n log n

edges. Thus, by Lemma 4.1, there exists a subset I ⊆ {1, . . . , k}, such that we have uj ∈ spanQ(ui : i ∈ I) for
at least d · |I|+ 1 indices j ∈ {1, . . . , k}. Note that we must have I ̸= ∅, since u1, . . . ,uk are non-zero vectors.

Upon relabelling the indices, we may assume that I = {1, . . . , ℓ} for some integer ℓ ≥ 1, and that u1, . . . ,udℓ+1 ∈
spanQ(ui : i ∈ I) = spanQ(u1, . . . ,uℓ). Then we can find coefficients aji ∈ Q for j = 1, . . . , dℓ+1 and i = 1, . . . , ℓ

such that uj =
∑ℓ

i=1 ajiui for all j = 1, . . . , dℓ+ 1.

We can now take A to be the (dℓ + 1) × ℓ matrix with entries aji for j = 1, . . . , dℓ + 1 and i = 1, . . . , ℓ.
Furthermore, consider the dℓ + 1 lines spanR(ui) for i = 1, . . . , dℓ + 1 and choose 0 < η < π/2 to be rational
and smaller than the angle between any two of these lines. Then u1, . . . ,udℓ+1 are unit vectors according to
the norm ||.||, such that uj =

∑ℓ
i=1 ajiui for all j = 1, . . . , dℓ+ 1 and such that for all 1 ≤ i < j ≤ dℓ+ 1 the

angle between the lines spanR(ui) and spanR(uj) is larger than η. This means that the unit ball B of the norm
||.|| belongs to AA,η, as desired.

Lemma 5.2. In the setting of Theorem 1.3, we have A∗
µ ⊆

⋃
A,η AA,η, where the union is over all (dℓ+m+1)×ℓ

matrices A ∈ Q(x1, . . . , xm)(dℓ+m+1)×ℓ for all positive integers ℓ, and all rational numbers 0 < η < π/2.

Proof. Let B ∈ A∗
µ. Then B is the unit ball of a norm ||.|| on Rd with the property that for some n ≥ n0(d, µ)

there exist distinct points p1, . . . ,pn ∈ Rd such that there are at most (1−µ)·n ≤ m distinct distances according
to the norm ||.|| between the points p1, . . . ,pn. Now, let u1, . . . ,uk ∈ Rd with ||u1|| = · · · = ||uk|| = 1 be the
unit vectors (signed arbitrarily) in the directions of all the differences between the points p1, . . . ,pn, and let
z1, . . . , zm > 0 be positive real numbers such that ||px − py|| ∈ {z1, . . . , zm} for all distinct x, y ∈ {1, . . . , n}.
Note that then for all distinct x, y ∈ {1, . . . , n} we have px − py = ±zjui for some j ∈ {1, . . . ,m} and
i ∈ {1, . . . , k}. Defining F = Q(z1, . . . , zm) ⊆ R to be the field extension of Q generated by z1, . . . , zm, we
obtain that for all distinct x, y ∈ {1, . . . , n} we have px−py ∈ spanF (ui) for some i ∈ {1, . . . , k}. Furthermore,
note that u1, . . . ,uk are non-zero vectors in distinct directions (i.e. the lines through u1, . . . ,uk are distinct).

If all of the points p1, . . . ,pn are on a common (affine) line in Rd, then there are at least n−1 distinct distances
among these points according to the norm ||.||. However we have n−1 > (1−µ) ·n (since n ≥ n0(d, µ) > 1/µ),
so this would be a contradiction. Hence, the points p1, . . . ,pn do not all lie on a common line in Rd.

By Lemma 4.2 applied to V = Rd and F = Q(z1, . . . , zm) ⊆ R, there exists a subset I ⊆ {1, . . . , k}, such that
we have uj ∈ spanF (ui : i ∈ I) for at least d · |I|+ (1−µ) ·n+1 indices j ∈ {1, . . . , k}. As the number of such
indices is an integer, and m = ⌈(1 − µ)n⌉, we have uj ∈ spanF (ui : i ∈ I) for at least d · |I| +m + 1 indices
j ∈ {1, . . . , k}. Note that we must have I ̸= ∅, since u1, . . . ,uk are non-zero vectors.

Upon relabelling the indices if necessary, we may assume that I = {1, . . . , ℓ} for some integer ℓ ≥ 1, and
that u1, . . . ,udℓ+m+1 ∈ spanF (ui : i ∈ I) = spanF (u1, . . . ,uℓ). Then we can find coefficients a∗ji ∈ F =

Q(z1, . . . , zm) for j = 1, . . . , dℓ+m+1 and i = 1, . . . , ℓ such that uj =
∑ℓ

i=1 a
∗
jiui for all j = 1, . . . , dℓ+m+1.

For each of these coefficients a∗ji ∈ Q(z1, . . . , zm), we can choose a rational function aji ∈ Q(x1, . . . , xm)

such that aji(z1, . . . , zm) = a∗ji (i.e. aji evaluates to a∗ji when plugging in z1, . . . , zm for the abstract variables
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x1, . . . , xm in the function field Q(x1, . . . , xm)). Note that in particular, all the evaluations aji(z1, . . . , zm) for
j = 1, . . . , dℓ+m+ 1 and i = 1, . . . , ℓ are well-defined.

We can now take A to be the (dℓ+m+1)× ℓ matrix with entries aji for j = 1, . . . , dℓ+m+1 and i = 1, . . . , ℓ.
Furthermore, consider the dℓ + m + 1 lines spanR(ui) for i = 1, . . . , dℓ + m + 1 and choose 0 < η < π/2 to
be rational and smaller than the angle between any two of these lines. Then u1, . . . ,udℓ+m+1 are unit vectors
according to the norm ||.||, such that uj =

∑ℓ
i=1 a

∗
jiui =

∑ℓ
i=1 aji(z1, . . . , zm)ui for all j = 1, . . . , dℓ +m + 1

and such that for all 1 ≤ i < j ≤ dℓ + m + 1 the angle between the lines spanR(ui) and spanR(uj) is larger
than η. This means that the unit ball B of the norm ||.|| belongs to AA,η, as desired.

It remains to show that each of the sets AA,η is nowhere dense in Bd. This is the content of the following
lemma.

Lemma 5.3. Let ℓ > 0 be an integer, let 0 < η < π/2 be a rational number, and let A be a (dℓ +m + 1) × ℓ

matrix with entries in Q or in Q(x1, . . . , xm). Then AA,η is nowhere dense in Bd.

Proof. As in the lemma statement, let the matrix A = (aji) and 0 < η < π/2 be fixed. To show that AA,η is
nowhere dense in Bd, we need to show that for every B0 ∈ Bd and every ε > 0 there exist B ∈ Bd and δ > 0

with dH(B,B0) < ε such that no B′ ∈ Bd with dH(B,B′) < δ belongs to AA,η. So let us fix B0 ∈ Bd. It suffices
to show the desired statement for small ε > 0 (note that if the statement holds for some ε > 0, then it holds
for any larger ε as well).

Recall that B0 ⊆ Rd is a closed, bounded, 0-symmetric convex body containing 0 in its interior. Due to the
latter condition, there exists some s > 0 such that ||b||2 ≥ 2s for all b on the boundary of B0. By making ε

smaller if needed, we may assume that ε < s.

By Lemma 3.4, applied with µ = min{ε/2, s · sin(η/3)}, we can approximate B0 with a bounded 0-symmetric
polytope B1 containing 0 in its interior such that dH(B0, B1) < ε/2 and all facets of B1 have diameter at most
s · sin(η/3) (with respect to the Euclidean distance). By Lemma 3.5 every point b on the boundary of B1 has
Euclidean distance at most ε/2 < s to some point on the boundary of B0. In particular, we have ||b||2 ≥ s for
all b on the boundary of B1 (so B1 contains the Euclidean ball with radius s around the origin).

Let us now choose a system of linear inequalities of the form |oi ·x| ≤ si for i = 1, . . . , h describing the polytope
B1 (with non-zero vectors o1, . . . ,oh ∈ Rd and real numbers s1, . . . , sh > 0). More formally, B1 is the set of
all x ∈ Rd such that |oi · x| ≤ si for i = 1, . . . , h. By rescaling the inequalities, we may choose the vectors
o1, . . . ,oh ∈ Rd such that ||o1||2 = · · · = ||oh||2 = 1. As B1 contains the Euclidean ball of radius s around the
origin, we have si ≥ s for i = 1, . . . , h.

Note that geometrically, one can think of o1, . . . ,oh as the (Euclidean) unit vectors orthogonal to the (parallel
pairs of) facets of B1. Furthermore, note that every point b on the boundary of B1 satisfies |oi · b| = si for
some i ∈ {1, . . . , h}.

In the setting of Theorem 1.1 (where m = 0 and A has entries in Q), let us say that an h-tuple (t1, . . . , th) ∈ Rh

is achievable if there exist distinct indices φ(1), . . . , φ(dℓ + 1) ∈ {1, . . . , h} and vectors u1, . . . ,udℓ+1 ∈ Rd

satisfying the following two conditions:

(a) uj =
∑ℓ

i=1 ajiui for j = 1, . . . , dℓ+ 1, and
(b) |oφ(j) · uj | = tφ(j) for j = 1, . . . , dℓ+ 1.

Intuitively, an h-tuple (t1, . . . , th) is achievable if there is a solution (u1, . . . ,udℓ+1) to the linear equations
prescribed by the matrix A, such that when plugging in the dℓ + 1 vectors u1, . . . ,udℓ+1 into some choice of
dℓ+1 different expressions |oi ·x| for i ∈ {1, . . . , h}, one obtains the corresponding entries of (t1, . . . , th). This
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will be relevant in our arguments in the following way: We will consider the polytope {x ∈ Rd : |oi · x| ≤
ti for i = 1, . . . , h} (note that for (t1, . . . , th) close to (s1, . . . , sh), this can be viewed as a perturbation of the
polytope B1 = {x ∈ Rd : |oi · x| ≤ si for i = 1, . . . , h}). Whenever there is a solution (u1, . . . ,udℓ+1) to the
linear equations prescribed by A such that u1, . . . ,udℓ+1 lie on distinct facets of this polytope, then the h-tuple
(t1, . . . , th) must be achievable (indeed, each uj satisfies |oi · uj | = ti for the index i corresponding to the
facet containing uj). Heuristically speaking, we will show that there are only few achievable h-tuples and that
therefore this situation can be avoided.

In the setting of Theorem 1.3 (where m = ⌈(1 − µ)n⌉ and A has entries in Q(x1, . . . , xm)), let us say that an
h-tuple (t1, . . . , th) ∈ Rh is achievable if there exist distinct indices φ(1), . . . , φ(dℓ +m + 1) ∈ {1, . . . , h}, real
numbers z1, . . . , zm ∈ R and vectors u1, . . . ,udℓ+m+1 ∈ Rd satisfying the following three conditions:

(o) For every entry aji ∈ Q(x1, . . . , xm) of the matrix A, the evaluation aji(z1, . . . , zm) ∈ R is well-defined.
(a) uj =

∑ℓ
i=1 aji(z1, . . . , zm)ui for j = 1, . . . , dℓ+m+ 1, and

(b) |oφ(j) · uj | = tφ(j) for j = 1, . . . , dℓ+m+ 1.

Again, intuitively, an h-tuple (t1, . . . , th) is achievable if there is a solution (u1, . . . ,udℓ+m+1) to the lin-
ear equations prescribed by the matrix A with the entries evaluated at (z1, . . . , zm), such that the vectors
u1, . . . ,udℓ+m+1 satisfy |oi · uj | = ti for distinct choices of indices i. This will be relevant in the same way as
indicated above in the setting of Theorem 1.1.

For an injective function φ : {1, . . . , dℓ+m+ 1} → {1, . . . , h}, let us say that (t1, . . . , th) ∈ Rh is φ-achievable
if there are vectors u1, . . . ,udℓ+1 ∈ Rd (and real numbers z1, . . . , zm ∈ R) satisfying the conditions above (more
precisely, satisfying the conditions (a) to (b) in the setting of Theorem 1.1 and satisfying the conditions (o)
to (b) in the setting of Theorem 1.3). Then (t1, . . . , th) is achievable if and only if it is φ-achievable for some
injective function φ : {1, . . . , dℓ+m+ 1} → {1, . . . , h}.

Intuitively speaking, the following two claims show that in both of our two settings only very few h-tuples
(t1, . . . , th) ∈ Rh are achievable.

Claim 1: In the setting of Theorem 1.1, the set of all achievable h-tuples (t1, . . . , th) ∈ Rh can be covered by
finitely many (h− 1)-dimensional linear hyperplanes in Rh.

Proof. Since there are only finitely many possibilities to choose an injective function φ : {1, . . . , dℓ + 1} →
{1, . . . , h}, it suffices to show that for every such function φ the set of all φ-achievable h-tuples (t1, . . . , th) ∈ Rh

can be covered by finitely many (h−1)-dimensional linear hyperplanes in Rh. So let us fix some injective function
φ : {1, . . . , dℓ+ 1} → {1, . . . , h}.

If (t1, . . . , th) ∈ Rh is φ-achievable, there exist vectors u1, . . . ,udℓ+1 ∈ Rd satisfying conditions (a) and (b)
above. By (b), for every j = 1, . . . , dℓ + 1, we have oφ(j) · uj = tφ(j) or oφ(j) · uj = −tφ(j). Note that
there are 2dℓ+1 possibilities to make these sign choices. Fixing the sign choices, we can express each tφ(j) for
j = 1, . . . , dℓ+1 as a linear function of the entries of uj (with coefficients given by the entries of the fixed vector
oφ(j)). However, by (a) the entries of each vector uj for j = 1, . . . , dℓ+ 1 can be expressed as linear functions
of the entries of u1, . . . ,uℓ (with coefficients given by the entries of the fixed matrix A = (aji)). Hence we can
express each tφ(j) for j = 1, . . . , dℓ + 1 as a linear function of the entries of u1, . . . ,uℓ ∈ Rd. These ℓ vectors
have dℓ entries in total, and so each tφ(j) for j = 1, . . . , dℓ+1 is a linear function of the same dℓ real variables.
Since the space of all linear functions in dℓ variables only has dimension dℓ, there must be a linear dependence
between the dℓ + 1 linear functions expressing tφ(j) for j = 1, . . . , dℓ + 1. In other words, we obtain a linear
relationship between the values of tφ(j) for j = 1, . . . , dℓ+ 1 for each of the 2dℓ+1 sign choices in condition (b).
Each such linear relationship gives rise to an (h − 1)-dimensional linear hyperplane in Rh. Hence the set of
φ-achievable h-tuples (t1, . . . , th) ∈ Rh can be covered by 2dℓ+1 linear hyperplanes in Rh.
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Claim 2: In the setting of Theorem 1.3, the set of all achievable h-tuples (t1, . . . , th) ∈ Rh can be covered by the
vanishing sets {(y1, . . . , yh) ∈ Rh : P (y1, . . . , yh) = 0} of finitely many non-zero polynomials P ∈ R[y1, . . . , yh].

Proof. Again, there are only finitely many possibilities to choose an injective function φ : {1, . . . , dℓ+m+1} →
{1, . . . , h}, and so it suffices to show that for every such injective function the set of all φ-achievable h-tuples
(t1, . . . , th) ∈ Rh can be covered by the vanishing sets of finitely many non-zero polynomials. So let us fix some
injective function φ : {1, . . . , dℓ+m+ 1} → {1, . . . , h}.

If (t1, . . . , th) ∈ Rh is φ-achievable, there exist vectors u1, . . . ,udℓ+1 ∈ Rd satisfying conditions (o) to (b)
above. By (b), for every j = 1, . . . , dℓ + m + 1, we have oφ(j) · uj = tφ(j) or oφ(j) · uj = −tφ(j). Note that
there are 2dℓ+m+1 possibilities to make these sign choices. Fixing the sign choices, we can express each tφ(j) for
j = 1, . . . , dℓ+m+1 as a linear function (with real coefficients) of the entries of uj (with coefficients given by
the entries of the fixed vector oφ(j)). However, by (a) the entries of each vector uj for j = 1, . . . , dℓ+m+1 can
be expressed as rational functions of z1, . . . , zm and the entries of u1, . . . ,uℓ (where these rational functions are
determined by the entries of the fixed matrix A = (aji)). Hence we can express each tφ(j) for j = 1, . . . , dℓ+m+1

as a rational function (with real coefficients) of z1, . . . , zm and the entries of u1, . . . ,uℓ ∈ Rd. The variables
z1, . . . , zm and the dℓ entries of the ℓ vectors u1, . . . ,uℓ ∈ Rd together are dℓ+m variables in total, and each
tφ(j) for j = 1, . . . , dℓ + m + 1 is a rational function (with real coefficients) of these dℓ + m variables (where
the coefficients of the rational function are all determined by the fixed vectors o1, . . . ,oh and the fixed matrix
A ∈ Q(x1, . . . , xm)(dℓ+m+1)×ℓ). By Fact 3.1 there exists a non-zero real polynomial P in dℓ+m+ 1 variables,
such that when plugging the rational functions describing tφ(1), . . . , tφ(dℓ+m+1) into P the resulting expression
is zero. This polynomial P is entirely determined by o1, . . . ,oh and the A ∈ Q(x1, . . . , xm)(dℓ+m+1)×ℓ (and
the sign choices we made above), and we have P (tφ(1), . . . , tφ(dℓ+m+1)) = 0. Thus, for each of the 2dℓ+m+1

sign choices in condition (b), we obtain a non-zero polynomial P ∈ R[y1, . . . , yh] such that P (t1, . . . , th) = 0

for every (t1, . . . , th) ∈ Rh which is φ-achievable with these sign choices in condition (b). Hence the set of
φ-achievable h-tuples (t1, . . . , th) ∈ Rh can be covered by the vanishing sets of 2dℓ+m+1 non-zero polynomials
P ∈ R[y1, . . . , yh].

Since B1 is bounded, there exists some c > 0 such that ||b||2 ≤ c for all b ∈ B1. For any (t1, . . . , th) ∈ Rh
>0,

we can consider the polytope {x ∈ Rd : |oi · x| ≤ ti for i = 1, . . . , h}. The maximum (Euclidean) diameter
of the facets of this polytope depends continuously on (t1, . . . , th) (indeed, for each j = 1, . . . , h, the diameter
of the subset of those x ∈ {x ∈ Rd : |oi · x| ≤ ti for i = 1, . . . , h} maximizing oj · x depends continuously on
(t1, . . . , th)). Note that for (t1, . . . , th) = (s1, . . . , sh) this polytope is precisely B1 and so all of its facets have
diameter at most s · sin(η/3) (with respect to the Euclidean distance). Hence we can choose some 0 < ε′ < εs

2c

such that for every (t1, . . . , th) ∈ Rh
>0 with si ≤ ti ≤ si + ε′ for i = 1, . . . , h, all facets of the polytope

{x ∈ Rd : |oi · x| ≤ ti for i = 1, . . . , h} have diameter at most s · sin(η/2) (with respect to the Euclidean
distance).

By Claim 1 or Claim 2, respectively, the set of achievable h-tuples (t1, . . . , th) ∈ Rh can be covered by a finite
collection of (h− 1)-dimensional linear hyperplanes in Rh or by a finite collection of vanishing sets of non-zero
polynomials in Rh. Let H be the union of these hyperplanes or of the vanishing sets of these polynomials. In
either case, H ⊆ Rd is a closed set and H cannot contain the entire box [s1, s1 + ε′]× · · · × [sh, sh + ε′]. Thus,
there exists an h-tuple (t1, . . . , th) ̸∈ H with si ≤ ti ≤ si + ε′ for i = 1, . . . , h.

Since (t1, . . . , th) ̸∈ H and H is closed, there exists some 0 < δ′ < ε′/2 such that we also have (t′1, . . . , t
′
h) ̸∈ H

for all (t′1, . . . , t′h) ∈ Rh satisfying |t′i − ti| ≤ δ′ for i = 1, . . . , h (geometrically, δ′ is the radius of some ball in
the ℓ∞-norm around (t1, . . . , th) that is disjoint from H). This means that there is no achievable (t′1, . . . , t

′
h)

with |t′i − ti| ≤ δ′ for i = 1, . . . , h.
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Let us now define

B = {x ∈ Rd : |oi · x| ≤ ti for i = 1, . . . , h}

to be the convex 0-symmetric polytope described by the system of linear inequalities |oi ·x| ≤ ti for i = 1, . . . , h.
As ti ≥ si ≥ s > 0 for i = 1, . . . , h, the polytope B contains the Euclidean ball of radius s around the
origin, and in particular B contains 0 in its interior. Furthermore, B is bounded, since it is contained within
max{t1/s1, . . . , th/sh}B1 (which is bounded). Thus, we have B ∈ Bd.

Since si ≤ ti ≤ si + ε′ for i = 1, . . . , h, by the choice of ε′ we know that all facets of the polytope B have
diameter at most s · sin(η/2) (with respect to the Euclidean distance).

We claim that dH(B,B1) ≤ ε/2. First, note that

B1 = {x ∈ Rd : |oi · x| ≤ si for i = 1, . . . , h} ⊆ {x ∈ Rd : |oi · x| ≤ ti for i = 1, . . . , h} = B,

since si ≤ ti for i = 1, . . . , t. Thus, for every b′ ∈ B1 we have infb∈B ||b′ − b||2 = 0. Furthermore, for every
b ∈ B, we have ∣∣∣∣oi ·

s

s+ ε′
b
∣∣∣∣ = s

s+ ε′
· |oi · b| ≤

s

s+ ε′
· ti ≤

s

s+ ε′
· (si + ε′) ≤ si

for i = 1, . . . , h. Hence, letting b′ = s
s+ε′b, we have b′ ∈ B1 and ||b−b′||2 = ε′

s · ||b′||2 ≤ ε′c
s < ε/2, using that

||b′||2 ≤ c (as b′ ∈ B1) and that ε′ < εs
2c . This shows that infb′∈B1

||b′ − b||2 < ε/2 for all b ∈ B. Thus, we
indeed have dH(B,B1) ≤ ε/2.

Now, since dH(B,B1) ≤ ε/2 and dH(B0, B1) < ε/2, we have dH(B,B0) < ε by the triangle inequality. In
order to finish the proof of Lemma 5.3, let us now show that there is some δ > 0 such that no B′ ∈ Bd with
dH(B,B′) < δ belongs to AA,η.

Let us take δ such that 0 < δ < δ′ and small enough such that (s · sin(η/2) + 2δ)/(s − δ) ≤ sin η. We claim
that then for any two points b,b′ ∈ Rd with Euclidean distance at most δ from the same facet of B, the angle
between the lines spanR(b) and spanR(b

′) is at most η. Indeed, recalling that each facet of B has diameter at
most s · sin(η/2), by the triangle inequality we have ||b− b′||2 ≤ 2δ + s · sin(η/2). Hence the sine of the angle
between the lines spanR(b) and spanR(b

′) is at most ||b−b′||2/||b||2 ≤ (s ·sin(η/2)+2δ)/(s−δ) ≤ sin η (noting
that ||b||2 ≥ s − δ, since B contains the Euclidean ball of radius s around the origin and b has distance at
most δ to the boundary of B). So this indeed shows that the angle between the lines spanR(b) and spanR(b

′)

is at most η.

It remains to show that there is no B′ ∈ Bd with dH(B,B′) < δ belonging to AA,η. Suppose towards a
contradiction that there exists some B′ ∈ AA,η such that dH(B,B′) < δ. By the definition of AA,η, this
means that there are vectors u1, . . . ,udℓ+m+1 ∈ Rd with endpoints on the boundary of B′, such that for all
1 ≤ i < j ≤ dℓ+m+1, the angle between the two lines spanR(ui) and spanR(uj) is larger than η. Furthermore,
in the setting of Theorem 1.1 (where m = 0), we have uj =

∑ℓ
i=1 ajiui for j = 1, . . . , dℓ+ 1. In the setting of

Theorem 1.3 we also have z1, . . . , zm ∈ R such that aji(z1, . . . , zm) is well-defined for all entries aji of A and
such that uj =

∑ℓ
i=1 aji(z1, . . . , , zm)ui for j = 1, . . . , dℓ +m + 1. Note that this means that condition (a) is

satisfied in the setting of Theorem 1.1 and conditions (o) and (a) are satisfied in the setting of Theorem 1.3.

Interpreting u1, . . . ,udℓ+m+1 as points in Rd, on the boundary of B′, by Lemma 3.5 there exist points
b1, . . . ,bdℓ+m+1 ∈ Rd on the boundary of B with ||uj − bj ||2 < δ for j = 1, . . . , dℓ + m + 1 (recall that
dH(B′, B) < δ). We claim that no two of the points b1, . . . ,bdℓ+m+1 can lie on the same facet or on opposite
facets of the polytope B. Indeed, if two of these points bj and bj′ with j ̸= j′ were on the same facet, then
by the choice of δ the angle between the lines spanR(ui) and spanR(uj) would be at most η. Similarly, if bj

and bj′ with j ̸= j′ were on opposite facets, then bj and −bj′ would be on the same facet and so the angle
between the lines spanR(ui) and spanR(−uj) = spanR(uj) would also be at most η. In either case, this is a

22



contradiction to the conditions for the vectors u1, . . . ,udℓ+m+1. Thus, no two of the points b1, . . . ,bdℓ+m+1

can lie on the same facet or on opposite facets of the polytope B.

Since b1, . . . ,bdℓ+m+1 are on the boundary of B = {x ∈ Rd : |oi · x| ≤ ti for i = 1, . . . , h}, for every j =

1, . . . , dℓ+m+ 1 we can find some φ(j) ∈ {1, . . . , h} such that |oφ(j) · bj | = tφ(j). Since no two of the points
b1, . . . ,bdℓ+m+1 are on the same facet or on opposite facets of B, the indices φ(1), . . . , φ(dℓ+m+1) ∈ {1, . . . , h}
must be distinct, and so they define an injective function φ : {1, . . . , dℓ+m+ 1} → {1, . . . , h}.

For j = 1, . . . , dℓ +m + 1, let us define t′φ(j) = |oφ(j) · uj |. Since ||uj − bj ||2 < δ < δ′ and ||oφ(j)||2 = 1, we
have |t′φ(j) − tφ(j)| ≤ |oφ(j) · uj − oφ(j) · bj | ≤ ||oφ(j)||2 · ||uj − bj ||2 < δ′ for j = 1, . . . , dℓ +m + 1. For every
i ∈ {1, . . . , h} \ {φ(1), . . . , φ(dℓ+m+ 1)}, let us define t′i = ti. Then (t′1, . . . , t

′
h) ∈ Rh satisfies |t′i − ti| < δ′ for

i = 1, . . . , h, and so by our choice of δ′, the h-tuple (t′1, . . . , t
′
h) is not achievable.

On the other hand, the vectors u1, . . . ,udℓ+m+1 ∈ Rd satisfy |oφ(j) ·uj | = t′φ(j) for j = 1, . . . , dℓ+m+1, meaning
that condition (b) is satisfied in both the setting of Theorem 1.1 and the setting of Theorem 1.3. Since we
already saw that (a) is satisfied (and also (o) in the setting of Theorem 1.3), this means that (t′1, . . . , t

′
h) is

φ-achievable and in particular achievable. This contradiction shows that indeed there is no B′ ∈ Bd with
dH(B,B′) < δ belonging to AA,η. This finishes the proof of Lemma 5.3, and hence of Theorems 1.1 and
1.3.

6 Proof of Theorem 1.4: upper bounding the chromatic number

In this section, we prove Theorem 1.4. As mentioned in the introduction, we will actually prove a more general
result giving an upper bound for the chromatic number of the odd distance graph of most d-norms, in any
dimension d. The odd distance graph of a d-norm ||.|| is the graph whose vertices are the points in Rd, where
two points are adjacent if and only if the distance between them according to the norm ||.|| is an odd integer.

Theorem 6.1. For any d ≥ 1, for all d-norms ||.|| besides a meagre set, the odd distance graph of ||.|| has
chromatic number at most 2d.

Since the unit distance graph is a subgraph of the odd distance graph, Theorem 6.1 implies that for all 2-norms
besides a meagre set, the unit distance graph has chromatic number at most 4. Combined with the fact that
this chromatic number is at least 4 for any 2-norm [9, Theorem 3], this shows Theorem 1.4.

Proof of Theorem 6.1. Our goal is to show that every d-norm ||.|| for which the odd distance graph has
chromatic number larger than 2d has the property that there exist vectors u1, . . . ,uk ∈ Rd in distinct directions
with ||u1|| = · · · = ||uk|| = 1 and a subset I ⊆ {1, . . . , k}, such that we have uj ∈ spanQ(ui : i ∈ I) for at least
d · |I|+ 1 indices j ∈ {1, . . . , k}. This would be sufficient, as the arguments in the previous section show that
the set of d-norms with this property is a meagre set (indeed, by the second half of the proof of Lemma 5.1
the unit ball of the norm ||.|| is contained in the union

⋃
A,η AA,η considered in the statement of Lemma 5.1,

and this union is a meagre set, as each of the sets AA,η is nowhere dense by Lemma 5.3).

So let ||.|| be a d-norm whose odd distance graph has chromatic number larger than 2d, and suppose towards a
contradiction that it does not satisfy the property above. By the De Bruijn–Erdős Theorem, the odd distance
graph of ||.|| must contain a finite subgraph G with chromatic number χ(G) > 2d. Let p1, . . . ,pn ∈ Rd

correspond to the vertices of the subgraph G. Furthermore, let u1, . . . ,uk ∈ Rd be the unit vectors (signed
arbitrarily) whose odd multiples give rise to edges of G. More precisely, u1, . . . ,uk ∈ Rd is a list of non-zero
vectors in distinct directions (i.e. the lines spanR(ui) for i = 1, . . . , k are all distinct) with ||u1|| = · · · = ||uk|| =
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1 such that for every edge pxpy of G (with x, y ∈ {1, . . . , n}), there exists an index i ∈ {1, . . . , k} and an odd
integer m with px − py = mui.

Recall that by our assumption about the norm ||.||, for any subset I ⊆ {1, . . . , k} we have uj ∈ spanQ(ui : i ∈ I)

for at most d · |I| indices j ∈ {1, . . . , k}. By the Edmonds Matroid Decomposition Theorem [14], this implies
that there is a partition {1, . . . , k} = J1 ∪ · · · ∪ Jd such that for each ℓ = 1, . . . , d the set vectors {ui : i ∈ Jℓ} is
linearly independent over Q. This gives rise to a partition of the edges of the graph G into subgraphs G1, . . . , Gd,
where for any ℓ = 1, . . . , d, an edge pxpy of G belongs to the subgraph Gℓ if we have px − py = mui for some
index i ∈ Jℓ and an odd integer m.

We claim that each of the subgraphs Gℓ for ℓ = 1, . . . , d is bipartite. Indeed, suppose that for some ℓ ∈ {1, . . . , d}
the subgraph Gℓ contains an odd cycle. Walking along the cycle and summing up the corresponding terms
px − py = mui for the edges along the cycle gives an integer linear relation between the vectors ui for i ∈ Jℓ.
As the cycle is odd, there must be an index i ∈ Jℓ such that an odd number of edges on the cycle contribute
a term of the form px − py = mui (with an odd integer m). For this index i, the resulting coefficient of ui

in this integer linear relation is odd, and is therefore in particular non-zero. Hence we obtained a non-trivial
integer linear relation between the vectors ui for i ∈ Jℓ, contradicting the fact that these vectors are linearly
independent over Q.

Thus, for ℓ = 1, . . . , d, the graph Gℓ must indeed bipartite, meaning that χ(Gi) ≤ 2. This implies χ(G) =

χ(G1 ∪ . . . ∪Gd) ≤ χ(G1) · · ·χ(Gd) ≤ 2d, giving the desired final contradiction.

7 Proof of Theorem 1.2: point sets with many unit distances

This section is concerned with lower bounds for U||.||(n). Before turning to the proofs, let us introduce a
standard piece of notation that we will use throughout the section. Given a collection of sets S1, . . . , Sk ∈ Rd

their Minkowski sum S1 + · · ·+ Sk is defined as the set of all points of the form x1 + · · ·+ xk with xi ∈ Si for
i = 1, . . . , k.

7.1 Planar norms

Before proving our lower bound for U||.||(n) in Theorem 1.2 in arbitrary dimension, we begin by showing a
slightly stronger lower bound in dimension 2. We note that, as we will explain in Section 8, it is possible to
obtain a further slight improvement.

Proposition 7.1. For every 2-norm ∥.∥, we have

U∥.∥(n) ≥
(

1

log 3
− o(1)

)
· n log n

for all n. In other words, for every 2-norm ∥.∥ and every n, there exists a set of n points in R2 such that
the number of unit distances according to ∥.∥ among the n points is at least

(
1

log 3 − o(1)
)
n log n, where the

o(1)-term tends to zero as n → ∞.

If the norm ∥.∥ is not strictly convex (i.e. if the boundary of the unit ball of the norm contains a line segment),
then we can find n points with at least ⌊n2/4⌋ unit distances. Indeed, in this case, the corresponding unit
distance graph contains the complete bipartite graph Km,m for every m. So to prove Proposition 7.1, we may
assume that the norm is strictly convex.
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The main ingredient in the proof is to show that any power of a triangle is a subgraph of the unit distance
graph of any strictly convex norm on R2. More concretely, for any k, we find a collection of k triangles with all
sides having unit length according to the given norm, and take the Minkowski sum of the vertex sets of these
triangles. This yields 3k points and the corresponding unit distance graph is a k-fold product of the triangle K3

(in the usual graph theoretic sense of graph products). To find these triangles, we prove the following simple
lemma.

Lemma 7.2. Let ∥.∥ be a strictly convex 2-norm. Then for any integer k there exist subsets S1, S2, . . . , Sk ⊆ R2

of size |S1| = · · · = |Sk| = 3 with |S1+ · · ·+Sk| = 3k and such that for each i = 1, . . . , k any two distinct points
in Si have unit distance according to ||.||.

Note that the condition |S1+ · · ·+Sk| = 3k means precisely that all the 3k points of the form x1+x2+ · · ·+xk

with xi ∈ Si for i = 1, . . . , k are distinct. Furthermore, note that the second condition means that for each
i = 1, . . . , k, the three points in Si determine a triangle with all three side lengths equal to one according to
the norm ||.||.

Proof. We construct the sets S1, S2, . . . one by one, maintaining the property that after S1, S2, . . . , Si have
been determined, we have |S1 + · · ·+ Si| = 3i. We need the simple fact (see, for example, [6, Lemma 2]) that
for any two distinct points a1 and a2 in a strictly convex 2-dimensional real normed space (R2, ||.||) there are
at most two points b ∈ R2 satisfying both ||b− a1|| = 1 and ||b− a2|| = 1 (i.e. having unit distance from both
a1 and a2).

Assume S1, S2, . . . , Si−1 have already been constructed, and let us now choose Si. For any point x ∈ R2 with
||x|| = 1 (i.e. for any point x on the boundary of the unit ball of the norm ||.||), let us imagine that we move
a point y along the boundary of the unit ball of ||.|| from x to the antipodal point −x. By continuity of the
distance ||y−x|| as y moves, at some point in this process we must have ||y−x|| = 1. In other words, for any
point x ∈ R2 with ||x|| = 1, there must be a point y(x) ∈ R2 with ||y(x)|| = 1 and ||y(x) − x|| = 1. We will
choose the set Si to consist of 0, x and y = y(x), for an appropriate choice of x with ||x|| = 1. Note that then
any two distinct points in Si have unit distance according to ||.||.

In order to ensure that |S1+ · · ·+Si| = 3i, we need to to ensure that the sets {u+0,u+x,u+y} are pairwise
disjoint for all u ∈ S1 + S2 + . . . + Si−1. If the sets {u + 0,u + x,u + y} and {v + 0,v + x,v + y} intersect
for two distinct elements u,v ∈ S1 + S2 + . . . + Si−1, then one of the differences x − 0,y − 0,x − y must be
of the form ±(u − v). We claim that for any two distinct u,v ∈ S1 + S2 + . . . + Si−1, there are at most six
choices for x (with ||x|| = 1) such that this happens. Indeed, there are clearly at most two choices for x with
x = x − 0 ∈ {±(u − v)}. Note that x has unit distance from both y and x − y (since ||y − x|| = 1 and
||y|| = 1). So if y = y − 0 ∈ {±(u − v)} or x − y ∈ {±(u − v)}, then x must have unit distance from u − v
or from −(u− v). But by the above-mentioned fact, there can be at most two choices for x with ||x|| = 1 and
||x− (u− v)|| = 1 and at most two choices for x with ||x|| = 1 and ||x+ (u− v)|| = 1. Thus, there are indeed
at most six choices for x (with ||x|| = 1) such that the sets {u + 0,u + x,u + y} and {v + 0,v + x,v + y}
intersect.

Since there are only finitely many choices for distinct u,v ∈ S1+S2+ . . .+Si−1, this means that there are only
finitely many choices for x for which the desired condition |S1 + · · · + Si| = 3i fails. Since there are infinitely
many points x ∈ R2 with ||x|| = 1, we can indeed take Si = {0,x,y(x)} for some suitably chosen x ∈ R2 (with
||x|| = 1) such that |S1 + · · ·+ Si| = 3i.

Proposition 7.1 is an easy consequence of the last lemma.

25



Proof of Proposition 7.1. As discussed previously we may assume that the norm ∥.∥ is strictly convex. Now
for any k, we can take sets S1, . . . , Sk as in Lemma 7.2 and consider the Minkowski sum S = S1+S2+ . . .+Sk.
This gives a set S ⊆ R2 of size |S| = 3k, such that every point in S has unit distance according to ∥.∥ from
at least 2k other points in S (namely, all the points in S obtained by changing exactly one summand in the
representation x1 + · · · + xk with xi ∈ Si for i = 1, . . . , k). This gives us a set of 3k points in R2 with k · 3k

unit distances according to ∥.∥, which in particular shows that the claimed bound holds without the o(1)-term
when n is a power of three.

To obtain the asymptotic bound for every n, let us write n in base three, so n = ak · 3k + ak−1 · 3k−1+ . . .+ a0,
where k = ⌊log3 n⌋ and ak, . . . , a0 ∈ {0, 1, 2}. For each i = 0, . . . , k, we now use the construction above to find
ai sets of size 3i, translated if necessary to ensure that all the points in all of these sets are distinct. In total
we obtain ak · 3k + ak−1 · 3k−1 + . . .+ a0 = n points, and among these n points there are at least

ak · k · 3k + ak−1 · (k − 1) · 3k−1 + . . .+ a1 · 1 · 3 = kn− 3k ·
k∑

i=1

ak−i · i · 3−i ≥ kn− 2 · 3k ·
k∑

i=1

i · 3−i ≥ kn− 3

2
n

unit distances. Since k − 3
2 =

(
1

log 3 − o(1)
)
log n, this completes the proof.

7.2 Higher dimension

In this section, we prove Theorem 1.2. We start by showing that the unit distance graph of any d-norm contains
a complete bipartite graph with one vertex class of size d−1 and the other vertex class of infinite size. To do so,
we need the following result, known as the Hurewicz Dimension Lowering Theorem (see [17, Theorem 3.3.10,
p. 200]). The notion of dimension in this theorem is the usual Lebesgue covering dimension, as described in
[17].

Theorem 7.3 (Hurewicz Dimension Lowering Theorem). Let X and Y be metric spaces, and assume that X
is compact. Let f : X → Y be a continuous map, such that all fibers f−1(y) for y ∈ Y have dimension at most
k. Then we have dim(X) ≤ k + dim(Y ).

The following lemma is the key ingredient for our lower bound result in Theorem 1.2.

Lemma 7.4. Let ||.|| be a d-norm, and let ∂B = {x ∈ Rd : ||x|| = 1} be the boundary of the corresponding
unit ball. Furthermore, consider distinct points y1,y2 . . . ,yd−1 ∈ ∂B, and let ε > 0 be a real number. Then
there exist points x1, x2 . . . , xd−1 ∈ Rd satisfying ∥xi − yi∥2 ≤ ε for i = 1, . . . , d− 1, such that the intersection⋂d−1

i=1 (xi + ∂B) is infinite.

Proof. Define a subset U of Rd × (Rd)d−1 by

U := {(x,x1, . . . ,xd−1) : xi − x ∈ ∂B for i = 1, . . . , d− 1}.

Note that U is homeomorphic to Rd × (∂B)d−1, with a homeomorpism u : U → Rd × (∂B)d−1 given by
u(x,x1, . . . ,xd−1) = (x,x1 − x, . . . ,xd−1 − x). Now, let us define

U ′ := {(x,x1, . . . ,xd−1) ∈ U : ∥xi − yi∥2 ≤ ε for i = 1, . . . , d− 1}.

Observe that the image of U ′ under the homeomorpism u : U → Rd × (∂B)d−1 defined above contains the
closed set

{x ∈ Rd : ||x||2 ≤ ε/2} × {z1 ∈ ∂B : ||z1 − y1||2 ≤ ε/2} × · · · × {zd−1 ∈ ∂B : ||zd−1 − yd−1||2 ≤ ε/2}, (1)
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Indeed, given (x, z1, . . . , zd−1) in this set, we have u(x,x1, . . . ,xd−1) = (x, z1, . . . , zd−1) for (x,x1, . . . ,xd−1) ∈
U ′ given by xi = zi+x for i = 1, . . . , d−1 (then xi−x ∈ ∂B and ∥xi−yi∥2 = ∥x+zi−yi∥2 ≤ ∥x∥2+∥zi−yi∥2 ≤
ε).

For i = 1, . . . , d− 1, we have yi ∈ ∂B and hence the set {zi ∈ ∂B : ||zi − yi||2 ≤ ε/2} contains a closed subset
that is homeomorphic to [0, 1]d−1 (indeed, the map z 7→ z/||z||2 defines a homeomorphism from this set to a
subset of the (d − 1)-dimensional unit sphere in Rd containing some spherical cap of positive radius). Thus,
the set in (1) has a closed subset that is homeomorphic to [0, 1]d+(d−1)2 . Therefore the dimension of the closed
set in (1) is at least d+ (d− 1)2, and consequently dim(U ′) ≥ d+ (d− 1)2.

Furthermore, the set U ′ is closed and bounded (for boundedness, note that ∥x∥ ≤ ∥x1∥+1 and ∥xi −yi∥2 ≤ ε

for i = 1, . . . , d − 1 for all (x,x1, . . . ,xd−1) ∈ U ′). Thus, U ′ is compact. Now, let us consider the continuous
projection map f : U ′ → (Rd)d−1 given by f(x,x1,x2, . . . ,xd−1) = (x1,x2, . . . ,xd−1).

Since dim((Rd)d−1) = d(d− 1) < dim(U ′), by the Hurewicz Dimension Lowering Theorem applied to the pro-
jection map f : U ′ → (Rd)d−1, there exist points x1,x2, . . . ,xd−1 ∈ Rd such that the fiber f−1(x1,x2, . . . ,xd−1)

has dimension at least one. Then this fiber must be infinite, so there are infinitely many points x ∈ Rd with
(x,x1,x2, . . . ,xd−1) ∈ U ′. By the definition of U ′, this implies ∥xi−yi∥2 ≤ ε for i = 1, . . . , d−1. Furthermore,
each of the infinitely many points x with (x,x1,x2, . . . ,xd−1) ∈ U ′ ⊆ U satisfies xi−x ∈ ∂B for i = 1, . . . , d−1,
meaning that x−xi ∈ ∂B and x ∈ xi+∂B. Thus, each of these points x lies in the intersection

⋂d−1
i=1 (xi+∂B),

so this intersection is infinite.

An easy consequence of the last lemma is the following.

Lemma 7.5. Let k be a positive integer and let ∥.∥ be a d-norm. Then there exist points x1, . . . , xd−1 ∈ Rd

with |{x1, 2x1, . . . , kx1} + · · · + {xd−1, 2xd−1, . . . , kxd−1}| = kd−1 and an infinite set S ⊆ Rd such that every
point z ∈ S satisfies ∥z− xi∥ = 1 for i = 1, . . . , d− 1.

Proof. Let ∂B be the boundary of the unit ball of the norm ∥.∥. Let us choose points y1, . . . ,yd−1 ∈ ∂B such
that |{y1, 2y1, . . . , ky1} + · · · + {yd−1, 2yd−1, . . . , kyd−1}| = kd−1 (we can choose the points y1, . . . ,yd−1 one
at a time, maintaining the condition |{y1, 2y1, . . . , ky1} + · · · + {yi, 2yi, . . . , kyi}| = ki for i = 1, . . . , d − 1,
by observing that after choosing y1, . . . ,yi−1 each potential equality between two different sums of the form
a1y1 + . . . + aiyi with a1, . . . , ai ∈ {1, . . . , k} forbids only a single choice for yi). Let ε > 0 be sufficiently
small, such that any two distinct points in {y1, 2y1, . . . , ky1}+ · · ·+ {yd−1, 2yd−1, . . . , kyd−1} have Euclidean
distance larger than 2k(d − 1)ε. Now, by applying Lemma 7.4 with y1, . . . ,yd−1 and ε, we obtain points
x1,x2 . . . ,xd−1 with ∥xi − yi∥2 ≤ ε for i = 1, . . . , d − 1, such that the intersection

⋂d−1
i=1 (xi + ∂B) is infinite.

Now, each point in {x1, 2x1, . . . , kx1}+ · · ·+{xd−1, 2xd−1, . . . , kxd−1} is of the form a1x1+ . . .+ad−1xd−1 with
a1, . . . , ad−1 ∈ {1, . . . , k} and has distance at most k(d−1)ε from the corresponding point a1y1+. . .+ad−1yd−1.
By our choice of ε, this means that the points a1x1 + . . . + ad−1xd−1 with a1, . . . , ad−1 ∈ {1, . . . , k} must all
be distinct and hence |{x1, 2x1, . . . , kx1} + · · · + {xd−1, 2xd−1, . . . , kxd−1}| = kd−1. Furthermore, defining
S =

⋂d−1
i=1 (xi + ∂B), the set S is infinite and every point z ∈ S satisfies ∥z − xi∥ = 1 for i = 1, . . . , d− 1.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Throughout the argument, we treat d as a fixed constant and all the asymptotics are
with respect to large n. Let us choose m :=

⌈
log

(
n

logn

)⌉
= o(n) and k =

⌊
(n/2m)1/(d−1)

⌋
= Θ((log n)1/(d−1)),

so that when writing n′ = kd−1 · 2m, we have n ≥ n′ ≥ kd−1/(k+ 1)d−1 · n = (1− o(1))n. Let ∥.∥ be a d-norm.

By Lemma 7.5 there exist points x1, . . . ,xd−1 ∈ Rd with |{x1, 2x1, . . . , kx1}+ · · ·+ {xd−1, 2x1, . . . , kxd−1}| =
kd−1 and an infinite subset S ⊆ Rd such that ∥z−xi∥ = 1 for all z ∈ S and i = 1, . . . , d−1. Now, let us choose
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points z1, . . . , zm ∈ S such that the set

{x1, 2x1, . . . kx1}+ · · ·+ {xd−1, 2xd−1, . . . , kxd−1}+ {0, z1}+ · · ·+ {0, zm} (2)

has size kd−1 · 2m = n′ (this is possible by once again choosing the points z1, . . . , zm ∈ S one by one, observing
that at each step every potential equality between two different sums of the form a1x1+ . . .+ad−1xd−1+b1z1+
. . .+ bjzj with a1, . . . , ad−1 ∈ {1, . . . , k} and b1, . . . , bj ∈ {0, 1} forbids at most one choice for zj).

Now, note that every vector of the form zj − xi with i ∈ {1, . . . , d − 1} and j ∈ {1, . . . ,m} occurrs as the
difference of at least (k−1)·kd−2·2m−1 pairs of points in the set in (2). Since ∥zj−xi∥ = 1 for all i ∈ {1, . . . , d−1}
and j ∈ {1, . . . ,m}, this means that among the n′ points in the set in (2), there are at least

(d− 1)m · (k − 1)kd−2 · 2m−1 =
d− 1

2
·
(
1− 1

k

)
· (log n′ − (d− 1) log k) · n′ =

d− 1− o(1)

2
· n′ log n′

unit distances. Since n′ log n′ = (1− o(1))n log n and n′ ≤ n, this shows there exists a set of at most n points
in Rd with at least d−1−o(1)

2 · n log n unit distances according to the norm ||.|| (by adding more points we can
form such a set with exactly n points).

8 Concluding remarks and open problems

We have shown in Theorem 1.2 that for every d-norm ∥.∥, we have U∥.∥(n) ≥ 1
2(d− 1− o(1)) · n log n. In other

words, Rd contains n points that determine at least 1
2(d − 1 − o(1)) · n log n unit distances according to ∥.∥,

where the o(1)-term tends to zero as n → ∞. This is nearly tight, as we have proved in Theorem 1.1 that
there are d-norms in which no set of n points determines more than 1

2d · n log n unit distances. In fact, almost
all d-norms satisfy this property. For d = 2 this settles a problem raised by Brass in [6] and by Matoušek
in [34], shaving a log log n factor from Matoušek’s upper bound. For general dimension d ≥ 2, this provides
an essentially tight estimate, up to a (1 − 1/d − o(1)) constant factor, and settles, in a strong and somewhat
surprising form, Problems 4 and 5 in [8, p. 195].

For d = 2 we have shown in Proposition 7.1 that U∥.∥(n) ≥ ( 1
log 3−o(1)) ·n log n for every 2-norm ∥.∥, improving

upon a well-known and often repeated lower bound of 1
2 · n log n coming from the embedding of the hypercube

described in the introduction. Our upper bound in Theorem 1.1 for most 2-norms ∥.∥ is U∥.∥(n) ≤ n log n, so
there is still a gap between the constant factors in the lower and upper bound. In fact, the constant factor
1

log 3 in our new lower bound can be slightly improved. To do so, note that the construction in the proof of
Proposition 7.1 is a Minkowski sum of sets Si = {0,xi,yi}. When choosing these sets, the choices of the
points xi are essentially arbitrary, and it is thus possible to choose them so that for every i ≥ 1, the points
x4i−3 + x4i−2 and x4i−1 + x4i have unit distance according to ∥.∥. Similarly, an additional (tiny) improvement
can be obtained by repeating this argument recursively. As this still leaves a gap between the upper and lower
bounds, we omit the detailed computation. It may be interesting to close the gap between our upper and lower
bounds for all dimensions, although our bounds in Theorems 1.1 and 1.2 are already quite close (in particular,
the bounds get closer as the dimension increases). It seems that this will require some new ideas.

The proof of Theorem 1.1 applies the fact, established in Section 5, that for most d-norms ∥.∥ there cannot be
too many linear dependencies over the rationals between the unit vectors (more precisely, for a given number
of unit vectors, their linear span over the rationals cannot contain too many other unit vectors). It is worth
noting, however, that some such linear dependencies always exist. In particular, the triangles constructed in the
proof of Lemma 7.2 show that in every strictly convex 2-norm there are infinitely many triples of unit vectors
whose sum is 0. Similarly, a simple application of the Hurewicz Dimension Lowering Theorem (Theorem 7.3)
implies that for every d-norm ∥.∥, there are infinitely many (d− 1)-tuples (x1, . . . ,xd−1) of points of unit norm
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according to ∥.∥ such that the (d − 2)-tuple of differences (x2 − x1, . . . ,xd−1 − x1) is the same for all these
(d−1)-tuples (x1, . . . ,xd−1). In particular, this means that for any ℓ ≥ d−1, we can find a set of ℓ unit vectors
in Rd whose linear span over the rationals contains at least (d− 1) · (ℓ− d+2) unit vectors according to ∥.∥ (in
comparison, the arguments in Section 5 show that for a typical d-norm such a span can contain at most d · ℓ
unit vectors).

Theorem 1.3 provides nearly tight bounds for the largest possible value of D∥.∥(n) for a d-norm ∥.∥ when n

is sufficiently large as a function of d. As far as we know it may be true that an even stronger bound holds,
namely that for every fixed d, if n is sufficiently large as a function of d, then there is a d-norm ∥.∥ so that
D∥.∥(n) = n− 1. This might even hold for most norms. A proof of this, if true, would require some additional
arguments. A careful inspection of the computation in our existing proof shows that it implies that for any d

and n, we have D∥.∥(n) ≥ n − O(dn3/4) for most d-norms ∥.∥. When n is not large as a function of d, then
the determination of the largest possible value of D∥.∥(n) among all d-norms ∥.∥ is a difficult problem. In
particular, the determination of the largest value of n so that D∥.∥(n) = 1 for all d-norms ∥.∥ is equivalent to
a well-known conjecture of Petty, as we describe next.

The number of vertices in the largest clique that can be embedded in the unit distance graph of ∥.∥ is called
the equilateral number of ∥.∥, which we denote here by e∥.∥ (equilateral numbers have also been considered
in other types of spaces, see e.g. [16]). A conjecture of Petty raised in 1971 ([36], see also [8]) asserts that
e∥.∥ ≥ d + 1 for every d-norm ∥.∥. Note that an equivalent formulation of this conjecture is that D∥.∥(n) = 1

for every d-norm ∥.∥ and every n ≤ d+ 1 (or equivalently, for n = d+ 1).

This is known in dimension d ≤ 3 ([36]), and is also known for norms that are sufficiently close to the d-
dimensional Euclidean norm ([7], [12]), or more generally to the d-dimensional ℓp-norm ℓdp for any 1 < p ≤ ∞
([44]). Combining this with a result of [2] asserting that every d-dimensional normed space contains a subspace
of dimension r = eΩ(

√
log d) which is either close to ℓr2 or to ℓr∞, it was proved by Swanepoel and Villa [44]

that the equilateral number e∥.∥ of any d-norm ∥.∥ is at least eb
√
log d for some absolute constant b > 0. It

is interesting to note that the exact value of the equilateral number e∥.∥ is not known even for some simple
d-norms like ℓd1, where it is conjectured to be 2d. See [3], [42], [43] for more information.

Petty’s problem as well as the constructions in Section 7 suggest the investigation of graphs that appear as
subgraphs in the unit distance graph of any d-norm for some given d ≥ 2. Any hypercube graph (of any
dimension) is an example of such a graph, and a clique of size eb

√
log d is another such example (for the absolute

constant b > 0 in the above-mentioned result of Swanepoel and Villa [44]). The complete bipartite graph
Kd−1,m, for any m, is also an example, as proved in Lemma 7.5. Yet another example that appears as a
subgraph of the unit distance graph of any strictly convex 2-norm is the k-th power of a triangle (for any
k ≥ 1), as shown in Lemma 7.2. A characterization of all graphs that are subgraphs of the unit distance graph
of any d-norm appears to be difficult.

A related problem is to determine the smallest possible chromatic number of the unit distance graph of a
d-norm. In dimension d = 2, the answer is 2 and in fact we showed in Theorem 1.4 that for most 2-norms the
chromatic number is equal to 4. By the known results about Petty’s conjecture, the chromatic number of the
unit distance graph of any d-norm is always at least eΩ(

√
log d). On the other hand, it is not difficult to show

that the chromatic number of the unit distance graph of any d-norm is at most exponential in d (see e.g. [25],
[32]). Theorem 6.1 implies an upper bound of 2d for most d-norms (which gives a better exponential base than
the known bounds for all norms). It would be interesting to determine whether the chromatic number of the
unit distance graph of a typical d-norm is exponential or sub-exponential in d. By our results here these graphs
are rather sparse, hence one may suspect that the chromatic number might be smaller than exponential.

Let us note that the book of Brass, Moser and Pach [8] serves as a remarkable repository of interesting open
problems in discrete geometry, many of which have natural extensions to general normed spaces. At least some
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of the ideas and tools developed in this paper may be helpful in attacking these questions.

Many of these questions can naturally be posed for typical norms, which in some sense play an analogous
role as random graphs do in extremal graph theory. Similarly as with random graphs, our results showcase
that considering typical norms can provide answers to extremal questions for general norms. They also show
that the Euclidean norm is very special in many regards, and exhibits a different behavior with respect to
many of these problems than most other norms. In particular, by the known bounds for D∥.∥2(n) and U∥.∥2(n)

mentioned in the introduction, our results show that the behaviour for the Euclidean 2-norm with respect to
the unit distance problem and the distinct distances problem is very different from the behaviour for a typical
2-norm, and this difference only becomes more pronounced in higher dimensions. While this might be natural
in view of the symmetry of the Euclidean norm, we find it surprising that in comparison, for a typical d-norm
∥.∥, U∥.∥(n) is so small and D∥.∥(n) is so large.

An intriguing open question is to describe explicitly a d-norm ∥.∥ for which U∥.∥(n) = O(dn log n) or for which
D∥.∥(n) ≥ (1− o(1))n (for large n). Note that a formal statement of this question requires a definition of the
notion “explicit” here, a natural one is a norm ∥.∥ for which there is an efficient algorithm (in any standard
model of computation over the reals) for computing the norm ∥x∥ of any given vector x ∈ Rd. Note also that
it is not even obvious that there exists an explicit d-norm as above.

As another application of our methods, we can resolve an analogue of a classical question of Erdős and Moser [21]
for typical norms. In 1959, Erdős and Moser asked about the maximum possible number of unit distances
among n points in (strictly) convex position in the Euclidean plane, and conjectured that the answer is O(n).
Füredi [24] proved an upper bound of the form O(n log n), and the current best bound is still of this form
(Aggarwal [1] improved Füredi’s bound by a constant factor). The best-known lower bound of 2n− 7 is due to
Edelsbrunner and Hajnal [13].

Our arguments show that the conjecture of Erdős and Moser is true for most planar norms. More concretely,
they imply that for most norms the maximum number of unit distances among n points in strictly convex
position in the plane is at most 4n. Indeed, the arguments in Section 5 imply that for most planar norms,
for a list of unit vectors u1, . . . ,uℓ, the span spanQ(u1, . . . ,uℓ) contains a total of at most 2ℓ unit vectors in
different directions (where we we consider two unit vectors to have the same direction if they agree up to sign).
For any n points in strictly convex position in the plane, we can consider the graph corresponding to the unit
distances between these points and choose a maximal spanning forest in this graph (i.e. we choose a spanning
tree for each component of the graph). Let u1, . . . ,uℓ be the unit vectors corresponding to the edges of this
spanning forest, and note that ℓ ≤ n− 1. Now, any unit vector appearing as a distance between two of the n

points can be written as a sum of some of the vectors u1, . . . ,uℓ or their negatives (since the two endpoints of
the corresponding edge of the graph can be connected by a path in the spanning forest). Hence any unit vector
appearing as a distance between the n points must be in spanQ(u1, . . . ,uℓ), and so for a typical norm there
can be at most 2ℓ ≤ 2n − 2 different directions of such unit vectors. On the other hand, since the n points
are in strictly convex position, for any unit vector u, there can be at most two pairs of points with distance
±u. Hence, for a typical planar norm, there can be a total of at most 4n− 4 unit distances among n points in
strictly convex position.

Another interesting open problem we suggest is the possible existence of a zero-one law for typical d-norms: Is
it true that for every fixed d ≥ 2 and every fixed graph H, exactly one of the following two options holds?

• For all d-norms ||.|| besides a meagre set, the unit distance graph of ||.|| contains H as a subgraph.
• For all d-norms ||.|| besides a meagre set, the unit distance graph of ||.|| does not contain H as a subgraph.

Finally, we mention that we have another approach for upper-bounding U∥.∥(n) for typical d-norms ∥.∥ yielding
a somewhat weaker upper bound than in Theorem 1.1, namely of the form O(d2n log n). This approach is more
similar to Matoušek’s proof [34] showing U∥.∥(n) ≤ O(n log n log logn) for most 2-norms ∥.∥. In particular,
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by a probabilistic argument using a careful multiple exposure process, we manage to improve the graph-
theoretic statement in [34, Proposition 2.1], removing the log log n factor in this proposition (which causes
the log log n factor in Matoušek’s result). While the resulting bound O(d2n log n) is weaker (in terms of the
d-dependence) than the bound in Theorem 1.1, we plan to write the proof of this improved graph theoretic
lemma in a companion note to this paper, since we believe that the argument might be useful in other settings.
In particular, a somewhat stronger variant of this lemma would yield an asymptotic answer to the so-called
discrete X-Ray reconstruction problem, see [35] for more details.

Remark. While our paper was under review, Greilhuber, Schildkraut, and Tidor [27] found constructions
improving the lower bound for the function U||.||(n) from Theorem 1.2 to (d/2 − o(1)) · n log2 n. This shows
that our Theorem 1.1 is asymptocially tight.

Acknowledgments. We thank Karim Adiprasito, Pankaj Agarwal, Xiaoyu He, Bo'az Klartag, Mehtaab
Sawhney, József Solymosi, Terence Tao and Or Zamir for useful conversations, and János Kollár and Assaf
Naor for leading us to reference [17]. The second author gratefully acknowledges the support of the Oswald
Veblen fund. We are also very grateful to the anonymous referees for carefully reading the paper and for their
helpful comments and suggestions.

References

[1] A. Aggarwal, On unit distances in a convex polygon, Discrete Math. 338, (2015), no. 3, 88–92.
[2] N. Alon and V. D. Milman, Embedding of ℓk∞ in finite-dimensional Banach spaces, Israel J. Math. 45

(1983), no. 4, 265–280.
[3] N. Alon and P. Pudlák, Equilateral sets in lnp , Geom. Funct. Anal. 13 (2003), no. 3, 467–482.
[4] A. Barvinok, Thrifty approximations of convex bodies by polytopes, Int. Math. Res. Not. IMRN (2014),

no. 16, 4341–4356.
[5] B. Bollobás and I. Leader, Edge-isoperimetric inequalities in the grid, Combinatorica 11 (1991), no. 4,

299–314.
[6] P. Brass, Erdős distance problems in normed spaces, Comput. Geom. 6 (1996), no. 4, 195–214.
[7] P. Brass, On equilateral simplices in normed spaces, Beiträge Algebra Geom. 40 (1999), no. 2, 303–307.
[8] P. Brass, W. Moser, and J. Pach, Research problems in discrete geometry, Springer, New York, 2005.
[9] K. B. Chilakamarri, Unit-distance graphs in Minkowski metric spaces, Geom. Dedicata 37 (1991), no. 3,

345–356.
[10] J. Davies, Odd distances in colourings of the plane, Geom. Funct. Anal. 34 (2024), 19–31.
[11] A. D. N. J. de Grey, The chromatic number of the plane is at least 5, Geombinatorics 28 (2018), no. 1,

18–31.
[12] B. V. Dekster, Simplexes with prescribed edge lengths in Minkowski and Banach spaces, Acta Math. Hungar.

86 (2000), no. 4, 343–358.
[13] H. Edelsbrunner and P. Hajnal, A lower bound on the number of unit distances between the vertices of a

convex polygon, J. Combin. Theory Ser. A 56 (1991), no. 2, 312–316.
[14] J. Edmonds, Minimum partition of a matroid into independent subsets, J. Res. Nat. Bur. Standards Sect.

B 69B (1965), 67–72.
[15] J. Edmonds and D. R. Fulkerson, Transversals and matroid partition, J. Res. Nat. Bur. Standards Sect.

B 69B (1965), 147–153.
[16] C. Elsholtz and W. Klotz, Maximal dimension of unit simplices, Discrete Comput. Geom. 34 (2005), no. 1,

167–177.

31



[17] R. Engelking, Theory of dimensions finite and infinite, Sigma Series in Pure Mathematics, vol. 10, Hel-
dermann Verlag, Lemgo, 1995.

[18] P. Erdős, On some applications of graph theory to geometry, Canadian J. Math. 19 (1967), 968–971.
[19] P. Erdős, Problems and results in combinatorial geometry, Discrete geometry and convexity (New York,

1982), Ann. New York Acad. Sci., vol. 440, New York Acad. Sci., New York, 1985, pp. 1–11.
[20] P. Erdős, On sets of distances of n points, Amer. Math. Monthly 53 (1946), 248–250.
[21] P. Erdős and L. Moser, Problem 11, Canad. Math. Bull. 2 (1959), 43.
[22] G. Exoo and D. Ismailescu, The chromatic number of the plane is at least 5: a new proof, Discrete Comput.

Geom. 64 (2020), no. 1, 216–226.
[23] P. Frankl and R. M. Wilson, Intersection theorems with geometric consequences, Combinatorica 1 (1981),

no. 4, 357–368.
[24] Z. Füredi, The maximum number of unit distances in a convex n-gon, J. Combin. Theory Ser. A 55 (1990),

316–320.
[25] Z. Füredi and J.-H. Kang, Covering the n-space by convex bodies and its chromatic number, Discrete Math.

308 (2008), no. 19, 4495–4500.
[26] J. Garibaldi, A. Iosevich, and S. Senger, The Erdős distance problem, Student Mathematical Library,

vol. 56, American Mathematical Society, Providence, RI, 2011.
[27] J. Greilhuber, C. Schildkraut, and J. Tidor, More unit distances in arbitrary norms, preprint

arXiv:2410.07557 (2024).
[28] P. M. Gruber, Convex and discrete geometry, Grundlehren der mathematischen Wissenschaften [Funda-

mental Principles of Mathematical Sciences], vol. 336, Springer, Berlin, 2007.
[29] L. Guth and N. H. Katz, On the Erdős distinct distances problem in the plane, Ann. of Math. (2) 181

(2015), no. 1, 155–190.
[30] G. Kalai, Some old and new problems in combinatorial geometry I: around Borsuk’s problem, Surveys in

combinatorics, London Math. Soc. Lecture Note Ser., vol. 424, Cambridge Univ. Press, 2015, pp. 147–174.
[31] V. Klee, Some new results on smoothness and rotundity in normed linear spaces, Math. Ann. 139 (1959),

51–63 (1959).
[32] A. Kupavskiy, On the chromatic number of Rn with an arbitrary norm, Discrete Math. 311 (2011), no. 6,

437–440.
[33] J. Matoušek, The dawn of an algebraic era in discrete geometry?, Proceedings of the 27th European

Workshop on Computational Geometry, 2011.
[34] J. Matoušek, The number of unit distances is almost linear for most norms, Adv. Math. 226 (2011), no. 3,

2618–2628.
[35] J. Matoušek, A. Přívětivý, and P. Škovroň, How many points can be reconstructed from k projections?,

SIAM J. Discrete Math. 22 (2008), no. 4, 1605–1623.
[36] C. M. Petty, Equilateral sets in Minkowski spaces, Proc. Amer. Math. Soc. 29 (1971), 369–374.
[37] D. H. J. Polymath, Polymath16, web.archive.org/web/20220216001534/https://asone.ai/polymath/

index.php?title=Hadwiger-Nelson_problem.
[38] A. Sheffer, Polynomial methods and incidence theory, Cambridge Studies in Advanced Mathematics, vol.

197, Cambridge University Press, Cambridge, 2022.
[39] J. Solymosi and E. Szabó, Arrangements of translates of a curve, preprint arXiv:2208.05525 (2022).
[40] J. Solymosi and V. H. Vu, Near optimal bounds for the Erdős distinct distances problem in high dimensions,

Combinatorica 28 (2008), no. 1, 113–125.
[41] J. Spencer, E. Szemerédi, and W. Trotter, Jr., Unit distances in the Euclidean plane, Graph Theory and

Combinatorics (Cambridge, 1983), Academic Press, London, 1984, pp. 293–303.
[42] K. J. Swanepoel, A problem of Kusner on equilateral sets, Arch. Math. (Basel) 83 (2004), no. 2, 164–170.

32

web.archive.org/web/20220216001534/https://asone.ai/polymath/index.php?title=Hadwiger-Nelson_problem
web.archive.org/web/20220216001534/https://asone.ai/polymath/index.php?title=Hadwiger-Nelson_problem


[43] K. J. Swanepoel, Combinatorial distance geometry in normed spaces, New trends in intuitive geometry,
Bolyai Soc. Math. Stud., vol. 27, János Bolyai Math. Soc., Budapest, 2018, pp. 407–458.

[44] K. J. Swanepoel and R. Villa, A lower bound for the equilateral number of normed spaces, Proc. Amer.
Math. Soc. 136 (2008), no. 1, 127–131.

[45] L. A. Székely, Crossing numbers and hard Erdős problems in discrete geometry, Combin. Probab. Comput.
6 (1997), no. 3, 353–358.

[46] E. Szemerédi, Erdős’ unit distance problem, Open problems in mathematics, Springer, 2016, pp. 459–477.
[47] P. Ungar, 2N noncollinear points determine at least 2N directions, J. Combin. Theory Ser. A 33 (1982),

no. 3, 343–347.
[48] P. Valtr, Strictly convex norms allowing many unit distances and related touching questions, Manuscript

(2005).

33


	Introduction
	Unit distances
	Distinct distances
	Hadwiger–Nelson Problem

	Proof overview
	Geometric preliminaries
	Background
	Geometric lemmas

	Point sets with many special differences
	Proofs of Theorems 1.1 and 1.3: most norms have few special distances
	Proof of Theorem 1.4: upper bounding the chromatic number
	Proof of Theorem 1.2: point sets with many unit distances
	Planar norms
	Higher dimension

	Concluding remarks and open problems

