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Diagonalization Games

Noga Alon Olivier Bousquet Kasper Green Larsen
Shay Moran Shlomo Moran

Abstract. We study several variants of a combinatorial game which is based on Cantor’s
diagonal argument. The game is between two players called Kronecker and Cantor. The names
of the players are motivated by the known fact that Leopold Kronecker did not appreciate
Georg Cantor’s arguments about the infinite, and even referred to him as a ‘scientific charlatan’.

In the game Kronecker maintains a list of m binary vectors, each of length n, and Cantor’s
goal is to produce a new binary vector which is different from each of Kronecker’s vectors, or
prove that no such vector exists. Cantor does not see Kronecker’s vectors but he is allowed to
ask queries of the form

“What is bit number j of vector number i?”

What is the minimal number of queries with which Cantor can achieve his goal? How much
better can Cantor do if he is allowed to pick his queries adaptively, based on Kronecker’s
previous replies?

The case when m = n is solved by diagonalization using n (non-adaptive) queries. We
study this game more generally, and prove an optimal bound in the adaptive case and nearly
tight upper and lower bounds in the non-adaptive case.

1. INTRODUCTION. The concept of infinity has been fascinating philosophers and
scientists for hundreds, perhaps thousands of years. The work of Georg Cantor (1845
– 1918) played a pivotal role in the mathematical treatment of the infinite. Cantor’s
work is based on a natural idea which asserts that two (possibly infinite) sets have the
same size whenever their elements can be paired in one-to-one correspondence with
each other [2]. Despite its simplicity, this notion has counter-intuitive implications: for
example, a set can have the same size as a proper subset of it1; this phenomenon is
nicely illustrated by Hilbert’s paradox of the Grand Hotel, see e.g., [6].

This simple notion led Cantor to develop his theory of sets, which forms the basis of
modern mathematics. Alas, Cantor’s set theory was controversial at the start, and only
later became widely accepted:

The objections to Cantor’s work were occasionally fierce: Leopold Kronecker’s public
opposition and personal attacks included describing Cantor as a ‘scientific charlatan’,
a ‘renegade’and a ‘corrupter of youth’. Kronecker objected to Cantor’s proofs that the

algebraic numbers are countable, and that the transcendental numbers are
uncountable, results now included in a standard mathematics curriculum [3] .

Cantor’s work influenced areas outside pure mathematics. For example, Cantor’s
diagonal argument is employed in the theory of computation to prove that there are
problems that cannot be solved by any algorithm. This idea underpins the concept of
undecidable problems, a cornerstone in theoretical computer science. In complexity
theory, sophisticated variants of the diagonal argument are used to establish separations

1E.g., the natural numbers and the even numbers, via the correspondence “n 7→ 2n”.
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Figure 1. Georg Cantor (1845 – 1918).
Source: en.wikipedia.org (US-PD)

Figure 2. Leopold Kronecker (1823 – 1891).
Source: en.wikipedia.org (US-PD)

between a variety of complexity classes (see e.g., Chapter 5 of [9]). Interestingly,
the combinatorial diagonalization game we investigate in this paper, which studies
diagonalizations in finite sets, has applications in complexity theory. It was introduced
in this context by Vyas and Williams [8] as a means for establishing lower bounds on
circuit complexity. We will discuss this more comprehensively later in this section as
well as in Section 5.

Diagonalization. One of the most basic and compelling results in set theory is that not
all infinite sets have the same size. To prove this result, Cantor came up with a beautiful
argument, called diagonalization. This argument is routinely taught in introductory
classes to mathematics, and is typically presented as follows. Let N = {1, 2, 3, . . .}
denote the set of natural numbers and let {0, 1}N denote the set of all infinite binary
vectors. Clearly both sets are infinite, but it turns out that they do not have the same size:
assume towards a contradiction that there is a one-to-one correspondence i 7→ vi, where
vi = (vi(1), vi(2), . . .) is the infinite binary vector corresponding to i ∈ N. Define a
vector

u = (1− v1(1), 1− v2(2), . . .).

That is, u is formed by letting its jth entry be equal to the negation of the jth entry of
vj .

Notice that this means that the resulting vector u disagrees with vi on the ith entry,
and hence u 6= vi for all i. Thus, we obtain a binary vector which does not correspond
to any of the natural numbers via the assumed correspondence—a contradiction.

Rather than reaching a contradiction, it is instructive to take a positivist perspective
according to which diagonalization can be seen as a constructive procedure that does
the following:

Given binary vectors v1, v2, . . ., find a binary vector u such that u 6= vi for all i.

Moreover, notice that Cantor’s diagonal argument involves querying only a single
entry for each of the input vectors (i.e., the “diagonal” entries vj(j)). Thus, it is possible
to construct u while using only a little information about the input vectors vi’s (a single
bit per vector).

In this manuscript we study a finite variant of the problem in which m binary vectors
v1, . . . , vm of length n are given and the goal is to produce a vector u which is different
from all of the vi’s, or to report that no such vector exists, while querying as few as
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possible of the entries of the vi’s. We first study the case when m < 2n whence such
a vector u is guaranteed to exist, and the goal boils down to finding one, and later the
case when m ≥ 2n.

Cantor-Kronecker Game and Complexity Theory. As previously mentioned, finite
variants of Cantor diagonalization, similar to the Cantor-Kronecker game, have been
utilized in complexity theory (e.g., [7, 8]). In a recent work, Vyas and Williams
explicitly define and analyze a variant of the Cantor-Kronecker game, which they call
the “Missing String” problem [8]. They use this game as a unifying tool for establishing
separations between complexity classes defined by circuits, and also for deriving novel
ones. This unifying tool employs methods for minimizing the number of queries needed
to determine a pre-designated entry of a specific missing vector.

How is this variant of the Cantor-Kronecker game used to derive separations in
complexity theory? In a nutshell, we are given a family F of bounded computation
devices (e.g., bounded size/depth circuits), and each of the vectors v1, . . . , vm, for
m < 2n, corresponds to a subset X of {0, 1}k which can be computed by a device in
F (i.e., n = 2k). So, a vector u that differs from all vi vectors signifies a hard subset
Y of {0, 1}k that cannot be computed by a device in F . Finally, a computation device
which is capable of efficiently computing each bit of u by examining a handful of bits
from the vi vectors, computes the set Y with a relatively small complexity. We will go
back to this variant of the game in the last section of this manuscript, where we suggest
possible directions for future work.

2. THE CANTOR-KRONECKER GAME. Consider a game between two players
called Kronecker and Cantor. In the game there are two parameters m and n, where m,
n are positive integers. Kronecker maintains a set V = {v1, v2, . . . , vm} of m binary
vectors, each of length n. Cantor’s goal is to produce a binary vector u, also of length
n, which differs from each vi, or to report that no such vector exists. To do so, he is
allowed to ask queries, where each query is of the form

“What is bit number j of vector number i?”,

where 1 ≤ j ≤ n, 1 ≤ i ≤ m. Kronecker answers each query posed by Cantor. The
objective of Cantor is to minimize the number of queries enabling him to produce u,
whereas Kronecker tries to maximize the number of queries. We distinguish between
two versions of the game:

• In the adaptive version Cantor presents his queries to Kronecker in a sequential
manner, and may decide on the next query as a function of Kronecker’s answers to
the previous ones.

• In the oblivious (i.e., non-adaptive) version Cantor must declare all of his queries in
advance, before getting answers to any of them.

For m ≤ n, the smallest number of queries, both in the adaptive and oblivious versions,
is m. Indeed, Cantor can query bit number j of vj for all 1 ≤ j ≤ m and return a vector
u whose jth bit differs from the jth bit of vj , for all j. The lower bound is even simpler.
If Cantor asks fewer than m queries then there is some vector vi about which he has no
information at the end of the game. In this case he cannot ensure that his vector u will
not be equal to this vi.

Organization. We begin with the case where m < 2n. In the next section (Section 3)
we derive nearly tight bounds both in the adaptive and oblivious cases. We do so by
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v1 = , 1, 1, 0, 1, 00

= 1, , 0, 1, 1, 1v2 0

= 1, 1, , 0, 0, 0v3 1

= 0, 1, 0, , 1, 0v4 1

= 1, 1, 0, 1, , 1v5 0

0, 1, 1, 1, 1,v6 = 1

u = , , , , ,1 1 0 0 1 0

Figure 3. An illustration of Cantor’s diagonalization: the vector u at the bottom is not equal to any of the vi’s
at the top.

exhibiting and analyzing near optimal strategies for Cantor. Then, in Section 4 we
consider the case where m ≥ 2n and derive an optimal bound of m · n in this case (for
both the oblivious and the adaptive versions). We do so by exhibiting and analyzing
an optimal strategy for Kronecker. Finally, in Section 5 we discuss some algorithmic
aspects, and conclude with some suggestions to future research.

3. THE CANTOR-KRONECKER GAME WITH M < 2N .

Adaptive Version

Theorem 1. Let g(n, m) denote the smallest number of queries that suffices for Cantor
when he is allowed to use adaptive strategies. Then,

g(n, m) =
{

m m ≤ n,

2m− n n < m < 2n.

Theorem 18 and Remark 19 by Vyas and Williams [8] present upper and lower
bounds for the adaptive case which are accurate within a multiplicative factor of 2.
Theorem 1 closes this gap.

The case 1 ≤ m ≤ n is proved in the previous section so we assume n ≤ m < 2n.

Upper Bound. We present a strategy for Cantor which combines diagonalization with
another simple idea. To illustrate this idea let us first consider the case m = n + 1 for
n ≥ 2. This special case appeared as a question in the 2022 Grossman Math Olympiad
for high-school students, and so perhaps the reader might enjoy trying to solve it before
continuing reading.

Let v1, . . . , vn+1 be the input vectors. Cantor begins with querying the first bit of
v1, v2, and of v3. Notice that there must be a bit ε such that at least two vectors among
v1, v2, v3 have their first bit equal to ε. Cantor now defines the first bit of u to be
u(1) = 1− ε and can remove the two vectors among v1, v2, v3 whose first bit equals
ε. Now Cantor is left with at most n− 1 vectors and can therefore set the last n− 1
coordinates of u according to the diagonalization construction.

The general case is handled similarly by induction on n: for n = 1 since n ≤ m <
2n, m must also be 1 and the result is trivial.

Assuming the result for n− 1, let v1, . . . , vm be the m vectors of Kronecker. First,
note that there is an integer x satisfying 1 ≤ x ≤ dm/2e so that n − 1 ≤ m − x <
2n−1: e.g., when bm/2c>n − 1, let x = dm/2e (thus m − x = bm/2c), and when
bm/2c≤n− 1, let x = m− n + 1 (thus m− x = n− 1).
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Having x as above, Cantor first queries the first bit of each of the vectors
v1, v2, . . . , v2x−1. (Note that 2x − 1 ≤ m hence this is possible). There must be
a bit ε ∈ {0, 1} so that at least x of the vectors have their first bit equal to ε. Cantor now
defines the first bit of his vector u to be 1− ε, removes from the set V exactly x of the
vectors whose first bit is ε, and defines as V ′ the set of all restrictions of the remaining
m− x vectors to their last n− 1 coordinates. Note that n− 1 ≤ m− x < 2n−1.

By the induction hypothesis, Cantor can now play the game for the set V ′ producing
an appropriate vector u′ by asking at most 2(m− x)− (n− 1) additional queries. The
total number of queries is thus (2x− 1) + 2(m− x)− (n− 1) = 2m− n, as needed.
The vector u obtained by concatenating the 1-bit vector 1 − ε and the vector u′ is
clearly different from each member of V . This completes the induction step argument
and finishes the proof of the upper bound.

Lower Bound. For the lower bound, we present a strategy for Kronecker which
essentially mirrors Cantor’s strategy from the upper bound. Suppose Cantor manages to
produce the required vector u after making exactly bj queries in coordinate number j
of some of the vectors vi. Kronecker chooses his answers ensuring that for each such
j, the answers for bits in the jth location are balanced, that is, at most dbj/2e of the
answers are 0 and at most dbj/2e of the answers are 1.

Consider the vector u produced by Cantor. For every 1 ≤ j ≤ n, there are at most
dbj/2e vectors vi known to be different than u in coordinate number j. Thus altogether
there are at most

n∑
j=1

⌈bj

2

⌉
≤

n∑
j=1

bj + 1
2

vectors vi that are known to Cantor to be different than u. In order to ensure u is indeed
different from each vi, this number has to be at least m and hence

m ≤
n∑

j=1

bj + 1
2 .

By rearranging, this implies that the total number of queries
∑n

j=1 bj must be at least
2m− n. The proof of Theorem 1 is now complete.

Oblivious Version

Theorem 2. Let f(n, m) denote the smallest number of queries that suffices for Cantor
when he is restricted to using oblivious strategies. Then,

f(n, m) =
{

m m ≤ n

m
(

log
⌈

m
n

⌉
±O

(
log log

⌈
m
n

⌉))
n < m < 2n.

Quantitatively, for all n < m < 2n

m ·
(

log
( m

ln(2)(n− log m + 1)

)
− 1
)
≤ f(n, m) ≤ m

⌈
log 2m

n
+ 2 log

(
log 2m

n

)
+ 1
⌉
.

The case 1 ≤ m ≤ n is proved above so we assume n < m < 2n.
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Upper Bound. Like in the adaptive case, we present a strategy for Cantor which
combines diagonalization with another simple idea. We first illustrate this idea by
considering the case m = n + 1, and again, we encourage the reader to try and handle
this case before continuing reading.

Let v1, . . . , vn+1 be the input vectors. Cantor begins with querying the first two bits
of each of v1, v2, and v3 (for a total of 6 queries). Notice that there are 22 = 4 possible
combinations of 0/1 patterns on the first two bits, but at most three of them are realized
by v1, v2, v3. Hence, there must be a pair of bits ε1, ε2 which is not realized by v1, v2,
nor v3:

(ε1, ε2) /∈
{(

v1(1), v1(2)
)
,
(
v2(1), v2(2)

)
,
(
v3(1), v3(2)

)}
.

Thus, by setting u(1) = ε1 and u(2) = ε2, Cantor rules out v1, v2, v3 and is left with
n− 2 vectors v3, . . . , vn+1 which can be obliviously ruled out with n− 2 queries using
diagonalization.

For the general case, let 1 ≤ d ≤ n be an integer (to be determined later). Pick
mutually disjoint subsets of coordinates J1, . . . , Jbn/dc ⊆ [n], each of size d, and pick
a partition of the m vectors to bn/dc subsets V1, . . . , Vbn/dc such that the partition is as
balanced as possible (i.e., the difference between each pair of sizes is ≤ 1). Thus, each
set has size

|Vi| ≤
⌈ m

bn/dc

⌉
≤ 2md

n
.

To see why the second inequality holds,
let x = n

d
and let k = bxc ≥ 1; thus,

⌈ m

bxc

⌉
=
⌈m

k

⌉
≤ m

k
+ k − 1

k

≤ 2m

k + 1 ≤
2m

x
.

The inequality m
k

+ k−1
k
≤ 2m

k+1 holds since m > k ≥ 1. Indeed for m = k + 1 it holds
with equality, and when m is incremented by one and k remains fixed, the left side of
the inequality increases by 1

k
, and the right side increases by 2

k+1 , and for k ≥ 1 we
have 1

k
≤ 2

k+1 . Hence the inequality is valid for m > k ≥ 1.
Cantor queries (obliviously) as follows.

For each i and each vector in Vi query all the coordinates in Ji.

Thus, the total number of queries is exactly m · d. Now, notice that if d satisfies

2d >
2md

n
, (1)

then there must exist an assignment fi : Ji → {0, 1} such that fi disagrees with each
of the vectors in Vi on at least one coordinate in Ji. Hence Cantor can output the vector
u, which agrees with each of the fi on Ji.

Note that Equation (1) is satisfied exactly when 2d

d
> 2m

n
; this inequality holds since

2d

d
≥ y when d ≥ log(y) + 2 log(log(y)) + 1 and y ≥ 2.
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Thus for d =
⌈
log
( 2m

n

)
+ 2 log

(
log
( 2m

n

))
+ 1
⌉
, the total number of queries is at

most

m · d = m
⌈
log
(2m

n

)
+ 2 log

(
log
(2m

n

))
+ 1
⌉
.

Lower Bound. The lower bound proof is based on the following simple idea. Let Ji

denote the set of coordinates of vi which Cantor queries. Thus, the total number of
queries Cantor uses is |J1|+ . . . + |Jm|. Now, let fi : Ji → {0, 1} denote Kronecker’s
answers for the queries on vi. The crucial observation is that the vector u that Cantor
outputs must satisfy

(∀i) : u|Ji
6= fi.

Indeed, if u|Ji
= fi for some i then Kronecker can fail Cantor by picking his ith vector

vi to equal Cantor’s output u (which would be consistent with Kronecker’s answers).
We summarize the above consideration with a definition that characterizes the

winning (or losing) strategies of Cantor in the oblivious case.

Definition 3 (Covering Assignments). We say that a sequence of sets J1, . . . , Jm ⊆
[n] has a covering assignment if there are m functions fi : Ji → {0, 1} such that every
binary vector v ∈ {0, 1}n agrees with fi on Ji for some 1 ≤ i ≤ m (i.e., v|Ji

= fi).

Thus, Kronecker has a winning strategy if and only if the sequence of sets J1, . . . , Jm

that Cantor queries has a covering assignment. The following lemma establishes the
lower bound.

Lemma 4. Let J1, . . . , Jm ⊆ [n] such that

|J1|+ . . . + |Jm| < m ·
(

log
( m

ln(2)(n− log m + 1)
)
− 1
)

. (2)

Then, J1, . . . , Jm has a covering assignment.
Equivalently, if for each vector vi Cantor queries its entries in Ji and Equation 2

holds, then Kronecker has a winning strategy.

Proof. Let ti = |Ji| and let t =
∑

i ti < m ·
(

log
(

m
n−log m+1

)
− 1
)

. Assume, without
loss of generality, that t1 ≤ t2 ≤ . . . ≤ tm. We show that there are m functions fi :
Ji → {0, 1} so that for every possible vector v ∈ {0, 1}n there is i ≤ m so that v|Ji

=
fi.

We do so by explicitly constructing the fi’s (which corresponds to describing a
winning strategy for Kronecker). Starting with the set V = {0, 1}n of all possible
potential vectors, go over the vectors vi in order. In step i we choose the function
fi : Ji → {0, 1} such that |{v ∈ V : v|Ji

= fi}| is maximized. Since there are 2ti

possible choices for fi, the maximizing choice satisfies∣∣∣{v ∈ V : v|Ji
= fi}

∣∣∣ ≥ |V |2ti
.

After picking fi, we remove all the vectors of V that agree with fi and proceed to the
next step. Therefore, after the first i steps, the size of the set V of the remaining vectors
is at most

2n
i∏

j=1
(1− 1/2tj ).
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These steps are repeated until the size of V shrinks to at most m/2, which as we
show below happens during the first dm/2e steps. In each of the remaining steps we
simply select fi which removes at least one vector from V , until we eliminate all of the
vectors. This means that if

2n

dm/2e∏
j=1

(
1− 1/2tj

)
≤ m

2 , (3)

then the sequence J1. . . . , Jm has a covering assignment. So it remains to prove (3).

2n

dm
2 e∏

j=1

(
1− 1

2tj

)
≤ 2n

dm
2 e∏

j=1
exp

(
− 1

2tj

)
(1 + x ≤ exp(x) for all x ∈ R)

= 2n exp
(
−
dm

2 e∑
j=1

1
2tj

)
≤ 2n exp

(
− m

2 t
m +1

)
,

where the last inequality follows because exp(−x) is decreasing and because

dm
2 e∑

j=1

1
2tj
≥ m

2 ·
1

2
1

dm/2e
∑dm/2e

j=1 tj

≥ m

2 ·
1

2 t
m

,

which follows by convexity of the function f(x) = 2x and because t1 ≤ t2 ≤ . . . ≤ tm.
We have thus shown that if |J1|+ . . . + |Jm| = t, where t is such that

2n exp
(
− m

2 t
m +1

)
≤ m

2 ,

then the sequence J1, . . . , Jm has a covering assignment. The last inequality surely
holds provided

m

2 t
m +1

≥ ln(2)(n + 1− log m).

That is, the inequality holds provided

2 t
m +1 ≤ m

ln(2)(n + 1− log m) ,

or

t ≤ m ·
(

log
( m

ln(2)(n + 1− log m)
)
− 1
)

which is guaranteed by the premises of the lemma, thus completing the proof.
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4. THE CANTOR-KRONECKER GAME WITH M ≥ 2N . Assume now that Kro-
necker’s list V consists of m ≥ 2n binary vectors of length n. In this case V may contain
all the binary vectors of length n and there may be no vector Cantor can output that is
different from each vector on Kronecker’s list. In this regime it is more natural to first
focus on the decision problem in which Cantor’s goal is to decide whether V contains
{0, 1}n, and if this is not the case, to provide a vector which is not in V .2 Clearly Cantor
can achieve this if he queries all mn entries. Can he do better?

We first observe that mn queries are in fact needed in the oblivious case: assume
that Cantor submits only mn− 1 queries, and leaves the jth bit of vi unqueried. Then
Kronecker may set vi to be the unique occurrence of the all ones vector 1n, and set the
remaining m− 1 vectors in V to include all 2n − 1 vectors that are different from the
all ones vector. Clearly, it is necessary for Cantor to query also the last bit of vi in order
to see whether vi is the all ones vector or not. Consequently, Cantor must query all mn
queries in the oblivious case.

How about the adaptive case? The following (similar to the above) argument shows
that for m = 2n, Kronecker can force mn = 2nn queries in the adaptive case. Use any
list which contains each binary vector of length n exactly once. After mn− 1 bits are
queried, the last unqueried bit belongs to a vector which occurs only once in V . Assume
without loss of generality that this bit is 0. If this bit is set to 1, then V does not contain
all 2n binary vectors of length n. Hence it is necessary to get the value of this last bit.

The case when m > 2n turns out to be more subtle. Nevertheless, we prove that mn
queries are necessary even in this case. We start with introducing some notation.

Notation. Each step of the game consists of a query by Cantor followed by a response
by Kronecker. The status of the game after each such step is given by an m× n matrix
L, where L(i, j) denotes the status of the jth bit of vi, that is: L(i, j) ∈ {0, 1, ?}, where
L(i, j) = ? means that the jth bit of vi has not been queried yet, and otherwise L(i, j)
equals the value of this bit as answered by Kronecker.

Definition 5. FIXED(L) =
{
v ∈ L : v ∈ {0, 1}n

}
. That is, FIXED(L) is the set of all

vectors in L that were fully queried by Cantor.

Definition 6. L is complete if FIXED(L) = {0, 1}n.

Definition 7. A subset S of 2n rows of L is useful if it either contains all the 2n binary
vectors of length n, or it can be converted to this set by replacing each ?-entry in S by
0 or 1.

Definition 8. A matrix L is unblocked if it can be completed; that is, if L has a useful
subset. Otherwise L is called blocked.

Notice that for m ≥ 2n, the m by n matrix all whose entries are ? is unblocked.
As a warmup, and to get used to the definitions, let us assume first that Cantor queries

the vectors one by one according to their order. That is, he first queries all the bits of
v1 from left to right, then all the bits of v2 from left to right and so on. We use the
following strategy for Kronecker: when Cantor queries the jth bit of vi (i.e., the value
of L(i, j)), Kronecker replies according to the following “0 first” strategy.

Modified value of L(i, j) =
{

1 If setting L(i, j) to 0 blocks L.

0 Otherwise.
(4)

2Our results below imply that the decision and search variants are equivalent for m ≥ 2n (for m < 2n the
decision variant is trivial), in the sense that in both cases it is necessary and sufficient to query all m · n entries.
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It is not hard to verify that since Cantor queries the vectors one by one and from
left (most significant bit) to right, the following matrix is produced. Each of the first
m− 2n + 1 rows will be set to the all-zeros vector, and the last 2n − 1 rows will be set
to the 2n − 1 nonzero vectors in increasing lexicographical order: starting with 0n−11
and ending with 1n. Hence Cantor is forced to query all mn entries as in the oblivious
case.

It turns out that, for any strategy of Cantor, the above “0 first” strategy of Kronecker
forces Cantor to make mn queries.

Theorem 9. Let m > 2n. Then for any strategy of Cantor, the “0 first” strategy of
Kronecker forces Cantor to make mn queries in order to determine if L contains
{0, 1}n.

In the following we consider an arbitrary execution of the game, where Kronecker
follows the “0 first” strategy (and Cantor’s strategy is arbitrary). We denote by Lt the
m× n matrix L after t steps of the game. Thus L0 is the initial matrix which is filled
only with ?’s. Notice that if L is unblocked and L(i, j) = ?, then either setting L(i, j)
to 0 or setting L(i, j) to 1 does not block L. Therefore

Observation 10. If Lt is unblocked, so is Lt+1. Hence Lmn is complete; i.e., it contains
{0, 1}n.

Definition 11. We say that a row L(i) is essential for an unblocked matrix L if every
useful subset of L’s rows contains L(i).

Note that if Lt(i) is essential for Lt, then Ls(i) is essential for Ls for all s ≥ t.
Also, if Lmn(i) is essential for Lmn, then Lmn(i) is equal to a unique vector in {0, 1}n

which is different from all other rows of Lmn.

Lemma 12. Assume that Lt(i) is not essential for Lt and Lt(i, j) = ?. If Lt(i, j) is
queried at time t + 1, then it is set to 0, i.e., Lt+1(i, j) = 0.

Proof. If L(i) is not essential for an unblocked matrix L, then L(i, j) can be set to any
bit without blocking L(i). Hence, by the ‘0 first” strategy, it is set to 0.

By a straightforward induction Lemma 12 implies

Corollary 13. If Lt(i) is not essential for Lt, then Lt(i) contains no 1’s (only 0’s or
?’s). In particular, if Lmn(i) is not essential for Lmn, then Lmn(i) is the zero vector
0n. Hence, every row of Lmn which is not the zero vector is essential, and thus it is
different from all other rows of Lmn.

Lemma 14. Let Lmn−1(i, j) be the last bit queried in the game. Then Lmn−1(i) is an
essential row of Lmn−1.

Proof. To simplify notation, we assume without loss of generality that j = 1. Assume
towards contradiction that Lmn−1(i) is not essential for Lmn−1. By Corollary 13, this
implies that Lmn−1(i) = ?0n−1 and Lmn(i) = 0n. (i.e., Kronecker sets Lmn−1(i, 1) to
0 at Cantor’s mn’th query). Since Lmn is complete (Observation 10), this implies that
Lmn−1 contains a distinct occurrence of each of the 2n − 1 nonzero vectors of {0, 1}n,
and in particular for some k 6= i, Lmn−1(k) is the unique row of Lmn−1 which equals
10n−1. Then, any subset S of Lmn−1 which contains

• the row Lmn−1(i),
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• the 2n − 2 nonzero rows of Lmn−1 excluding Lmn−1(k), and
• some zero row of Lmn−1 (by Corollary 13 there are m − 2n > 0 such rows in

Lmn−1),

is a useful subset of Lmn−1 which does not contain Lmn−1(k). Hence Lmn−1(k) is
not essential for Lmn−1, and by Lemma 12 Lmn−1(k, 1) = 0 6= 1, which stands in
contradiction with Lmn−1(k) = 10n−1.

Proof of Theorem 9. Let Lmn−1(i, j) be the last query in the game. By Lemma 14,
Lmn−1(i), and hence also Lmn(i), is essential, meaning that Lmn(i) is different from
all other rows of Lmn. Thus Cantor must get the value of Lmn−1(i, j) in order to reach
a decision.

A remark on computational complexity. A naive implementation of the “0 first”
strategy might take exponential time. Indeed, the naive implementation involves check-
ing whether setting the queried bit to 0 blocks the current matrix, which involves
checking a potentially exponential list of constraints. Nevertheless, we next show that
this strategy in fact admits a polynomial-time implementation. First, notice that the
initial m− 2n steps are trivially efficient, because setting L(i, j) to any value cannot
block L (since at least 2n rows of L are not queried yet).

Thus it suffices to show that each later step can be performed in time which is poly-
nomial in mn, the size of L. In other words, deciding whether setting L(i, j) to 0 blocks
the matrix, can be performed in polynomial time. Let Lt be the matrix L after t steps
of the game, t > m− 2n. Consider the bipartite graph Gt = (At, B, Et), where At =
{Lt(i) : 1 ≤ i ≤ m} is the set of rows of Lt, B = {0, 1}n, and (Lt(i), u) ∈ Et if and
only if Lt(i) can be converted to the binary vector u by replacing the ?’s in Lt(i) (if
any) by binary digits. Then, a subset S of Lt is useful for Lt if and only if Gt contains
a perfect matching between the vertices in At which correspond to S and B.

Assume now that we are given the graph Gt, and some perfect matching Mt for
Gt as above, and let Lt(i, j) be the entry queried by Cantor at step t + 1. To check if
setting Lt(i, j) to 0 blocks Lt, we remove from Gt all the edges (Lt(i), u) in which
u(j) = 1, and check if the resulted graph contains a perfect matching. Recall that we
are given a perfect matching Mt for Gt, and removing these edges eliminates at most
one edge from Mt. If no edge of Mt was removed then we are done. Otherwise, this
checking can be done by searching an augmenting path in the resulted graph. This
can be accomplished in O(|Et|) = O(m2n) = O(m2) time by executing one phase in
some classical algorithm for bipartite matching (see, e.g., [4]).

5. CONCLUDING REMARKS AND FUTURE RESEARCH. We studied the
Cantor-Kronecker game for different values of m and n. When m ≤ n the trivial
lower bound of m is tight (a lower bound of m follows because Cantor must query at
least one bit in each vector); when m ≥ 2n, the trivial upper bound of mn is tight (an
upper bound of mn follows because querying all the bits is clearly sufficient); when
n < m < 2n the landscape is more interesting, and in particular the bounds depend on
whether Cantor is adaptive or oblivious.

Further Research. We conclude with suggestions for possible future research:

1. Study the Cantor-Kronecker game when there are r rounds of adaptivity. There are r
rounds in which Cantor can submit queries, and in each round the submitted queries
may depend on Kronecker’s answers to queries from previous rounds. How does the
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query complexity change as a function of r? Note that r = 1 is the oblivious case and
r =∞ is the adaptive case.3

2. It is also natural to consider randomized variants of the game. Can Cantor use fewer
queries if he is allowed to use randomness? In this context it is natural to assume
that Kronecker picks the vectors vi’s before the game begins, and Cantor’s goal is to
minimize the expected number of queries until finding a missing vector u. Alternatively,
one can allow Cantor a small error. That is, with probability at most ε Cantor can output
a vector u which is equal to one of the vi’s. Note that ε should be smaller than m

2n

or else the problem becomes trivial since then Cantor can output a vector u which is
sampled uniformly and be successful with probability at least 1− ε without submitting
even a single query.

3. Consider the following generalization of the game. Let k ≤ m, ` ≤ n be positive
integers. Kronecker maintains an m× n binary matrix, and Cantor queries the entries
of Kronecker’s matrix. Cantor’s goal is to find a k × ` matrix which does not appear
as a submatrix of Kronecker’s m× n matrix, or to decide that one does not exist. So,
the original game is when k = 1, ` = n. What is the query complexity as a function of
k, `, m, n in the adaptive/oblivious case? For which values does Cantor have a strategy
that uses strictly less than m · n queries?

4. Find tighter bounds for the oblivious case. Specifically, notice that Cantor’s original
diagonalization provides tight bounds on the number of queries needed for the oblivious
case when m ≤ n. It will be interesting to derive tight bounds and optimal strategies
in the remaining cases. As we show below, this question has connections with natural
combinatorial problems.

Consider the case when m is at the other end of the scale, namely 2n−1 ≤ m < 2n.
Then, Cantor can win the game by querying mn− d bits, where d = 2n −m− 1. In
fact, it suffices that Cantor chooses his queries such that each of the d unqueried entries
belongs to a different vector. In this case any assignments of values to the unqueried
entries covers (in the sense of Definition 3) the m− d fully queried vectors, and at most
two additional vectors per each of the remaining d vectors (each of which contains one
unqueried entry); altogether at most (m− d) + 2d = m + d vectors. Hence, Cantor is
guaranteed to win the game provided that m + d < 2n (equivalently d ≤ 2n −m− 1).

Is the above strategy optimal? That is, can Kronecker win the game when Cantor
queries only mn− (2n −m) bits? Informally, Kronecker has a winning strategy if, for
any distribution of the 2n −m unqueried entries, there is an assignment which covers
sufficiently many vectors, where “sufficiently many” is detailed below.

Definition 15 (cube(v), J-cube). Let v be a vector with possibly some unqueried
entries. cube(v) is the set of binary vectors which can be obtained by replacing the
unqueried entries in v by zeros or ones. In particular, cube(v) = {v} if v is fully queried.
The cube cube(v) is called a J-cube if J = {j : the jth bit of v is not queried}. For
j ∈ [n], a {j}-cube is denoted by j-edge.

Assume that Cantor distributes the (2n −m) unqueried entries among vectors
v1, . . . , vq. Then Kronecker’s answers to the queried entries define a cube C(vi) for each
vector vi. Kronecker wins if and only if those cubes cover {0, 1}n. Hence Kronecker has
a winning strategy when Cantor uses mn− (2n −m) queries (2n−1 + 1 ≤ m < 2n)
if and only if the following holds.

3In fact r = n is already equivalent to r = ∞ because the optimal strategy presented in the proof of
Theorem 1 uses n rounds of adaptivity.
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Conjecture 16. Let d = 2n − m < 2n−1. For any collection J1, J2, . . . , Jq of
nonempty subsets of [n] satisfying

∑q
i=1 |Ji| = d, there are cubes C1, . . . , Cq such that

Ci is a Ji-cube, and |
⋃q

i=1 Ci| ≥ d + q.

The following result of [5] proves Conjecture 16 for the case that each Ji-cube is a
singleton {ji}.

Theorem 17 ([5]). Let d < 2n−1. For any multiset D = {j1, j2, . . . , jd} of elements of
[n], {0, 1}n contains a matching {e1, . . . , ed} such that for i = 1, . . . , d, ei is a ji-edge.

It is also shown in [5] that the conclusion of Theorem 17 (and hence also the
conclusion of Conjecture 16) does not hold when d = 2n−1. In this case a corresponding
matching exists if and only if each element in [n] occurs an even number of times in D.

This implies that when m = 2n−1 Cantor has a winning strategy with only mn−
(2n −m) = mn− 2n−1 queries. He may query n− 1 entries for each vector, so that
at least one dimension is left unqueried in an odd number of vectors.

5. Finally, Vyas and Williams [8] investigate a local variant of the game in which Cantor’s
goal is not to output a full vector u, but only to output a pre-specified bit, uj , of it.
That is, Cantor is given as an input an entry j and should make as few queries as
possible and output the bit uj . Notice that when the number of vectors m satisfies
m ≤ n then the basic diagonalization strategy queries only a single entry, namely vj(j).
Vyas and Williams show that then at least Ω(m

n
) queries are necessary and at most

O(m
n

log m
n

) queries are sufficient. However, the precise relationship between m and n
that minimizes the number of queries is left as an interesting open question.
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