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Abstract

We show that there exists an absolute positive constant b(⩾ 1
48 ) so that any set of n

points in Rd that is d-dimensional determines at least bdn lines with pairwise distinct

directions. As a consequence we prove that there are d-dimensional real norms ∥ · ∥ so

that every set of n > n0(d) points that is d-dimensional determines at least (bd−o(1))n

distinct distances with respect to ∥ · ∥.

1 Introduction

The celebrated Gallai-Sylvester theorem asserts that n points in the plane that are not

collinear must determine an ordinary line, that is a line passing through precisely two

points of the set. Erdős noticed the following simple consequence. Any set of n points

in the plane that are not collinear must determine at least n distinct lines, and equality

happens only when n− 1 of the points are collinear.

In the same spirit, Scott asked two similar questions in 1970:

1. Is it true that the minimum number of distinct directions of lines determined by n

noncollinear points in R2 is 2⌊n2 ⌋?

2. What is the minimum number of distinct directions of lines determined by a 3-

dimensional set of n points in R3?

In 1982 Scott’s first question was answered in the affirmative by the celebrated theorem of

Ungar [13] using the technique of allowable sequences invented by Goodman and Pollack.

Scott’s second question was answered only much later in [11], where it is shown that

a 3-dimensional set of n points determines at least 2n − 5 lines with distinct directions.

This bound is sharp when n is odd.

It is natural now to wonder what happens in higher dimensions. The complexity of

the solution of Scott’s problem in R3, compared with the solution in R2, suggests that
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the question is not likely to be easier in higher dimensions. Similarly, the actual bound

in three dimensions and the sharp examples suggest that one cannot expect a very simple

expression as a tight answer for the same problem in d dimensions, nor a very simple

construction achieving the minimum possible number of distinct directions.

It is however plausible to conjecture the following, which is suggested in [4], page 272,

motivated by earlier related results of Jamison [6] and of Blokhuis and Seress [3].

Conjecture 1.1. A d-dimensional set of n points determines at least (d − 1)n − O(d2)

lines with pairwise distinct directions.

The example of n−d+1 collinear points plus additional d−1 points in general position

not on this line shows that one cannot expect the answer to be more than

(d− 1)(n− d+ 1) +

(
d− 1

2

)
+ 1 = (d− 1)n−O(d2)

even if we wish to bound from below the total number of lines determined by a d-

dimensional set of n points, regardless of the directions of these lines.

In the present note we prove a modest result supporting Conjecture 1.1 and show that

the number of distinct directions determined by a d-dimensional set of n points is at least

linear in dn.

Theorem 1.2. There exists an absolute constant b > 0 so that for every d ⩾ 2, any set of

n points in Rd that is not contained in a hyperplane determines at least bdn line segments

with pairwise distinct directions.

Our proof shows that the result above holds with b = 1
48 . This estimate can be easily

improved, but since our method does not suffice to get the best possible b (which should

be close to 1 for large d, if Conjecture 1.1 holds), we make no attempt to optimize it.

Unlike in the two and three dimensional cases where the proofs of the sharp bounds

are rather involved, our proof is short and is derived as a consequence of a deep result by

Dvir, Saraf, and Wigderson ([7]), improving on an earlier similar result by Barak, Dvir,

Wigserson, and Yehudayoff ([2]).

As suggested in the solution of Scott’s problem in 3-dimensions ([11]), it is helpful to

consider pairwise non-convergent segments, rather than pairwise non-parallel segments,

as the former property, unlike the latter one, is much better preserved under projective

transformations.

Two line segments in Rd are called convergent if they are two opposite edges of a

convex 2-dimensional quadrilateral.

Theorem 1.3. A set of n points in Rd (d ⩾ 2) that is not contained in a hyperplane

determines at least 1
48dn line segments no two of which are convergent or collinear.
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Notice that since two parallel line segments that are not collinear are convergent,

Theorem 1.3 implies that a d-dimensional set of n points in Rd determines at least 1
48dn

lines with pairwise distinct directions.

Using Theorem 1.2, we obtain a new result about the distinct distances problem for

d-dimensional sets in typical d-norms. The distinct distances problem in the Euclidean

plane is one of the best known classical open problems in Discrete Geometry, raised by

Erdős in 1946 [8]. This is the problem of determining or estimating the minimum possible

number of distinct distances determined by n points in the Euclidean plane. Although

this problem has been settled by Guth and Katz up to a
√
logn multiplicative factor [9],

the problem for d-dimensional Euclidean norms for d ⩾ 3 remains wide open. Indeed,

for each d ⩾ 3 the conjecture is that the minimum possible number of distinct distances

determined by n points in Rd with respect to the Euclidean norm is Θ(n2/d). The d-

dimensional integer box with edges of length n1/d shows that this is an upper bound, but

the best known lower bound does not provide the correct exponent of n, see [12]. The

same problem for general norms has been considered as well, see [1] and the references

therein. Call a norm ∥ · ∥ on Rd a d-norm. A recent result proved in [1] asserts that there

are d-norms in which any set of n > n0(d) points determines at least (1− o(1))n distinct

distances with respect to ∥ · ∥. In fact, this holds for all typical d-norms, where the notion

of a typical norm is defined as follows.

Identify a norm with its unit ball. The Hausdorff distance between any two such unit

balls A and B is the maximum of all distances between a point of A and the set B and

between a point of B and the set A. This distance defines a metric, and hence a topology,

on the space of all d-norms. A set S in this space is nowhere dense if every non-empty

open set contains a nonempty open set which does not intersect S. A meagre set is a

countable union of nowhere dense sets. A space is called a Baire space if the complement

of each meagre set in it is dense. It is known that the space of all d-norms endowed with

the Hausdorff metric as above is a Baire space. See e.g. [1] for additional relevant details

and references. In this terminology it is proved in [1] that in all d-norms but a meagre

set, any set of n > n0(d) points determines at least (1 − o(1))n distinct distances, where

the o(1)-term tends to 0 as n tends to infinity. This is tight up to the o(1)-error term, as

in every d-norm, any set of n points along an arithmetic progression on a line determines

exactly n− 1 distinct distances.

Note, however, that this extremal example that appears in any d-norm is one-dimensional.

It seems natural to consider the distinct distances problem for configurations of n points

in a d-norm that are d-dimensional, that is, do not all lie in an affine hyperplane. For this

case, we suggest the following conjecture.

Conjecture 1.4. For every fixed d the following holds for all d-norms ∥ · ∥ but a meagre

set. For all n > n0(d), any set of n points in Rd that do not all lie in an affine hyperplane

determine at least (d− o(1))n distinct distances with respect to ∥ · ∥, where the o(1)-term
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tends to 0 as n tends to infinity.

This is, of course, trivial for d = 1 but is open already for d = 2, as the result in [1]

only ensures (1− o(1))n distinct distances for every fixed dimension d.

Here we observe that by combining the assertion of Theorem 1.2 with the arguments

in [1] we get the following weaker version of the conjecture.

Theorem 1.5. There exists an absolute positive constant b so that for any fixed d ⩾ 2

and all d-norms ∥ · ∥ but a meagre set the following holds. Any set of n > n0(d) points

in Rd that do not all lie in an affine hyperplane determines at least (bd − o(1))n distinct

distances with respect to ∥ · ∥, where the o(1)-term tends to 0 as n tends to infinity.

The rest of this note is organized as follows. In Section 2 we describe the proof of

Theorem 1.3. Section 3 contains a sketch of the proof of Theorem 1.5. The final section

4 contains some concluding remarks and open problems.

2 Distinct directions in Rd

In this section we prove Theorem 1.3. Denote by f(d, n) the minimum number of distinct

directions determined by a set of n points that has affine dimension d. We need to show

that f(d, n) ⩾ 1
48nd. The proof proceeds by induction on d. The case d = 2 follows from

Ungar’s theorem by which f(2, n) ⩾ n − 1. The case d = 3 was resolved in [11]. In fact,

because f(d, n) ⩾ f(2, n) ⩾ n − 1, the assertion of Theorem 1.3 holds for every d < 48.

Assuming the statement is true for d− 1, we prove it for d.

We use a result in [7], improving on a previous bound in [2]. We say that a line is

special with respect to a set of points P if it contains at least 3 points of P . We will use

Theorem 1.9 in [7]:

Theorem 2.1 (Theorem 1.9 in [7]). Let P be a set of n points with the property that for

every x ∈ P at least δ(n− 1) of the rest of the points lie on special lines through x. Then

the affine dimension of the set P is at most c
δ , where c = 12.

An immediate consequence of Theorem 2.1 is the following.

Corollary 2.2. Let P be a d-dimensional set of n points. Then there is a point x in P

such that the number of lines connecting x to the other points in P is at least n(1− c
d).

Proof. Denote by M the maximum number such that there is a point in P with M

distinct lines connecting it to the other point in P . If M = n − 1, there is nothing to

prove. We assume therefore, that M < n− 1.

For every point x ∈ P the number of points of P \{x} not lying on special lines through

x is at most M − 1 (here we use the fact that M < n− 1). Consequently, the number of
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points of P \ {x} that do lie on special lines through x is at least

n− 1− (M − 1) = n−M =
n−M

n− 1
(n− 1).

Taking δ = n−M
n−1 and applying Theorem 2.1, we get

d ⩽ c
n− 1

n− 1−M
.

This implies

M ⩾ (1− c

d
)(n− 1) + 1 ⩾ (1− c

d
)n.

□

We remark that the exact bound in Corollary 2.2 is unknown and most likely difficult

to achieve. See Section 4 for more details.

Recall that c = 12 in Theorem 2.1, however this value is not known to be tight and

has been reported recently to be improved to c = 4. For this reason we incorporate the

constant c in the rest of our calculations as a parameter rather than using its current best

known published value c = 12.

We use Corollary 2.2 to find a point x ∈ P that we can connect by at least n(1 − c
d)

distinct lines to the other points in P . On each of these lines we take the longest segment

possible delimited by two points of P . We thus get a set S1 of at least n(1 − c
d) distinct

segments determined by P , all containing the point x.

Next, we centrally project through x the set P \ {x} onto a generic hyperplane H of

dimension d− 1. On H we get a set P ′ of at least n(1− c
d) distinct points. Some of these

points are multi-images of more than one point in P .

We notice that the set P ′ is (d − 1)-dimensional. This is because otherwise the set

P cannot be d-dimensional. By the induction hypothesis, we find f(d − 1, n(1 − c
d−1))

segments determined by points in P ′ no two of which are convergent. We replace, if

necessary, each of these segments by the longest possible segment between two points of

P ′ on the line containing it. Clearly, the resulting set S2 of segments is still a collection of

segments no two of which are convergent and no two are collinear.. Each segment s ∈ S2 is

a projection through x on H of at least one segment, that we choose arbitrarily if necessary

and denote it by s̃, determined by two points in P . We set S̃2 = {s̃ | s ∈ S2}.

Claim 2.3. S1∪ S̃2 is a collection of segments no two of which are convergent and no two

are collinear.

Proof. Clearly no two segments in S1 are convergent because every two contain the point

x. No two segments in S1 are collinear as we choose only one segment for S1 on every line

through x.

We further notice that no two segments in S̃2 are convergent because their central

projections through x on H yield segments no two of which are convergent. Indeed, if
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s̃ and s̃′ are convergent, then there is a point y that is the intersection of the two lines

containing s̃ and s̃′. Notice that y must be different from x and the projection of y through

x on H lies on the two lines containing s and s′ but not on s∪ s′. This implies that s and

s′ are convergent contrary to the way they were chosen. We further notice that no two

segments in S̃2 are collinear because otherwise the central projections through x of two

such segments would be collinear in S2, which is impossible.

It is left to show that it is not possible that a segment s ∈ S1 and a segment s̃′ ∈ S̃2

are convergent, as clearly no two such segments are collinear.

Assume to the contrary they are. The central projection through the point x on H

takes s to a point in P ′ that lies on the line on H through s′, but not on the segment s′

itself. This is not possible because s′ on H contains all the points in P ′ on the line through

s′, by our construction of S2. □

Based on Claim 2.3, we can now write f(d, n) ⩾ n(1− c
d)+ f(d− 1, n(1− c

d)). We will

now prove by induction on d that f(d, n) ⩾ dn
4c . The constant 4 can be improved, and we

make no attempt to optimize it here.

The inequality f(d, n) ⩾ dn
4c is true for d ⩽ 3c because of Ungar’s theorem, that is

f(d, n) ⩾ f(2, n) ⩾ n− 1.

Assume therefore that d > 3c. We prove by induction on d that f(d, n) ⩾ dn
4c . For the

induction step we need the following inequality to hold.

n(1− c

d
) +

(d− 1)n(1− c
d)

4c
⩾

dn

4c
.

After simplification we get the following equivalent inequality to prove:

3

4
+

1

4d
⩾

1

4c
+

c

d
As we assume d ⩾ 3c, it is enough to show

5

12
+

1

4d
⩾

1

4c
One can easily check that this inequality holds for all c ⩾ 1. In our case c = 12 and we

have therefore proved that f(d, n) ⩾ dn
48 . This concludes the proof of Theorem 1.3, which

implies Theorem 1.2.

3 Distinct distances for typical d-norms

In this section we sketch the proof of Theorem 1.5. The proof follows closely the one in [1],

replacing Ungar’s Theorem stated as Theorem 4.6 in [1] by our Theorem 1.2 here. Since

the proof is very similar to the one in [1] we do not repeat here the identical parts, and

merely describe the different points, referring to the arguments in [1] whenever needed.

We start with the following modified version of Lemma 4.2 in [1].
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Lemma 3.1. There exists an absolute positive constant b so that the following holds. Let

d ⩾ 1 be an integer and let 0 < µ < 1. Suppose that n is sufficiently large with respect

to d and µ. Let F ⊆ R be a subfield of R, and let V be a vector space over R. Let

u1, . . . ,uk ∈ V be non-zero vectors in V , and let p1, . . . ,pn ∈ V be distinct vectors such

that not all of p1, . . . ,pn lie in a common (d− 1)-dimensional affine subspace of V (as a

vector space over R). Suppose that for all x, y ∈ {1, . . . , n} we have px − py ∈ spanF (ui)

for some i ∈ {1, . . . , k}. Then there exists a subset I ⊆ {1, . . . , k}, such that we have

uℓ ∈ spanF (ui : i ∈ I) for at least d · |I|+ (bd− µ) · n+ 1 indices ℓ ∈ {1, . . . , k}.

Proof (sketch). Setting m = ⌈(bd−µ) ·n⌉ ⩽ bdn, where b is the constant from Theorem

1.2, we want to prove that there is a subset I ⊆ {1, . . . , k} with uℓ ∈ spanF (ui : i ∈ I)

for at least d · |I| + m + 1 indices ℓ ∈ {1, . . . , k}. Suppose towards a contradiction that

the desired subset I ⊆ {1, . . . , k} does not exist. Then for every subset I ⊆ {1, . . . , k}, we
have uℓ ∈ spanF (ui : i ∈ I) for at most d · |I|+m indices ℓ ∈ {1, . . . , k}.

We may assume that for every i ∈ {1, . . . , k} there exist distinct x, y ∈ {1, . . . , n} with

px − py ∈ spanF (ui) since otherwise, we can just omit all indices i for which this is not

the case, and relabel the remaining indices.

By Theorem 1.2, there are at least bdn different line directions in spanR(p1, . . . ,pn) ⊆
V appearing among the differences px − py with 1 ⩽ x < y ⩽ n. For each of these

differences we have px − py ∈ spanF (ui) for some i ∈ {1, . . . , k}. Hence, there must be at

least bdn different vectors ui, so k ⩾ bdn.

We now construct a sequence of distinct indices j1, . . . , jr ∈ {1, . . . , k} recursively ex-

actly as described in the proof of Lemma 4.2 in [1]. We also define the subsetsH0, H1, . . . ,Hr

as in this proof and observe that the following two claims hold just as in that proof:

Claim 3.2. We have r ⩽ µ
3d · n.

Claim 3.3. We have |Hr| > µ
3d · n.

The only required difference between the proof of Claim 3.3 here and that of Claim 2

in [1] is the replacement of the penultimate line of this proof which is

k ⩾ n− 1 ⩾
2µ

3
· n+ ⌈(1− µ) · n⌉+ 1 = d · 2µ

3d
· n+m+ 1 ⩾ d · |I|+m+ 1,

by the line

k ⩾ bdn ⩾
2µ

3
· n+ ⌈(bd− µ) · n⌉+ 1 = d · 2µ

3d
· n+m+ 1 ⩾ d · |I|+m+ 1,

which holds if n is sufficiently large with respect to µ. This contradicts our assumption

that such a set I does not exist and completes the proof of the claim.

The rest of the proof of the lemma is identical to that of Lemma 4.2 in [1] where the

only differences are as follows.
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• In the inequality

∑
j∈J

λj ⩾
λ1 + · · ·+ λk −m · 3d

µ

d
⩾

µ
24d · |Hr|2 − n · 3d

µ

d

the last n in the numerator in the right-hand-side has to be replaced by bdn giving

∑
j∈J

λj ⩾
λ1 + · · ·+ λk −m · 3d

µ

d
⩾

µ
24d · |Hr|2 − bdn · 3d

µ

d
.

• In the next sentence n has to be replaced, again, by bdn as written in the following

three lines:

By Claim 3.3 we have bdn · 3dµ ⩽ bd
(
3d
µ

)2
· |Hr| ⩽ µ

48d · |Hr|2 if n (and therefore also

|Hr| ⩾ µ
3d · n) is sufficiently large with respect to d and µ. So we can conclude that

∑
j∈J

λj ⩾
µ
24d · |Hr|2 − bdn · 3d

µ

d
⩾

µ
48d · |Hr|2

d
=

µ

48d2
· |Hr|2.

The end of the proof of the lemma is identical to the one in [1]. □

The proof of Theorem 1.5 is now essentially identical to the proof of Theorem 1.3 as

described in Section 5 of [1], where the only differences are as follows.

• Each of the appearances of the quantity (1− µ)n should be replaced by (bd− µ))n,

and in particular the parameter m which is ⌈(1− µ)n⌉ in Section 5 of [1] has to be

⌈(bd− µ)n⌉ here.

• The paragraph considering the case that all the points p1, . . . ,pn are on a common

line should be omitted here, as in our case, by assumption, the affine dimension of

this set of points is d ⩾ 2.

This completes the sketch of the proof of Theorem 1.5. □

4 Concluding remarks and open problems

• The discussion in Section 3 shows that while Conjecture 1.1, if true, does not imply

Conjecture 1.4 as stated here, it does imply that any d-dimensional set of n > n0(d)

in a typical d-norm determines at least (d− 1− o(1))n distinct distances.

The argument together with the main result of [11] also shows that any 3-dimensional

set of n > n0 points in a typical 3-norm determines at least (2 − o(1))n distinct

distances.
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• A slightly modified version of an old conjecture of Dirac [5] asserts that for any set

of n points in the plane, not all on a single line, there is a point that lies in at least

n/2 − O(1) distinct lines determined by the set. This Conjecture is still open but

several weaker versions have been established over the years. See [10] for the best

known bound and the history of the problem. Corollary 2.2 deals with the higher

dimensional version of the problem. Its quality depends on the best known estimate

for the constant c. It is worth noting that up to the constant c the bound it provides

is essentially best possible. Indeed, to see an example assume for simplicity that d

is odd and n is divisible by d + 1. Then consider (d + 1)/2 skew lines that affinely

span Rd. On each of these lines take 2n/(d+ 1) points. It is easy to check that for

every point of the resulting set of points, the number of lines connecting it to the

other points of the set is n− 2n/(d+ 1) + 1 = n(1− 2
d+1) + 1.

• Theorem 1.5 together with the simple example of n− d+ 1 points in an arithmetic

progression on a line and d− 1 additional points in general position not on this line,

show that for typical d-norms, the minimum possible number of distinct distances

determined by a d-dimensional set of n > n0(d) points is Θ(nd). Note that this

expression is an increasing function of d. This is in contrast to the behavior of this

minimum in Euclidean spaces, where the known upper bound (which is conjectured

to be tight) is O(n2/d)-a decreasing function of d.
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