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Abstract. We determine the maximal number of steps required to sort n labeled points on a

circle by adjacent swaps. Lower bounds for sorting by all swaps, not necessarily adjacent, are

given as well.

Contents

1. Introduction 1

2. Sorting by adjacent swaps 3

2.1. Upper bound 3

2.2. Lower bound 6

3. Sorting by all swaps 9

3.1. Upper bound 9

3.2. Primes and prime powers 9

3.3. General lower bound 14

References 15

1. Introduction

In this paper we determine the maximal number of steps required to sort n labeled points on

a circle by adjacent swaps. This problem was explored, for example, in the context of micro-

rearrangements of gene order in viruses; see, e.g., [3]. The analogous problem for labeled points

on a line is classical. In fact, permutation sorting by adjacent transpositions may be traced

back to early works in combinatorial group theory. Since Cayley graphs are vertex transitive,

the (worst case) sorting time of a permutation by a set of involutions (generating the symmetric

group) is equal to the diameter of the corresponding Cayley graph; equivalently, to the maximal
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length of an element in the prescribed generating set. Of special interest is sorting by adjacent

transpositions, where the diameter is the maximal Coxeter length of an element. For any finite

reflection group, the maximal Coxeter length is equal to the number of all reflections [10, §1.7].
In the symmetric group Sn, this is the number of all transpositions, namely

(
n
2

)
. For sorting

permutations by other sets of involutions see, e.g., [9], [7], [12], [6], [15] and follow-ups. The

last three papers among these five discuss the problem of sorting by all adjacent transpositions

together with the transposition (1, n), which is closely related (though not identical) to one of

the problems we consider here.

A cyclic permutation of order n, also called circular permutation, is an equivalence class of

arrangements of the numbers 1, . . . , n on a circle, where all cyclic shifts of an arrangement are

considered equivalent [1]. Permutations are linearly ordered sets, while cyclic permutations are

“cyclically ordered” sets. An axiomatic approach to cyclic orders was developed by Hunting-

ton [11], and extended to partial cyclic orders by Megiddo [13]. This concept was extensively

studied and used since then. A different type of cyclic order, called toric order, was introduced

by Develin, Macauley and Reiner [5]. Total cyclic orders, as well as total toric orders, on the

set [n] correspond to the (n− 1)! cyclic permutations.

Let π be a cyclic permutation of order n, represented by a labeling of the vertices of a cycle

of length n by the elements of [n] = {1, 2, . . . , n} in a bijective way. An adjacent swap is

any labeling obtained from π by swapping the labels of two adjacent vertices along the cycle.

How many adjacent swaps are needed in order to convert π into the trivial cyclic permutation

u = (1, 2, . . . , n)? Equivalently, what is the diameter of the graph on all cyclic permutations

represented as above, in which two cyclic permutations are adjacent if and only if one can be

obtained from the other by a single adjacent swap? This graph is vertex transitive, and hence

its diameter is indeed the maximum, over all cyclic permutations π, of the minimum number of

adjacent swaps required to transform π into u. Let f(n) denote this diameter. We prove the

following.

Theorem 1.1. For any n ≥ 1,

(1) f(n) =

⌊
(n− 1)2

4

⌋
.

It is worth noting that in [15] it is proved that any permutation can be sorted by at most
⌊
n2

4

⌋
adjacent cyclic transpositions, and this is tight. Although this appears to be closely related to

the statement of Theorem 1.1, we do not see a way to derive either of these two results from the

other, and the proofs are completely different.

The rest of the paper is organized as follows. In Subsection 2.1 we prove that the RHS of

Equation (1) is an upper bound for the sorting time of a cyclic permutation by adjacent swaps.

In Subsection 2.2 we prove that this upper bound is tight, completing the proof of Theorem 1.1.

Finally, in Section 3 we obtain bounds for the sorting time of cyclic permutations by all possible

swaps, not necessarily adjacent.
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2. Sorting by adjacent swaps

In this section, all swaps mentioned are adjacent swaps.

2.1. Upper bound. In this subsection we prove the following.

Theorem 2.1. For any n ≥ 1,

f(n) ≤
⌊
(n− 1)2

4

⌋
.

Proof. We distinguish four cases, according to the remainder of n upon division by 4.

(a) Assume first that n is divisible by 4: n = 4m. Let π be a cyclic permutation, and consider

its representation as a labeled cycle C. Call a label small if it lies in {1, 2, . . . , 2m} and

large if it lies in {2m+ 1, 2m+ 2, . . . , 4m}. We claim that there is a partition of C into

two arcs, A1 and A2, each being a path of 2m consecutive vertices along C, so that each

Ai contains exactly m small labels and m large labels. Indeed, starting with any arc A

of 2m vertices, when we shift it by one step the number of small labels can change by

at most 1. If A contains at most m small labels then its complement contains at least

m small labels, and thus the assertion of the claim follows by the discrete intermediate

value theorem.

Fix two disjoint arcs, A1 and A2, each containing exactly m small and m large labels.

Think about these two arcs as the left and right halves of the cycle C, and subdivide

each of them into a top quarter and a bottom quarter. We now consider two possible

sequences of swaps. The first shifts all the m small labels of A1 to its top quarter and all

m small labels of A2 to its top quarter, while the second shifts all the small labels of A1

to its bottom quarter and all those of A2 to its bottom quarter. Let the vertices of A1 be

v1, v2, . . . , v2m, in order, from top to bottom. Let the small labels in A1 be s1, s2, . . . , sm,

also ordered from top to bottom. Then, in the first process, s1 has to move to the vertex

v1, and in the second process it has to move to vertex vm+1. Similarly, s2 has to reach

vertex v2 in the first process and vertex vm+2 in the second, and in general si has to

reach vertex vi in the first process and vertex vi+m in the second. It is easy to check that

the current location of each label si is between these two destinations it has to reach

(since there are i− 1 small labels in A1 before it and m− i after it). Therefore, the sum

of the two distances from the location of si to its two destinations in the two possible

processes above is m. The total number of swaps required to shift all small labels in A1

to its top part is exactly the sum of distances of these labels from their destinations in

the first process, and the analogous statement holds for the number of swaps required to

shift them to the bottom part. The same reasoning applies, of course, to the arc A2 as

well. Let f1 denote the total number of swaps required for the first process (shifting all

small labels in A1 to its top part and all those in A2 to its top part), and let f2 denote

the total number of swaps required for the second process. By the discussion above it



4 RON M. ADIN, NOGA ALON, AND YUVAL ROICHMAN

follows that

f1 + f2 = m ·m+m ·m = 2m2,

since the total number of swaps in both processes in which any fixed small label moves

is exactly m.

Let S1 denote the set of m small labels in A1, let L1 denote the set of m large labels

in A1, and define S2, L2 analogously for the arc A2. In order to complete the sorting

after the first process, it suffices to sort the labels in S1 ∪ S2 that lie in the top half of

the circle, and sort the labels L1 ∪L2 in the bottom half. The number of swaps required

to do so is the number of inversions in S1 ∪ S2 in the order they ended at the top, plus

the number of inversions in L1 ∪L2 in the order they ended in the bottom. Denote this

number by g1. Similarly, in order to complete the sorting after the second process it

suffices to sort the labels in S1 ∪ S2 that ended in the bottom and the labels in L1 ∪ L2

that ended in the top. Let this sum be g2. The crucial observation now is that each pair

of labels s1 ∈ S1 and s2 ∈ S2 form an inversion at the end of the first process if and only

if they do not form an inversion in the second. Therefore, the sum g1 + g2 satisfies

g1 + g2 ≤ 2 · 4
(
m

2

)
+m ·m+m ·m = 6m2 − 4m.

Indeed, the total number of inversions between pairs of labels in S1, in S2, in L1 and in

L2, which are counted twice in g1+g2, is at most 2 ·4
(
m
2

)
. The total number of inversions

between pairs of labels with one in S1 and one in S2 contributes to the sum g1 + g2 only

m ·m, since each such pair forms an inversion only once, and the same applies for pairs

with one label in L1 and one in L2.

Summing the equality (for f1 + f2) and inequality (for g1 + g2) above, we get

f1 + f2 + g1 + g2 ≤ 8m2 − 4m.

Therefore either f1 + g1 or f2 + g2 is at most

4m2 − 2m =
n2 − 2n

4
=

⌊
(n− 1)2

4

⌋
.

As we can complete the sorting with f1 + g1 swaps, and also with f2 + g2 swaps, this

completes the proof for n divisible by 4.

(b) Assume now that n = 4m + 2. Following the previous proof, with the necessary

adaptations, call a label small if it lies in {1, 2, . . . , 2m + 1} and large if it lies in

{2m + 2, 2m + 3, . . . , 4m + 2}. By the same argument as before, there is an arc A1

of 2m+1 consecutive points with exactly m small (and m+1 large) labels. Its comple-

ment A2 is also an arc of length 2m + 1, with m + 1 small (and m large) labels. View

A1 (A2) as the left (respectively, right) half of the whole cycle. Consider two possible

sequences of swaps: one shifting all the small labels of A1 to its top, and all the small

labels of A2 to its top; and the other shifting all small labels of each arc to its bottom.

The i-th small label in A1 (1 ≤ i ≤ m, counting from top to bottom) will move to either
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the i-th or the (m + 1 + i)-th position in A1 (again, counting from top to bottom). Its

current position is somewhere between i and m + 1 + i, and therefore the sum of its

distances from the two possible endpoints is m + 1. A similar argument for A2, with

1 ≤ i ≤ m + 1 and positions i and i + m, yields sum of distances m. If f1 (f2) is the

total number of swaps required for the first (respectively, second) process, then

f1 + f2 = m · (m+ 1) + (m+ 1) ·m = 2m(m+ 1).

Let S1 denote the set of m small labels in A1, let L1 denote the set of m+1 large labels

in A1, and define analogously S2 and L2 (of sizes m+1 and m, respectively) for the arc

A2. Denote by g1 (g2) the number of swaps require to sort S1 ∪ S2 as well as L1 ∪ L2

in the first (respectively, second) process. The crucial observation is that each pair of

labels s1 ∈ S1 and s2 ∈ S2 form an inversion at the end of the first process if and only if

they do not form an inversion in the second; and a similar claim for ℓ1 ∈ L1 and ℓ2 ∈ L2.

Therefore

g1 + g2 ≤ 2 ·
(
2

(
m

2

)
+ 2

(
m+ 1

2

))
+ 2m(m+ 1) = 6m2 + 2m.

Summing the equality (for f1 + f2) and inequality (for g1 + g2) above, we get

f1 + f2 + g1 + g2 ≤ 8m2 + 4m.

Therefore either f1 + g1 or f2 + g2 is at most

4m2 + 2m =
(n− 2)2 + 2(n− 2)

4
=

n2 − 2n

4
=

⌊
(n− 1)2

4

⌋
.

This completes the proof for n = 4m+ 2.

(c) Next assume that n = 4m + 1. Call a label small if it lies in {1, 2, . . . , 2m} and large

if it lies in {2m + 1, 2m + 2, . . . , 4m + 1}. Then there is an arc A1, consisting of 2m

consecutive points, with exactly m small (and m large) labels. Its complement A2 is an

arc of length 2m + 1, with m small (and m + 1 large) labels. Then, using notations as

before,

f1 + f2 = m ·m+m · (m+ 1) = 2m2 +m

and

g1 + g2 ≤ 2 ·
(
3

(
m

2

)
+

(
m+ 1

2

))
+m2 +m(m+ 1) = 6m2 −m.

Therefore either f1 + g1 or f2 + g2 is at most

4m2 =
(n− 1)2

4
.

This completes the proof for n = 4m+ 1.
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(d) Finally, assume that n = 4m+3. Call a label small if it lies in {1, 2, . . . , 2m+2} and large

if it lies in {2m+ 3, 2m+ 4, . . . , 4m+ 3}. By a slightly modified argument (considering

only arcs that do not contain a specific point with a large label), there is an arc A1,

consisting of 2m+ 1 consecutive points, with exactly m+ 1 small (and m large) labels.

Its complement A2 is an arc of length 2m+2, with m+1 small (and m+1 large) labels.

Then, using notations as before,

f1 + f2 = (m+ 1) ·m+ (m+ 1) · (m+ 1) = 2m2 + 3m+ 1

and

g1 + g2 ≤ 2 ·
(
3

(
m+ 1

2

)
+

(
m

2

))
+ (m+ 1)2 +m(m+ 1) = 6m2 + 5m+ 1.

Therefore either f1 + g1 or f2 + g2 is at most

4m2 + 4m+ 1 = (2m+ 1)2 =
(n− 1)2

4
.

This completes the proof for n = 4m+ 1.

Having dealt with all four cases, we have now completed the proof of Theorem 2.1. □

2.2. Lower bound. Recall that any swap mentioned in this section is an adjacent swap.

In this subsection we prove

Theorem 2.2. For any n ≥ 1,

f(n) ≥
⌊
(n− 1)2

4

⌋
.

Proof. By induction on n, carried out separately for odd and even values of n.

Assume first that n is odd. We shall prove that any circular sorting of the cyclic permutation

(n, n − 1, . . . , 1) to the trivial cyclic permutation u = (1, 2, . . . , n) requires at least (n − 1)2/4

swaps. This implies the claimed lower bound on the diameter f(n).

The claim clearly holds for n = 1. For the induction step, assume that n > 1 is odd, and that

the claim holds for n − 2. Consider an arbitrary circular sorting of (n, n − 1, . . . , 1) to u. This

can be viewed as a (non-circular) sorting to the identity permutation, using affine swaps from

the set {(1, 2), (2, 3), . . . , (n− 1, n), (n, 1)}, of a suitable cyclic shift of the permutation w, which

is defined by w(i) := n+ 1− i (1 ≤ i ≤ n). Such a cyclic shift is a permutation wn,k : [n] → [n]

of the form

wn,k(i) ≡ k − i (mod n) (∀i),
for some fixed integer k. Observe that, for odd n and any k, wn,k is an involution with one fixed

point.

Let d denote circular distance on the set of n points on the circle, namely

d(i, j) := min{|i− j|, n− |i− j|} (∀i, j ∈ [n]).

For any i ∈ [n], define the gap of i to be the distance d(i, wn,k(i)). The gap of the unique fixed

point is 0. The other gap values are the integers 1 ≤ d ≤ (n − 1)/2, each attained by exactly
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two points forming a 2-cycle of wn,k. Let i and j = wn,k(i) be the two points having maximal

gap d = (n − 1)/2. Denote A := {i, j} and B := [n] \ A; clearly, A and B are invariant under

wn,k. The restriction of wn,k to B can be viewed, after a suitable relabeling of the points, as the

permutation wn−2,ℓ for some ℓ.

Consider now a sequence of swaps that sorts wn,k to the identity permutation. Distinguish two

kinds of swaps: those involving only elements of B, and those that involve at least one element

of A. The latter swaps do not change the relative order of the elements of B, and therefore the

former swaps yield a sorting of wn−2,ℓ to the identity permutation. By the induction hypothesis,

this requires at least (n−3)2/4 swaps. Each of the remaining swaps involves at least one element

of A, and it is clear that this part of the sorting, eventually interchanging i and j which are at

circular distance (n − 1)/2, requires at least 2 · (n − 1)/2 − 1 = n − 2 swaps. Altogether, the

sequence contains at least

(n− 3)2

4
+ (n− 2) =

(n− 1)2

4
swaps, as claimed. This proves the claim for any odd n.

Assume now that n is even. Again, we can view a circular sorting of the cyclic permutation

(n, n−1, . . . , 1) to the cyclic permutation u as a sorting to the identity permutation, using affine

swaps, of a permutation wn,k : [n] → [n] of the form

wn,k(i) ≡ k − i (mod n) (∀i),

for some fixed k. This is again an involution, but now (for n even) there are two options for its

number of fixed points: wn,k has two fixed points if k is even, and none if k is odd. We shall

prove that the number of swaps needed to sort wn,k to the identity permutation is at least Nn,k,

where

Nn,k =

(n2 − 2n)/4, if k − n/2 is odd;

(n2 − 2n+ 4)/4, if k − n/2 is even.

Note that these numbers are ⌊(n− 1)2/4⌋ and ⌊(n− 1)2/4⌋+ 1, respectively, so that our claim

implies the required lower bound on the diameter f(n).

The proof will proceed by induction on (even values of) n. The claim clearly holds for n = 2:

w2,k is the identity permutation for even k (with N2,k = 0), and the non-identity element of S2

for odd k (with N2,k = 1).

For the induction step, assume that n > 2 is even, and that the claim holds for n − 2. We

consider four cases, depending on the parity of k and of n/2.

(a) Assume that both k and n/2 are even. The involution wn,k has two fixed points, and all

its gaps are even. The minimal gap 0 and maximal gap n/2 are each attained by two

points, while each intermediate value 2 ≤ 2d ≤ (n− 4)/2 is attained by four points. Let

i and j = wn,k(i) be the two points with maximal (even) gap n/2; denote A := {i, j}
and B := [n] \A. Clearly, A and B are invariant under wn,k. The restriction of wn,k to

B can be viewed, after a suitable relabeling of the points, as the permutation wn−2,ℓ for



8 RON M. ADIN, NOGA ALON, AND YUVAL ROICHMAN

some even ℓ. Noting that (n− 2)/2 is odd, we thus get at least

Nn−2,ℓ + (2 · n/2− 1) =
(n− 2)2 − 2(n− 2)

4
+ (n− 1) =

n2 − 2n+ 4

4
= Nn,k

swaps.

(b) Assume that k is even but n/2 is odd. The involution wn,k has two fixed points, and

all its gaps are even. The minimal gap 0 is attained by two points, while each other

gap 2 ≤ 2d ≤ (n − 2)/2 is attained by four points. Let i and j = wn,k(i) be two of the

points with maximal (even) gap (n− 2)/2; denote A := {i, j} and B := [n] \A. Clearly,
A and B are invariant under wn,k. The restriction of wn,k to B can be viewed, after a

suitable relabeling of the points, as the permutation wn−2,ℓ for some even ℓ. Noting that

(n− 2)/2 is even, we thus get at least

Nn−2,ℓ + (2 · (n− 2)/2− 1) =
(n− 2)2 − 2(n− 2) + 4

4
+ (n− 3) =

n2 − 2n

4
= Nn,k

swaps.

(c) Assume that k is odd and n/2 is even. The involution wn,k has no fixed points, and all

its gaps are odd. Each odd number 1 ≤ 2d− 1 ≤ (n− 2)/2 is attained as a gap by four

points. Let i and j = wn,k(i) be two of the points with maximal (odd) gap (n − 2)/2;

denote A := {i, j} and B := [n] \ A. Clearly, A and B are invariant under wn,k. The

restriction of wn,k to B can be viewed, after a suitable relabeling of the points, as the

permutation wn−2,ℓ for some odd ℓ. Noting that (n− 2)/2 is odd, we thus get at least

Nn−2,ℓ + (2 · (n− 2)/2− 1) =
(n− 2)2 − 2(n− 2) + 4

4
+ (n− 3) =

n2 − 2n

4
= Nn,k

swaps.

(d) Assume that both k and n/2 are odd. The involution wn,k has no fixed points, and all

its gaps are odd. The maximal gap n/2 is attained by two points, while each other odd

value 1 ≤ 2d − 1 ≤ (n − 4)/2 is attained by four points. Let i and j = wn,k(i) be the

two points with maximal (odd) gap n/2; denote A := {i, j} and B := [n] \ A. Clearly,

A and B are invariant under wn,k. The restriction of wn,k to B can be viewed, after a

suitable relabeling of the points, as the permutation wn−2,ℓ for some odd ℓ. Noting that

(n− 2)/2 is even, we thus get at least

Nn−2,ℓ + (2 · n/2− 1) =
(n− 2)2 − 2(n− 2)

4
+ (n− 1) =

n2 − 2n+ 4

4
= Nn,k

swaps.

This proves our claim for any even n, and completes the proof of Theorem 2.2. □

Remark 2.3. Theorem 1.1 determines the maximum number f(n) of swaps needed to sort a

cyclic permutation of [n]. It may be interesting to determine or estimate the number of such

cyclic permutations that can be sorted by k swaps, for all k ≤ f(n).
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3. Sorting by all swaps

The circular sorting question can be asked when a swap of any two (not necessarily adjacent)

elements is allowed. In this case n−2 swaps always suffice (Observation 3.1). For n = pk, where

p is an odd prime, at least n − 1 − logp n swaps are required (Proposition 3.2). It follows that

for every prime n, the bound n− 2 is tight (Corollary 3.3). For general n we get a lower bound

of n−O(logn) (Theorem 3.10).

3.1. Upper bound. Let c := (1, 2, . . . , n) be an n-cycle in Sn, and let Cn = ⟨c⟩ be the cyclic

subgroup of Sn generated by c. A cyclic permutation, namely an equivalence class [π] where

π ∈ Sn, may be identified with a coset πCn.

Denote by t([π]) the sorting time of a cyclic permutation [π] to the trivial cyclic permutation

[c], where a permissible step is a multiplication (on the left, or equivalently on the right) by any

transposition, and let

t(n) := max
π∈Sn

t([π]).

Consider the graph on all cyclic permutations in which two cyclic permutations are adjacent if

and only if one can be obtained from the other by a single a swap of any two letters. Since this

graph is vertex transitive, its diameter is equal to t(n).

For a permutation π ∈ Sn, let cyc(π) be the number of cycles in π. Observe that, for any

π ∈ Sn, the sorting time of [π] is

t([π]) = min
σ∈πCn

(n− cyc(σ)).

Hence

t(n) = max
π∈Sn

min
σ∈πCn

(n− cyc(σ)).

Observation 3.1. For every n ≥ 2,

t(n) ≤ n− 2.

Proof. Every permutation has a cyclic shift with a fixed point, thus with at least 2 cycles. □

Computer experimentation show that, for n ≤ 11, this upper bound is attained only for prime

values of n. In the following section we prove a general lower bound for prime powers, implying

that the upper bound is indeed tight for every prime n.

3.2. Primes and prime powers.

Proposition 3.2. If n = pk, where p is an odd prime and k ≥ 1, then

t(n) ≥ n− k − 1 = n− logp n− 1.

Proof. For a ∈ Zn define a map πn,a : Zn → Zn by

πn,a(i) ≡ a · i (mod n) (∀ i ∈ Zn).
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Let Z×
n = {a ∈ Zn : gcd(a, n) = 1} be the group of units of the ring Zn. If a ∈ Z×

n then πn,a is

a bijection; identifying [n] with Zn, we can write πn,a ∈ Sn. Moreover, if σ ∈ πn,aCn then, for a

suitable j ∈ Zn,

σ(i) ≡ a · (i+ j) (mod n) (∀ i ∈ Zn).

We want each σ to have a fixed point. Thus we want to have, for every j ∈ Zn, a solution i to

the congruence

i ≡ a · (i+ j) (mod n),

namely to

(1− a) · i ≡ a · j (mod n).

This has a solution for every j ∈ Zn (in particular, for j = a−1) if and only if a − 1 ∈ Z×
n .

Assuming, indeed, that a, a− 1 ∈ Z×
n , let

iσ ≡ (1− a)−1 · a · j (mod n)

be the (unique) fixed point of σ. Then

σ(i)− iσ = σ(i)− σ(iσ) = a · (i+ j)− a · (iσ + j) = a · (i− iσ) (∀ i ∈ Zn).

Thus σ is conjugate (in Sn) to πn,a, by the permutation corresponding to a cyclic shift by iσ,

and therefore σ and πn,a have the same number of cycles:

cyc(σ) = cyc(πn,a) (∀σ ∈ πn,aZn).

Now let p be an odd prime and k a positive integer. The following facts regarding generators

of the cyclic group Z×
pk

are part of the remarks following [4, Lemma 1.4.5]. Let 1 < g0 < p be a

generator of the cyclic group Z×
p , and define

g :=

g0, if gp−1
0 ̸≡ 1 (mod p2);

g0 + p, otherwise.

Then g is a generator of Z×
pk
, simultaneously for all k ≥ 1. The additive group Zpk is a disjoint

union of its subsets C0, . . . , Ck, where Ci = piZ×
pk−i (0 ≤ i ≤ k−1) and Ck = {0}. For the above

choice of a generator g, each of these sets forms a single cycle of πpk,g, thus cyc(πpk,g) = k + 1.

Note also that gcd(g − 1, p) = 1, thus g − 1 ∈ Z×
pk

for any k ≥ 1. It follows that

cyc(σ) = cyc(πpk,g) = k + 1 (∀σ ∈ πpk,gZpk)

and therefore

t(pk) = max
π∈S

pk

min
σ∈πZ

pk

(pk − cyc(σ)) ≥ min
σ∈π

pk,g
Z
pk

(pk − cyc(σ)) = pk − (k + 1). □

Corollary 3.3. If n is prime then

t(n) = n− 2.

Proof. This clearly holds for n = 2. By Observation 3.1 and Proposition 3.2, it also holds if n

is an odd prime. □
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Conjecture 3.4. t(n) = n− 2 if and only if n is prime.

Lemma 3.5. Assume that n > 2 and that π ∈ Sn satisfies

max
σ∈πCn

cyc(σ) = 2.

Then each σ ∈ πCn has cycle structure (n− 1, 1).

Proof. Clearly, each j ∈ [n] is a fixed point of a unique cyclic shift σ ∈ πCn. This defines a

mapping f : [n] → πCn. If cyc(σ) = 2 then σ cannot have more than one fixed point (since

n > 2). It follows that f is injective, thus bijective, and each σ ∈ πCn has a unique fixed point.

Its other cycle is, of course, of length n− 1. □

Conjecture 3.6. If n > 2 and π ∈ Sn satisfies

max
σ∈πCn

cyc(σ) = 2,

then n is prime and

π(i) ≡ a · i (mod n) (∀i)

for some a ∈ Z×
n .

Conjecture 3.6 implies Conjecture 3.4. Both have been verified for n ≤ 11.

By similar arguments one can prove the following statements.

Proposition 3.7. If n = 2pk, where p is an odd prime and k ≥ 1, then

t(n) ≥ n− 2k − 2.

Proof. Let g be a simultaneous generator for Z×
pt for all t ≥ 1, as in the proof of Proposition 3.2,

and fix an integer k ≥ 1. Then either g or g+ pk (whichever is odd) is a generator of Z×
2pk

[4, p.

26]. It follows that there exists a simultaneous odd generator g for all Z×
2pj

, 1 ≤ j ≤ k. Using

the notation πn,a from the proof of Proposition 3.2, it is easy to see that cyc(π2pk,g) = 2k + 2,

with cycles corresponding to the subsets Codd
i = piZ×

2pk−i and Ceven
i = 2piZ×

2pk−i , 0 ≤ i ≤ k.

Consider now the shifts of π2pk,g, of the form σj := π2pk,gc
j where c = (1, 2, . . . , 2pk). We

would like to have a fixed point for σj for each value of j, since then σj is conjugate to σ0 = π2pk,g;

but this is impossible, since one of the two consecutive integers g − 1 and g must be even. We

therefore only claim that σj has a fixed point for even values of j.

Indeed, a fixed point i for σj (j even) must satisfy

(1− g) · i ≡ g · j (mod 2pk),

or equivalently, since both j and g − 1 are even,

1− g

2
· i ≡ g · j

2
(mod pk),
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This has a solution for each even j if and only if (g−1)/2 is invertible in Zpk , which is indeed the

case (since otherwise g ≡ 1 (mod p), contradicting the fact that g generates Z×
p ). Thus indeed

σj has a fixed point, and is thus conjugate to σ0, implying that

cyc(π2pk,gc
j) = cyc(π2pk,g) = 2k + 2 (∀ even j).

Now consider odd values of j. Since

σj(i) ≡ g · (i+ j) (mod 2pk),

and g is odd, the number σj(i) is odd if and only if i is even. It follows that each cycle of σj

alternates between even and odd numbers, and therefore has even length. It follows that each

cycle of σj splits into two cycles of σ2
j , thus

cyc(σ2
j ) = 2 · cyc(σj) (∀ odd j).

On the other hand, we claim that, for any value of j, σ2
j has a fixed point and is thus conjugate

to σ2
0. Indeed,

σ2
0(i) ≡ g2 · i (mod 2pk) (∀i)

while

σ2
j (i) ≡ g2 · i+ (g2 + g) · j (mod 2pk) (∀i).

In order to have σ2
j (i) = i we need

(1− g2) · i ≡ (g2 + g) · j (mod 2pk)

or, equivalently,
1 + g

2
· (1− g) · i ≡ 1 + g

2
· g · j (mod pk).

To this end, it is sufficient (though not necessary!) to have

(1− g) · i ≡ g · j (mod pk).

As noted above, this equation has a solution i for each value of j, since g − 1 ∈ Z×
pk
. The (now

established) existence of a fixed point i0 for σ2
j implies that

σ2
j (i)− i0 ≡ σ2

j (i)− σ2
j (i0) ≡ g2 · (i− i0) ≡ σ2

0(i− i0) (mod 2pk),

so that σ2
j = ci0σ2

0c
−i0 is conjugate to σ2

0 in S2pk . We therefore have

cyc(σ2
j ) = cyc(σ2

0) (∀j).

Finally, the above description of the cycles of σ0 = π2pk,g shows that all its cycle lengths are

divisible by p− 1, hence even, except for the two fixed points. It follows that

cyc(σ2
0) = 2 · cyc(σ0)− 2.

Putting it all together, we have

cyc(σj) = cyc(σ0)− 1 (∀ odd j),
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namely

cyc(π2pk,gc
j) = cyc(π2pk,g)− 1 = 2k + 1 (∀ odd j).

Thus

t(2pk) = max
π∈S

2pk

min
σ∈πZ

2pk

(2pk − cyc(σ)) ≥ min
σ∈π

2pk,g
Z
2pk

(2pk − cyc(σ))

= min(2pk − (2k + 2), 2pk − (2k + 1)) = 2pk − (2k + 2). □

Proposition 3.8. If n = 2k and k ≥ 2 then

t(n) ≥ n− 2k + 1.

Proof. First, for k = 2 the lower bound holds, since t(4) = 1 = 4− 2 · 2 + 1.

Assume that k ≥ 3. It was shown by Gauss [8, Art. 90–91] that, in this case, Z×
2k

∼= Z2×Z2k−2 ,

where 3 is a generator of the factor Z2k−2 and −1 is a generator of the factor Z2; see also [14,

Ch. 6, §6].
Note that 3 also generates the cyclic group Z×

4 . Using the notation πn,a from the proof of

Proposition 3.2, one concludes that the cycles of π2k,3 are the subsets Cε
i := {ε · 2i3j : 0 ≤ j <

2k−2−i} (0 ≤ i ≤ k − 3, ε ∈ {1,−1}), Ck−2 = {2k−2,−2k−2}, Ck−1 = {2k−1} and Ck = {0}.
Hence cyc(π2k,3) = 2k − 1.

Regarding the shifts, by arguments as above, for every even j, π2k,3c
j and π2k,3 are conjugate,

hence have the same number of cycles. Finally, we claim that for every odd j, π2k,3c
j has two

cycles. Indeed, for d ≥ 1 and any m we have

(π2k,3c
j)d(m) ≡ m · 3d + 3j ·

d−1∑
i=0

3i ≡ m (mod 2k)

if and only if

(2m+ 3j) · 3
d − 1

2
≡ 0 (mod 2k),

which holds (for an odd j) if and only if

3d − 1 ≡ 0 (mod 2k+1).

Recalling that the order of 3 in Z×
2k+1 is 2k−1, this holds if and only if 2k−1 divides d, so that

indeed π2k,3c
j for odd j has two cycles of length 2k−1 each. Overall, for k ≥ 3,

t(2k) = max
π∈S

2k

min
σ∈πZ

2k

(2k − cyc(σ)) ≥ min
σ∈π

2k,3
Z
2k

(2k − cyc(σ))

= min(2k − (2k − 1), 2k − 2) = 2k − (2k − 1). □

Question 3.9. Is the function t(n) monotone?

If the function t(n) is monotone, one can apply the above bounds to other integers. Note,

however, that there are examples showing that adding a fixed point to π ∈ Sn may decrease the

value of t.
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3.3. General lower bound. In this section we prove a general lower bound, which is indepen-

dent of the prime decomposition of n.

Theorem 3.10. For any n > 1

t(n) ≥ n− ⌈e · (lnn+ 1)⌉.

Note that for large n = 2k this bound is stronger than the one in Proposition 3.8.

First we show that the probability that a random permutation has a large number of cycles is

small. The following result is surely known in a very precise form; for completeness we include

a self contained elementary proof.

Proposition 3.11. For any k ≥ 0, the probability that a random permutation in Sn has exactly

k + 1 cycles is at most
(ln(n− 1) + 1)k

n · k!
.

Proof. We count the number of permutations with k + 1 cycles as follows. Write each cycle of

the permutation with the smallest element of the cycle first, and arrange the cycles in increasing

order of their first elements. The first cycle starts with the element 1. We can select the next

element of the cycle arbitrarily, then the next one, and so on. If the length of this cycle is n1

then this gives (n − 1)(n − 2) · · · (n − n1 + 1) possibilities. The second cycle must start with

the smallest number that was not chosen yet. Proceed in the same manner to choose the other

cycle elements. If its length is n2 then this gives (n− n1 − 1)(n− n1 − 2) · · · (n− n1 − n2 + 1)

possibilities. Proceeding in this way, we see that the number of permutations with k + 1 cycles

of lengths n1, . . . , nk+1 (arranged according to the above convention) is

n!

n(n− n1)(n− n1 − n2) · · · (n− n1 − n2 . . .− nk)
.

Summing over all possibilities of cycle lengths gives

n!

n
·
∑ 1

m1m2 · · ·mk
,

where the summation is over all k-tuples (m1,m2, . . . ,mk) of integers satisfying n > m1 > m2 >

· · · > mk > 0.

Consider now the expression (
1

1
+

1

2
+

1

3
+ . . .+

1

n− 1

)k

.

In this expression, every product as above appears k! times (and there are also additional

products with non-distinct factors). Therefore, the total number of permutations with k + 1

cycles is at most

n!

n · k!
·
(
1

1
+

1

2
+

1

3
+ . . .+

1

n− 1

)k

,

implying the desired result by the standard bound on the harmonic series. □
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Proof of Theorem 3.10. For simplicity, replace the upper bound in Proposition 3.11 by the

slightly larger bound

pk :=
(lnn+ 1)k

n · k!
.

Recalling that k! > (k/e)k ·
√
2πk for every k ≥ 1, Proposition 3.11 implies that the probability

of having k0 + 1 cycles, for k0 := ⌈e(lnn+ 1)⌉, is at most

pk0 <
1

n ·
√
2πk0

·
(
e(lnn+ 1)

k0

)k0

≤ 1

n ·
√
2πk0

.

Now note that, by definition, for k ≥ k0

pk+1 = pk ·
lnn+ 1

k + 1
≤ pk ·

lnn+ 1

e(lnn+ 1)
= pk ·

1

e
.

It follows that the probability of a random permutation in Sn to have more than k0 cycles is at

most
n−1∑
k=k0

pk < pk0 ·
∞∑

m=0

e−m <
1

n
· 1

(1− e−1) ·
√
2πk0

<
1

n
.

Therefore, for a random permutation π, cyc(πcj) ≤ k0 for every j with high probability, and

hence there exists such a permutation π. □

Note added in proof: A recent paper of Bastide, Bishnoi, Groenland, Gijswijt and Joshi

contains several improved results about the function t(n) considered in Section 3. These results

support Conjecture 3.4 by proving its assertion for numbers n that are divisible by 2 or 3, and

include several counterexamples to Conjecture 3.6 found by a computer search.
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