CIRCULAR SORTING

RON M. ADIN, NOGA ALON, AND YUVAL ROICHMAN

Dedicated to Gil Kalai, a long time friend, collaborator, mentor and a source of inspiration,
on the occasion of his 70th birthday

ABSTRACT. We determine the maximal number of steps required to sort n labeled points on a
circle by adjacent swaps. Lower bounds for sorting by all swaps, not necessarily adjacent, are

given as well.
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1. INTRODUCTION

In this paper we determine the maximal number of steps required to sort n labeled points on
a circle by adjacent swaps. This problem was explored, for example, in the context of micro-
rearrangements of gene order in viruses; see, e.g., [3]. The analogous problem for labeled points
on a line is classical. In fact, permutation sorting by adjacent transpositions may be traced
back to early works in combinatorial group theory. Since Cayley graphs are vertex transitive,
the (worst case) sorting time of a permutation by a set of involutions (generating the symmetric
group) is equal to the diameter of the corresponding Cayley graph; equivalently, to the maximal
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length of an element in the prescribed generating set. Of special interest is sorting by adjacent
transpositions, where the diameter is the maximal Coxeter length of an element. For any finite
reflection group, the maximal Coxeter length is equal to the number of all reflections [10, §1.7].
In the symmetric group Sy, this is the number of all transpositions, namely (g) For sorting
permutations by other sets of involutions see, e.g., [9], [7], [12], [6], [15] and follow-ups. The
last three papers among these five discuss the problem of sorting by all adjacent transpositions
together with the transposition (1,7), which is closely related (though not identical) to one of
the problems we consider here.

A cyclic permutation of order n, also called circular permutation, is an equivalence class of
arrangements of the numbers 1,...,n on a circle, where all cyclic shifts of an arrangement are
considered equivalent [1]. Permutations are linearly ordered sets, while cyclic permutations are
“cyclically ordered” sets. An axiomatic approach to cyclic orders was developed by Hunting-
ton [11], and extended to partial cyclic orders by Megiddo [13]. This concept was extensively
studied and used since then. A different type of cyclic order, called toric order, was introduced
by Develin, Macauley and Reiner [5]. Total cyclic orders, as well as total toric orders, on the
set [n] correspond to the (n — 1)! cyclic permutations.

Let 7w be a cyclic permutation of order n, represented by a labeling of the vertices of a cycle
of length n by the elements of [n] = {1,2,...,n} in a bijective way. An adjacent swap is
any labeling obtained from 7 by swapping the labels of two adjacent vertices along the cycle.
How many adjacent swaps are needed in order to convert 7 into the trivial cyclic permutation
u = (1,2,...,n)? Equivalently, what is the diameter of the graph on all cyclic permutations
represented as above, in which two cyclic permutations are adjacent if and only if one can be
obtained from the other by a single adjacent swap? This graph is vertex transitive, and hence
its diameter is indeed the maximum, over all cyclic permutations 7, of the minimum number of
adjacent swaps required to transform 7 into u. Let f(n) denote this diameter. We prove the
following.

Theorem 1.1. For anyn > 1,
_1)2
1) o = |

It is worth noting that in [15] it is proved that any permutation can be sorted by at most [%J
adjacent cyclic transpositions, and this is tight. Although this appears to be closely related to
the statement of Theorem 1.1, we do not see a way to derive either of these two results from the
other, and the proofs are completely different.

The rest of the paper is organized as follows. In Subsection 2.1 we prove that the RHS of
Equation (1) is an upper bound for the sorting time of a cyclic permutation by adjacent swaps.
In Subsection 2.2 we prove that this upper bound is tight, completing the proof of Theorem 1.1.
Finally, in Section 3 we obtain bounds for the sorting time of cyclic permutations by all possible

swaps, not necessarily adjacent.
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2. SORTING BY ADJACENT SWAPS

In this section, all swaps mentioned are adjacent swaps.

2.1. Upper bound. In this subsection we prove the following.

Theorem 2.1. For anyn > 1,

f(n) < {WJ :

Proof. We distinguish four cases, according to the remainder of n upon division by 4.

(a) Assume first that n is divisible by 4: n = 4m. Let 7 be a cyclic permutation, and consider
its representation as a labeled cycle C. Call a label small if it lies in {1,2,...,2m} and
large if it lies in {2m + 1,2m + 2,...,4m}. We claim that there is a partition of C' into
two arcs, A1 and Ao, each being a path of 2m consecutive vertices along C, so that each
A; contains exactly m small labels and m large labels. Indeed, starting with any arc A
of 2m vertices, when we shift it by one step the number of small labels can change by
at most 1. If A contains at most m small labels then its complement contains at least
m small labels, and thus the assertion of the claim follows by the discrete intermediate
value theorem.

Fix two disjoint arcs, A; and As, each containing exactly m small and m large labels.
Think about these two arcs as the left and right halves of the cycle C, and subdivide
each of them into a top quarter and a bottom quarter. We now consider two possible
sequences of swaps. The first shifts all the m small labels of A; to its top quarter and all
m small labels of As to its top quarter, while the second shifts all the small labels of Ay
to its bottom quarter and all those of As to its bottom quarter. Let the vertices of A; be
V1,09, ..., Vay, in order, from top to bottom. Let the small labels in A; be s1, S92, ..., Sm,
also ordered from top to bottom. Then, in the first process, s1 has to move to the vertex
v1, and in the second process it has to move to vertex vy, 1. Similarly, so has to reach
vertex v9 in the first process and vertex v, ts in the second, and in general s; has to
reach vertex v; in the first process and vertex v; ., in the second. It is easy to check that
the current location of each label s; is between these two destinations it has to reach
(since there are ¢ — 1 small labels in A; before it and m — i after it). Therefore, the sum
of the two distances from the location of s; to its two destinations in the two possible
processes above is m. The total number of swaps required to shift all small labels in Ay
to its top part is exactly the sum of distances of these labels from their destinations in
the first process, and the analogous statement holds for the number of swaps required to
shift them to the bottom part. The same reasoning applies, of course, to the arc Ay as
well. Let fi denote the total number of swaps required for the first process (shifting all
small labels in A; to its top part and all those in Aj to its top part), and let fo denote

the total number of swaps required for the second process. By the discussion above it
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follows that

fi+fo=m-m+m-m=2m?
since the total number of swaps in both processes in which any fixed small label moves
is exactly m.

Let S1 denote the set of m small labels in Ay, let Ly denote the set of m large labels
in A1, and define Sy, Lo analogously for the arc As. In order to complete the sorting
after the first process, it suffices to sort the labels in S7 U S that lie in the top half of
the circle, and sort the labels L1 U Ly in the bottom half. The number of swaps required
to do so is the number of inversions in S; U Ss in the order they ended at the top, plus
the number of inversions in Ly U Ls in the order they ended in the bottom. Denote this
number by ¢g;. Similarly, in order to complete the sorting after the second process it
suffices to sort the labels in S; U S that ended in the bottom and the labels in L U Loy
that ended in the top. Let this sum be go. The crucial observation now is that each pair
of labels s; € S1 and so € Sy form an inversion at the end of the first process if and only
if they do not form an inversion in the second. Therefore, the sum g; + g2 satisfies

91+92§2'4<Tg>+m~m+m~m:6m2—4m.

Indeed, the total number of inversions between pairs of labels in S7, in So, in L1 and in
Lo, which are counted twice in g; + go, is at most 2- 4(75) The total number of inversions
between pairs of labels with one in 57 and one in S contributes to the sum g1 + g2 only
m - m, since each such pair forms an inversion only once, and the same applies for pairs
with one label in L; and one in Ls.

Summing the equality (for fi + f2) and inequality (for g; + g2) above, we get

fi+ f2+ g1+ g2 < 8m* —4m.

Therefore either f; 4+ g1 or fo + go is at most

n? —2n _ {@—1)2]

am? — 2m =

4 4

As we can complete the sorting with f; + ¢1 swaps, and also with fo 4+ go swaps, this
completes the proof for n divisible by 4.

Assume now that n = 4m + 2. Following the previous proof, with the necessary
adaptations, call a label small if it lies in {1,2,...,2m + 1} and large if it lies in
{2m + 2,2m + 3,...,4m + 2}. By the same argument as before, there is an arc A;
of 2m + 1 consecutive points with exactly m small (and m + 1 large) labels. Its comple-
ment Aj is also an arc of length 2m + 1, with m + 1 small (and m large) labels. View
A1 (Az) as the left (respectively, right) half of the whole cycle. Consider two possible
sequences of swaps: one shifting all the small labels of Ay to its top, and all the small
labels of As to its top; and the other shifting all small labels of each arc to its bottom.
The i-th small label in A; (1 <4 < m, counting from top to bottom) will move to either
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the i-th or the (m + 1 + i)-th position in A; (again, counting from top to bottom). Its
current position is somewhere between ¢ and m + 1 + ¢, and therefore the sum of its
distances from the two possible endpoints is m 4+ 1. A similar argument for As, with
1 <i < m+1 and positions ¢ and i + m, yields sum of distances m. If f; (f2) is the
total number of swaps required for the first (respectively, second) process, then

fitfo=m-(m+1)+(m+1)-m=2m(m+1).

Let S; denote the set of m small labels in A;, let L denote the set of m + 1 large labels
in Aj, and define analogously So and Ly (of sizes m + 1 and m, respectively) for the arc
As. Denote by g1 (g2) the number of swaps require to sort S; U Sy as well as L U Lo
in the first (respectively, second) process. The crucial observation is that each pair of
labels s; € 57 and s9 € S5 form an inversion at the end of the first process if and only if
they do not form an inversion in the second; and a similar claim for ¢; € Ly and {5 € Lo.
Therefore

1
G+g <2 <2(’;> +2<m2+ >> +2m(m + 1) = 6m2 + 2m.

Summing the equality (for fi + f2) and inequality (for g; + g2) above, we get
fi+ fo+ gi+ go < 8m® + 4m.

Therefore either f; 4+ g1 or fo + go is at most

(n—2%+2(n—-2) n’—2n _ {(n—m?J.

4m? + 2m = =
metam 1 1 1

This completes the proof for n = 4m + 2.

Next assume that n = 4m + 1. Call a label small if it lies in {1,2,...,2m} and large
if it lies in {2m + 1,2m + 2,...,4m + 1}. Then there is an arc A;, consisting of 2m
consecutive points, with exactly m small (and m large) labels. Its complement As is an
arc of length 2m + 1, with m small (and m + 1 large) labels. Then, using notations as
before,

fitfo=m-m+m-(m+1)=2m>+m

and

1
G1t+g2<2- (3<ZL> + <m;— >) +m? +m(m+1) = 6m? —m.

Therefore either fi1 4+ g1 or fo + g9 is at most

_1)2
sm2 = =17
m 1

This completes the proof for n = 4m + 1.
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(d) Finally, assume that n = 4m+3. Call a label small if it lies in {1, 2, ...,2m~+2} and large
if it lies in {2m + 3,2m + 4, ...,4m + 3}. By a slightly modified argument (considering
only arcs that do not contain a specific point with a large label), there is an arc A,
consisting of 2m + 1 consecutive points, with exactly m + 1 small (and m large) labels.
Its complement Aj is an arc of length 2m + 2, with m + 1 small (and m + 1 large) labels.
Then, using notations as before,

f1+f2:(m+1)-m+(m+1)-(m+1):2m2+3m+1

and
m+1 m 9 9
mte<2- (30, )4y )) D mim 1) =6m® +5m+ 1.
Therefore either fi1 4+ g1 or fo + g9 is at most
—1)2

Am* 4 4m+1=(2m+1)* = %

This completes the proof for n = 4m + 1.
Having dealt with all four cases, we have now completed the proof of Theorem 2.1. O

2.2. Lower bound. Recall that any swap mentioned in this section is an adjacent swap.

In this subsection we prove

Theorem 2.2. For anyn > 1,

f(n) = V";UQJ :

Proof. By induction on n, carried out separately for odd and even values of n.

Assume first that n is odd. We shall prove that any circular sorting of the cyclic permutation
(n,m —1,...,1) to the trivial cyclic permutation v = (1,2,...,n) requires at least (n — 1)2/4
swaps. This implies the claimed lower bound on the diameter f(n).

The claim clearly holds for n = 1. For the induction step, assume that n > 1 is odd, and that
the claim holds for n — 2. Consider an arbitrary circular sorting of (n,n —1,...,1) to w. This
can be viewed as a (non-circular) sorting to the identity permutation, using affine swaps from
the set {(1,2),(2,3),...,(n—1,n),(n,1)}, of a suitable cyclic shift of the permutation w, which
is defined by w(i) :==n+1—1 (1 <i <n). Such a cyclic shift is a permutation wy, i, : [n] = [n]
of the form

Wy k(1) =k —14 (mod n) (Vi),
for some fixed integer k. Observe that, for odd n and any k, w,, ;, is an involution with one fixed
point.

Let d denote circular distance on the set of n points on the circle, namely

d(i, j) = min{li — jl,n —|i = j} (V] € [n]).

For any i € [n], define the gap of i to be the distance d(i,wy, (7). The gap of the unique fixed
point is 0. The other gap values are the integers 1 < d < (n — 1)/2, each attained by exactly
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two points forming a 2-cycle of wy, . Let ¢ and j = w, x(i) be the two points having maximal
gap d = (n — 1)/2. Denote A := {i,j} and B := [n] \ A4; clearly, A and B are invariant under
wp k- The restriction of w,, ;, to B can be viewed, after a suitable relabeling of the points, as the
permutation wy,_s ¢ for some /.

Consider now a sequence of swaps that sorts w, j, to the identity permutation. Distinguish two
kinds of swaps: those involving only elements of B, and those that involve at least one element
of A. The latter swaps do not change the relative order of the elements of B, and therefore the
former swaps yield a sorting of w,_s ¢ to the identity permutation. By the induction hypothesis,
this requires at least (n—3)2/4 swaps. Each of the remaining swaps involves at least one element
of A, and it is clear that this part of the sorting, eventually interchanging ¢ and j which are at
circular distance (n — 1)/2, requires at least 2- (n — 1)/2 — 1 = n — 2 swaps. Altogether, the
sequence contains at least

(n—3)?
4
swaps, as claimed. This proves the claim for any odd n.

(n—1)
+(n—-2)=—"—
(-2 ="
Assume now that n is even. Again, we can view a circular sorting of the cyclic permutation
(n,n—1,...,1) to the cyclic permutation u as a sorting to the identity permutation, using affine

swaps, of a permutation wy, ;, : [n] — [n] of the form
Wy k(i) =k —1 (mod n) (Vi),

for some fixed k. This is again an involution, but now (for n even) there are two options for its
number of fixed points: w,,  has two fixed points if k is even, and none if £ is odd. We shall
prove that the number of swaps needed to sort wy, j to the identity permutation is at least IV, x,
where

(n? —2n)/4, if Kk —n/2 is odd,;

Nn,k =
(n? —2n+4)/4, if k—n/2 is even.

Note that these numbers are |(n — 1)2/4] and |(n — 1)?/4] + 1, respectively, so that our claim
implies the required lower bound on the diameter f(n).

The proof will proceed by induction on (even values of) n. The claim clearly holds for n = 2:
wy  is the identity permutation for even k (with Ny, = 0), and the non-identity element of Sy
for odd k (with Noj = 1).

For the induction step, assume that n > 2 is even, and that the claim holds for n — 2. We

consider four cases, depending on the parity of k and of n/2.

(a) Assume that both & and n/2 are even. The involution w, ; has two fixed points, and all
its gaps are even. The minimal gap 0 and maximal gap n/2 are each attained by two
points, while each intermediate value 2 < 2d < (n —4)/2 is attained by four points. Let
i and j = wy, (i) be the two points with maximal (even) gap n/2; denote A := {i,j}
and B := [n] \ A. Clearly, A and B are invariant under w,, . The restriction of wy, ; to

B can be viewed, after a suitable relabeling of the points, as the permutation w,,_o, for
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some even £. Noting that (n — 2)/2 is odd, we thus get at least

n—2)2-2(n-—2 n?—2n+4
( >4( >+(n_1):4: .

Nn—2,f + (2 . n/2 — 1) =

swaps.

(b) Assume that k is even but n/2 is odd. The involution wy, ; has two fixed points, and
all its gaps are even. The minimal gap 0 is attained by two points, while each other
gap 2 < 2d < (n — 2)/2 is attained by four points. Let ¢ and j = w, (i) be two of the
points with maximal (even) gap (n —2)/2; denote A := {7, j} and B := [n]\ A. Clearly,
A and B are invariant under w, ;. The restriction of w,, ; to B can be viewed, after a
suitable relabeling of the points, as the permutation w,_s ¢ for some even £. Noting that
(n —2)/2 is even, we thus get at least

(n—2)2-2(n—-2)+4
4

n?—2n
+(n—3) =" = Ny

Npog+(2-(n—2)/2-1)=

swaps.
(c) Assume that k is odd and n/2 is even. The involution wy, ; has no fixed points, and all
its gaps are odd. Each odd number 1 < 2d — 1 < (n — 2)/2 is attained as a gap by four
points. Let ¢ and j = w, x(¢) be two of the points with maximal (odd) gap (n — 2)/2;
denote A := {i,j} and B := [n] \ A. Clearly, A and B are invariant under wy, ;. The
restriction of w, 1 to B can be viewed, after a suitable relabeling of the points, as the
permutation w,_g for some odd ¢. Noting that (n — 2)/2 is odd, we thus get at least

(n—22-2(n—-2)+4
4

2
n® —2n

Np—o¢+2-(n—-2)/2-1)=

swaps.

(d) Assume that both k and n/2 are odd. The involution wy, j has no fixed points, and all
its gaps are odd. The maximal gap n/2 is attained by two points, while each other odd
value 1 < 2d — 1 < (n —4)/2 is attained by four points. Let ¢ and j = wy (i) be the
two points with maximal (odd) gap n/2; denote A := {i,j} and B := [n] \ A. Clearly,
A and B are invariant under wy, ;. The restriction of w,, ; to B can be viewed, after a
suitable relabeling of the points, as the permutation w,_s ¢ for some odd ¢. Noting that
(n — 2)/2 is even, we thus get at least

n—2)%2—-2(n-2 n? —2n+4
Nogo+@onjz—) = UE2 202D gy 2By,
swaps.
This proves our claim for any even n, and completes the proof of Theorem 2.2. ]

Remark 2.3. Theorem 1.1 determines the maximum number f(n) of swaps needed to sort a
cyclic permutation of [n]. It may be interesting to determine or estimate the number of such
cyclic permutations that can be sorted by k swaps, for all £ < f(n).
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3. SORTING BY ALL SWAPS

The circular sorting question can be asked when a swap of any two (not necessarily adjacent)
elements is allowed. In this case n —2 swaps always suffice (Observation 3.1). For n = P, where
p is an odd prime, at least n — 1 — log, n swaps are required (Proposition 3.2). It follows that
for every prime n, the bound n — 2 is tight (Corollary 3.3). For general n we get a lower bound
of n — O(logn) (Theorem 3.10).

3.1. Upper bound. Let ¢ := (1,2,...,n) be an n-cycle in S,,, and let C,, = {(c) be the cyclic
subgroup of S,, generated by c. A cyclic permutation, namely an equivalence class [r] where
m € Sn, may be identified with a coset wC,.

Denote by t([n]) the sorting time of a cyclic permutation [r] to the trivial cyclic permutation
[c], where a permissible step is a multiplication (on the left, or equivalently on the right) by any
transposition, and let

t(n) == max t([r]).

Consider the graph on all cyclic permutations in which two cyclic permutations are adjacent if
and only if one can be obtained from the other by a single a swap of any two letters. Since this
graph is vertex transitive, its diameter is equal to t(n).

For a permutation m € Sy, let cyc(m) be the number of cycles in 7. Observe that, for any
7 € Sp, the sorting time of [x] is

t([r]) = min (n — cyc(o)).

oenCh
Hence
t = i — .
(n) = max min (n — cyc(o))
Observation 3.1. For every n > 2,
t(n) <n-—2.

Proof. Every permutation has a cyclic shift with a fixed point, thus with at least 2 cycles. [

Computer experimentation show that, for n < 11, this upper bound is attained only for prime
values of n. In the following section we prove a general lower bound for prime powers, implying
that the upper bound is indeed tight for every prime n.

3.2. Primes and prime powers.

Proposition 3.2. If n = p¥, where p is an odd prime and k > 1, then
t(n) >n—k—1=n—log,n— 1.

Proof. For a € Z,, define a map 7, 4 : Zy, — Zp by

Tna(l) =a-i (mod n) (Vi€ Zy).
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Let Z) = {a € Zy, : gcd(a,n) = 1} be the group of units of the ring Z,,. If a € Z) then m, 4 is
a bijection; identifying [n| with Z,,, we can write m, , € S,. Moreover, if o € m, ,C), then, for a
suitable j € Zy,
o(i)=a-(i+j) (modn) (Vi€ Zy).
We want each o to have a fixed point. Thus we want to have, for every j € Z,, a solution i to
the congruence
i=a-(i+j) (modn),
namely to
(I1—a)-i=a-j (modn).
This has a solution for every j € Z, (in particular, for j = a~!) if and only if a — 1 € ZX.
Assuming, indeed, that a,a — 1 € Z), let
iv=(1—-a)"ta-j (modn)
be the (unique) fixed point of 0. Then
o(t)—ig=0()—0c(ic)=a-(i+j)—a-(ic+7j)=a-(i—iy) (Vi€ Zy).
Thus o is conjugate (in S,,) to m, 4, by the permutation corresponding to a cyclic shift by i,
and therefore o and 7, , have the same number of cycles:
cyc(o) = cyc(mpq) (Vo € mpoy,).

Now let p be an odd prime and k a positive integer. The following facts regarding generators
of the cyclic group Z;k are part of the remarks following [4, Lemma 1.4.5]. Let 1 < go < p be a

generator of the cyclic group Z,;, and define

go,  ifght#1 (mod p?);
go + p, otherwise.

g:=

Then g is a generator of Z;k, simultaneously for all k£ > 1. The additive group Z, is a disjoint
union of its subsets Cy, ..., Ck, where C; = piZ;k_i (0 <i<k—1)and Cx = {0}. For the above
choice of a generator g, each of these sets forms a single cycle of m ,, thus cyc(m ;) = k + 1.
Note also that ged(g — 1,p) =1, thus g — 1 € Z;k for any k£ > 1. It follows that

cyc(o) = cyc(mp 4) =k + 1 (Vo € mpk o Zyr)

and therefore

t(pF) = max min (p* —cyc(o)) > min  (p* —cye(o)) =p* — (K +1). O

Tl'espk UGWZpk gET k, Z k
Corollary 3.3. If n is prime then
t(n) =n—2.

Proof. This clearly holds for n = 2. By Observation 3.1 and Proposition 3.2, it also holds if n

is an odd prime. O
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Conjecture 3.4. t(n) =n — 2 if and only if n is prime.
Lemma 3.5. Assume that n > 2 and that w € S,, satisfies

=2.
28, VL)

Then each o € wCy, has cycle structure (n —1,1).

Proof. Clearly, each j € [n] is a fixed point of a unique cyclic shift o € 7C,,. This defines a
mapping f : [n] = 7C),. If cyc(o) = 2 then o cannot have more than one fixed point (since
n > 2). It follows that f is injective, thus bijective, and each o € (), has a unique fixed point.

Its other cycle is, of course, of length n — 1. O
Conjecture 3.6. If n > 2 and m € S, satisfies

=2
max cye() =2,

then n is prime and

for some a € Z; .

Conjecture 3.6 implies Conjecture 3.4. Both have been verified for n < 11.
By similar arguments one can prove the following statements.

Proposition 3.7. If n = 2p*, where p is an odd prime and k > 1, then
t(n) >n—2k—2.

Proof. Let g be a simultaneous generator for Z;t for all ¢ > 1, as in the proof of Proposition 3.2,
and fix an integer k > 1. Then either g or g+ p* (whichever is odd) is a generator of ZQka [4, p.
26]. It follows that there exists a simultaneous odd generator g for all Z;pj, 1 <3 < k. Using
the notation m, , from the proof of Proposition 3.2, it is easy to see that cyc(mg,r ;) = 2k + 2,
with cycles corresponding to the subsets C94 = piZ;pk,i and C§Ve" = 2piZQXp,€,i, 0<i<k.

Consider now the shifts of my,k 4, of the form o; := 7r2pk7gcj where ¢ = (1,2,...,2p%). We
would like to have a fixed point for o; for each value of j, since then o is conjugate to oo = Topk ¢;
but this is impossible, since one of the two consecutive integers g — 1 and g must be even. We
therefore only claim that o; has a fixed point for even values of j.

Indeed, a fixed point i for o; (j even) must satisfy
(1—g)-i=g-j (mod2p),

or equivalently, since both j and g — 1 are even,
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This has a solution for each even j if and only if (g—1)/2 is invertible in Z,x, which is indeed the
case (since otherwise g = 1 (mod p), contradicting the fact that g generates Z,). Thus indeed
o; has a fixed point, and is thus conjugate to oy, implying that

Cyc(7r2pk790‘j> = cyc(mopk ;) = 2k + 2 (V even j).
Now consider odd values of j. Since
aj(i)=g-(i+j) (mod 2p"),

and g is odd, the number o;(i) is odd if and only if 7 is even. It follows that each cycle of o;
alternates between even and odd numbers, and therefore has even length. It follows that each

cycle of o; splits into two cycles of 032., thus
cyc((f]?) =2 cyc(oj) (V odd 7).

On the other hand, we claim that, for any value of j, 032- has a fixed point and is thus conjugate
to 08. Indeed,
o2(i)=g¢*-i (mod 2p*) (Vi)
while
20 — 2 - 2 » d 2 k Vi
oj(t)=g"-i+(9"+g)-j (mod2p®) (Vi)
In order to have UJQ-(Z') =i we need
(1-¢%)-i=(s"+g)-j (mod2p")
or, equivalently,
149, LS

o (=g =g (mod p¥).

To this end, it is sufficient (though not necessary!) to have
(1—g)-i=g-j (modp").
As noted above, this equation has a solution 4 for each value of j, since g — 1 € Z;k. The (now
established) existence of a fixed point g for 012. implies that
o2(i) —io = 03 (i) — 03 (io) = g° - (i —io) = 0g(i —ig) (mod 2p*),

2

so that 0'32- = cgdc™ is conjugate to o in Sopk. We therefore have

cye(of) = eye(ag) (V).

Finally, the above description of the cycles of og = T,k , shows that all its cycle lengths are
divisible by p — 1, hence even, except for the two fixed points. It follows that

cyc(od) =2 - cyc(og) — 2.
Putting it all together, we have

cyc(o;) = cyc(og) — 1 (V odd j),
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namely
cyc(w2pk7907) = cyc(mopr ,) — 1 =2k + 1 (V odd j).
Thus
t(2p%) = max min (2p* — cyc(o)) > min 2% — cyc(o
20 = max min (o —evelo)) 2 _ min, (2 ~eye(o)
=min(2p* — (2k +2),2p" — 2k +1)) = 2p* — (2k +2). O

Proposition 3.8. If n =2 and k > 2 then
t(n) >n—2k+1.

Proof. First, for k = 2 the lower bound holds, since t(4) =1=4—-2-2+ 1.

Assume that & > 3. It was shown by Gauss [8, Art. 90-91] that, in this case, Z;k & Zio X Lok—2,
where 3 is a generator of the factor Zyx—2 and —1 is a generator of the factor Zs; see also [14,
Ch. 6, §6].

Note that 3 also generates the cyclic group Z; . Using the notation , , from the proof of
Proposition 3.2, one concludes that the cycles of mox 3 are the subsets C := {e - 213/ 1 0<j<
272711 (0 < i <k —3,e € {1,-1}), Cp_o = {272,282} Oy = {271} and Oy = {0}.
Hence cyc(mar 3) = 2k — 1.

Regarding the shifts, by arguments as above, for every even j, 7T2k’3Cj and Ty 3 are conjugate,
hence have the same number of cycles. Finally, we claim that for every odd j, 7T2k730j has two
cycles. Indeed, for d > 1 and any m we have

d—1
(ng,Scj)d(m) =m-3143;5- ZBZ' =m (mod 2%)
i=0

if and only if
L 3% k
(2m + 37) - 5 = 0 (mod 2%),

which holds (for an odd j) if and only if

33 —-1=0 (mod 2¥*1).

Recalling that the order of 3 in Z;k 41 1s 2F=1 this holds if and only if 2¥~1 divides d, so that
indeed 772k73cj for odd j has two cycles of length 2~ each. Overall, for k > 3,

t(2¥) = max min (2% —cyc(o)) > min (2% — cyc(o))
71'652k 0'€7TZ2k O'€7T2k.’322k

=min(2¥ — (2k —1),28 —2) =28 — (2k —1). O
Question 3.9. Is the function t(n) monotone?

If the function ¢(n) is monotone, one can apply the above bounds to other integers. Note,
however, that there are examples showing that adding a fixed point to m € S;, may decrease the

value of ¢.
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3.3. General lower bound. In this section we prove a general lower bound, which is indepen-
dent of the prime decomposition of n.

Theorem 3.10. For anyn > 1
t(n) >n—[e-(Inn+1)].

Note that for large n = 2 this bound is stronger than the one in Proposition 3.8.

First we show that the probability that a random permutation has a large number of cycles is
small. The following result is surely known in a very precise form; for completeness we include
a self contained elementary proof.

Proposition 3.11. For any k > 0, the probability that a random permutation in S, has exactly
k+ 1 cycles is at most
(In(n — 1) 4+ 1)*
n- k! ’

Proof. We count the number of permutations with k + 1 cycles as follows. Write each cycle of

the permutation with the smallest element of the cycle first, and arrange the cycles in increasing
order of their first elements. The first cycle starts with the element 1. We can select the next
element of the cycle arbitrarily, then the next one, and so on. If the length of this cycle is ny
then this gives (n — 1)(n — 2)---(n — n1 + 1) possibilities. The second cycle must start with
the smallest number that was not chosen yet. Proceed in the same manner to choose the other
cycle elements. If its length is no then this gives (n —n; —1)(n—ny —2)---(n —ny —ng + 1)
possibilities. Proceeding in this way, we see that the number of permutations with k£ 4+ 1 cycles
of lengths nq,...,ngy1 (arranged according to the above convention) is

n!

nn—mni)(n—my—mng) - (n—ny—ng... —ng)

Summing over all possibilities of cycle lengths gives

n! 1
2
where the summation is over all k-tuples (my, ma, ..., my) of integers satisfying n > m; > mg >

<o >my > 0.
Consider now the expression

SR — k
1723 Tao1)

In this expression, every product as above appears k! times (and there are also additional
products with non-distinct factors). Therefore, the total number of permutations with & + 1

n! 1 1 1 1\
e ,

cycles is at most

n-kl \1"2"3 n—1

implying the desired result by the standard bound on the harmonic series. O
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Proof of Theorem 8.10. For simplicity, replace the upper bound in Proposition 3.11 by the
slightly larger bound
(Inn + 1)k
n-kl
Recalling that k! > (k/e)* - v/27k for every k > 1, Proposition 3.11 implies that the probability
of having ko + 1 cycles, for ko := [e(Inn + 1)], is at most
1 e(lnn 4 1)\ " 1
m< g (PR <
Now note that, by definition, for k > kg
Inn+1 < - Inn+1 :pk'l
E+1 — e(lnn+1)

.
It follows that the probability of a random permutation in .S, to have more than kg cycles is at

Pk =

Pk+1 = Pk -

most

n—1 o) 1 1 1
< . e < —- < —.
Z Pl = Pho mZ:o n (l—e b -\2rky n

k=ko
Therefore, for a random permutation 7, cyc(mc’) < ko for every j with high probability, and
hence there exists such a permutation 7. O

Note added in proof: A recent paper of Bastide, Bishnoi, Groenland, Gijswijt and Joshi
contains several improved results about the function ¢(n) considered in Section 3. These results
support Conjecture 3.4 by proving its assertion for numbers n that are divisible by 2 or 3, and
include several counterexamples to Conjecture 3.6 found by a computer search.
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