
Matching nuts and bolts
(Extended Abstract)

Noga Alon ∗ Manuel Blum † Amos Fiat ‡ Sampath Kannan §

Moni Naor¶ Rafail Ostrovsky ‖

Abstract

We describe a procedure which may be helpful to
any disorganized carpenter who has a mixed pile of
bolts and nuts and wants to find the corresponding
pairs of bolts and nuts. The procedure uses our
(and the carpenter’s) ability to construct efficiently
highly expanding graphs. The problem considered
is given a collection of n bolts of distinct widths
and n nuts such that there is a 1-1 correspondence
between the nuts and bolts. The goal is to find for
each bolt its corresponding nut by comparing nuts
to bolts but not nuts to nuts or bolts to bolts. Our
objective is to minimize the number of operations
of this kind (as well as the total running time).
The problem has a randomized algorithm similar
to Quicksort. Our main result is an n(log n)O(1)-

∗Department of Mathematics, Raymond and Beverly Sackler
Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel

and AT & T Bell Labs, Murray Hill, NJ 07974, USA. e-mail:
noga@math.tau.ac.il. Research supported in part by a United

States Israel BSF Grant
†Computer Science Division, University of California at Berke-

ley, Berkeley, CA 94720, USA. e-mail: blum@cs.berkeley.edu.

Supported by NSF grant CCR92-01092.
‡Department of Computer Science, Raymond and Beverly

Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv,
Israel. e-mail: fiat@math.tau.ac.il. Research supported by a grant
from the Israeli Academy of Sciences
§Department of Computer Science, University of Arizona,

USA. e-mail: kannan@cs.arizona.edu.
¶Department of Applied Mathematics and Computer Science,

The Weizmann Institute of Science, Rehovot 76100, Israel. e-mail:
naor@wisdom.weizmann.ac.il. Supported by an Alon Fellowship.
‖University of California at Berkeley Computer Science Divi-

sion, and International Computer Science Institute at Berkeley.
e-mail: rafail@melody.berkeley.edu. Supported by NSF postdoc-

toral fellowship and ICSI. Part of this work was done while visiting
Tel Aviv University and Hebrew University of Jerusalem.

time deterministic algorithm, based on expander
graphs, for matching the bolts and the nuts.

1 Introduction

Given a collection of n bolts of pairwise distinct
widths and n corresponding nuts, our objective
is to find for each bolt its corresponding nut.
By trying to match a bolt and a nut we can see
which one is bigger, and our aim is to minimize
the number of operations of this kind (as well
as the total running time of the rest of the
algorithm). Note that we are not allowed to
compare two bolts or two nuts directly. The
mathematical description of the problem is thus
the following; given two sets B = {b1, . . . , bn}
and S = {s1, . . . , sn}, where B is a set of n
distinct real numbers (representing the widths
of the bolts) and S is a permutation of B, we
wish to find efficiently the unique permutation
σ ∈ Sn so that bi = sσ(i) for all i, based on
queries of the form compare bi and sj. The
answer to each such query is either bi > sj or
bi = sj or bi < sj.

The nuts and bolts matching problem is
first mentioned as an exercise in [14], page 293.
There is a simple randomized algorithm along
the lines of Quicksort for this problem and this
solution is described later in this section.

Since there are n! possibilities for σ, the ob-
vious information theoretic lower bound shows
that any bounded degree decision tree that
solves the problem has depth at least log(n!) =

2 Alon, Blum, Fiat, Kannan, Naor and Ostrovsky

Θ(n log n). In particular, at least Ω(n log n)
comparisons are needed. This is a lower bound
for the expected number of comparisons in any
randomized algorithm for the problem as well.

A simple modification of Quicksort shows
that there are randomized algorithms whose
expected number of comparisons (and running
time) are O(n log n): pick a random bolt, com-
pare it to all the nuts, find its matching nut
and compare it to all the bolts, thus split-
ting the problem into two problems, one con-
sisting of the nuts and bolts smaller than the
matched pair and one consisting of the larger
ones. Repeating in this manner yields an al-
gorithm whose expected running time can be
analyzed by imitating the known analysis for
Quicksort (see, e.g., [8]) showing that it is
Θ(n log n). Moreover, it is easy to modify the
above algorithm and make sure that the proba-
bility its running time will considerably exceed
its expectation will be exponentially small.

Deterministic algorithms seem more diffi-
cult to find. In fact, even obtaining an o(n2)
algorithm appears to be a non-trivial task. We
have two different approaches for the problem.
If we count only comparisons, and allow our-
selves to deduce implications by transitivity for
free, then we can apply some of the techniques
used in the study of parallel approximate sort-
ing and selecting comparison algorithms (see
[1], [2], [3] [7] [13]) and obtain deterministic,
explicit algorithms with O(n(log n)3+ε) compar-
isons. Moreover, these algorithms can be paral-
lelized and we can also show that the minimum
number of comparisons needed in a k-round al-
gorithm is Θ̃(n1+1/k), where here we use the
common f = Θ̃(g) notation to indicate that
f and g are equal up to polylogarithmic fac-
tors. More details will be given in the final ver-
sion of this paper. Let us just remark that the
Ω(n1+1/k) lower bound for the number of com-
parisons in any (deterministic or randomized)
k-round algorithm follows by counting from the
well known fact that the number of acyclic ori-

entations of any graph with m edges and n ver-
tices is at most ((2m+ n)/n)n.

The problem becomes harder if one is in-
terested in a “real” algorithm, i.e. we count
both the number of comparisons and the time
to decide which comparisons to perform. Our
main result is an n(log n)O(1)-time algorithm for
matching nuts and bolts. The algorithm con-
structs “deterministic samples” by applying ex-
pander graphs in an interesting way.

An outline of the algorithm is given in the
next section and a detailed description together
with a proof of correctness are given in Section
3.

2 Outline of the algorithm

Our idea is to try to find a good pivot for
the partitioning in the Quicksort like algorithm
described above. For a nut s ∈ S define rank(s)
as |{s′ ∈ S : s ≥ s′}|. The rank of a bolt b ∈ B
is defined similarly. A good pivot is a nut whose
rank is roughly n/2. To decide whether a nut
is a good pivot we can take a sample of the
bolts and compare the nut to all the bolts in the
sample. As a first try we associate with every
nut s a sample Ts of bolts. The algorithm is as
follows:

1. For every nut s compare s to all the bolts
in Ts.

2. Delete from further consideration all the
nuts s where s is not larger than roughly
half of Ts and smaller than roughly half of
Ts.

3. Start exhaustively testing the remaining
nuts until you find one that is a good pivot.

The number of comparisons such an algorithm
requires is the sum of the sizes of the sam-
ples, plus n times the number of bad pivots re-
maining at Step 3 of the algorithm. One can
show that constructions for the samples Ts ex-
ist where the size of each Ts is

√
n log n, and

at Step 3 of the algorithm at most
√
n log n

Matching nuts and bolts 3

bad pivots remain. Thus the total complexity
is O(n1.5

√
log n). As for explicit constructions,

one can choose the samples Ts according to a
projective plane and get an explicit O(nc)-time
algorithm for some c < 2. We omit the details.

However, O(n1.5) seems to be the limit of
any such scheme, regardless of the construction
of the samples. To get down to O(n log nO(1))
we need a more sophisticated algorithm.

Our scheme consists of ` = log2 n iterations
where in each iteration half the nuts survive for
the next one. We associate with every nut s ∈ S
a sequence of ` samples T 0

s , T
1
s , . . . T

`
s where the

size of T is is ti for 0 ≤ i ≤ `. The ti’s increase
with i. Our algorithm starts with a pile of nuts
and a pile of bolts. Over time it discards nuts
until it has a single nut remaining. The set
of nuts that survived till the ith iteration is
denoted by Si.

For i = 0 to `

1. For every remaining nut s ∈ Si compare s
to all the bolts in T is .

2. For every remaining nut s ∈ Si see how
close to ti/2 is the rank of s in T is .

3. Delete from further consideration half the
nuts, those whose ranks are the furthest
from ti/2.

The remaining nut is our candidate for a good
pivot.

The complexity of the algorithm is now

∑̀
i=0

n/2i · ti.

Therefore ti can double in each iteration with-
out effecting the total complexity by much.
What we still must specify is:

1. An efficient construction for the samples
T is .

2. The relationship between the nuts in Si
and in Si+1. This relationship should some-
how allow us to deduce that the surviving
element after ` iterations is a good pivot.

The samples T is ’s are constructed via ex-
pander graphs. We identify the nuts with the
nodes of such a graph, associate every surviv-
ing nut s with a disjoint set of 2i nodes and
take Ts to be the set of all neighbors of the set
associated with s.

The property that the surviving nuts Si
should maintain is that most of them are good
pivots, however the definition of a good pivot
should relax somewhat in time,since we should
leave room for errors from the sampling. The
exact property we will maintain is that for half
the elements of Si their rank among all the bolts
is between n

4
− i ·c and 3n

4
+ i ·c, where c is some

number smaller than, say, n/8 log n. It is easy
to verify that if S` maintains this property, then
its only surviving member is a good pivot.

3 An O(n(log n)4) algorithm

We now provide a detailed description of the
algorithm and the proof of correctness. Subsec-
tion 3.1 introduces the main tool our carpen-
ter uses, the expander graph, and shows how
to construct the required samples from it. Sub-
section 3.2 gives the main Lemma on expanders
which is used in the proof of correctness in Sub-
section 3.3.

3.1 The algorithm
For a nut s ∈ S define rank(s) by rank(s) =

|{s′ ∈ S : s ≥ s′}|. The rank of a bolt
b ∈ B is defined similarly. A nut s is called
an approximate median if n/10 ≤ rank(s) ≤
9n/10. As described above, an approximate
median is a good pivot: given an approximate
median s we can compare it to all bolts, find
its matching bolt b, compare b to all nuts
and split the problem into two subproblems
of the same type, each of size between n/10
and 9n/10. Therefore, in order to get the

4 Alon, Blum, Fiat, Kannan, Naor and Ostrovsky

required O(n(log n)4) algorithm it suffices to
design an O(n(log n)3) algorithm for finding an
approximate median.

Our algorithm for finding an approximate
median uses a sequence of bipartite (multi-)
graphs Hi. All these graphs will be constructed
from a single expander. Let G = (V,E) be
a d-regular graph on a set V = {v1, . . . , vn}
of n vertices in which the absolute value of
all nontrivial eigenvalues is at most 2

√
d− 1.

There are known explicit constructions of such
graphs (see [10], [11]) for any d for which d−1 is
a prime power congruent to 1 modulo 4, where
for each such d there are constructions for an
infinite set of values of n containing a number
between x and cx for all large x, where c is
some absolute constant. By adding dummy
bolts and nuts, if necessary, we may assume,
thus, that a graph G as above exists, where n
is the number of bolts (and nuts). Moreover,
the known constructions of these graphs enable
one to construct them in time proportional to
their number of edges. For our algorithm we
take d = (1+o(1))108 log2

2 n, where here, and in
what follows, we make no attempt to optimize
the multiplicative constants.

For each i, 0 ≤ i ≤ log2 n, define a bipartite
graph Hi with classes of vertices U and W ,
where |U | = bn/2ic and |W | = n as follows.
Put I = bn/2ic and let V = V1 ∪ V2 ∪ . . . ∪ VI
be an arbitrary partition of V into I almost
equal pairwise disjoint parts. Thus n/2I ≤
bn/Ic ≤ |Vj| ≤ dn/Ie ≤ 2n/I for all j. Denote
U = {u1, . . . , uI} and W = {w1, . . . , wn}. The
number of parallel edges between uj and wk is
simply the number of neighbors of vk in Vj in
the original graph G.

The algorithm consists of ` = blog2 nc
iterations. In the beginning of iteration number
i, (0 ≤ i < blog2 nc) we have a subset Si of
cardinality |Si| = I = bn/2ic of the set of
nuts. (For i = 0, S0 = S is the set of all nuts,
and each Si will be a subset of Si−1 defined as
described below). Suppose Si = {s1, . . . , sI}

and let B = {b1, . . . , bn} be the set of all bolts.
In the ith iteration, we compare sj to bk for
every edge ujwk of Hi. For each nut sj ∈
Si, define the outdegree outdeg(sj) to be the
number of comparisons as above for which sj
turned out to be at least as big as bk. Note that
since the graphs Hi may have parallel edges,
a comparison may contribute more than 1 to
such an outdegree. The normalized outdegree
ndeg(sj) is now defined as outdeg(sj)/deg(uj),
where deg(uj) (= d|Vj|) is the total degree of
uj in the graph Hi. Intuitively, ndeg(sj)n gives
an approximation to the actual rank of sj. The
set Si+1 is now chosen as the subset of those
bn/2i+1c elements sj of Si whose normalized
outdegrees are closest to 1/2 (equalities are
broken arbitrarily). The algorithm ends after
i = blog2 nc iterations with a set Si of one
element. As we show in the next subsection
this element is an approximate median, i.e. a
nut whose rank is between n/10 and 9n/10.

3.2 A lemma on expanders
We now state and prove the technical lemma

required to show that the algorithm described
above works. It essentially says that for any ex-
pander and any partition of its vertices, every
subset of the vertices A has the property that
the fraction of parts for which the number of
edges between A and the part deviates signifi-
cantly from the “expectation” is small.

Lemma 3.1. Let G = (V,E) be a d-regular
graph on n vertices and suppose that the ab-
solute value of each nontrivial eigenvalue of G
is at most λ. Suppose I ≤ n, and let V =
V1∪V2∪ . . .∪VI be a partition of V into I pair-
wise disjoint sets, so that n/2I ≤ |Vj| ≤ 2n/I
for all j. Let A be a subset of V , and let e(Vj, A)
denote the total number of ordered pairs (vj, a),
with v ∈ Vj and a ∈ A such that vja is an edge
of G. Define

l = |{j : |e(Vj, A)− |A||Vj|d/n| ≥ ε|Vj|d}|.

Matching nuts and bolts 5

Then
l

I
≤ 8λ2|A|

d2ε2n
.

In particular, if λ ≤ 2
√
d− 1 and ε = 100√

d
, then

l/I < 1/200.

Proof. Let n(v) = nA(v) denote the number of
neighbors of v in A. By [4] (see also [5], page
122),∑
v∈V

(n(v)−|A|d/n)2 ≤ λ2|A|(1−|A|/n) ≤ λ2|A|.

By the Cauchy-Schwartz Inequality, for each
fixed j,

1

|Vj|
(e(Vj, A)− |A|d|Vj|/n)2

=
1

|Vj|
(
∑
v∈Vj

(n(v)− |A|d/n))2

≤
∑
v∈Vj

(n(v)− |A|d/n)2.

Since |Vj| ≤ 2n/I for all j this implies that

I

2n

I∑
j=1

(e(Vj, A)− |A|d|Vj|/n)2

≤
I∑
j=1

∑
v∈Vj

(n(v)− |A|d/n)2

=
∑
v∈V

(n(v)− |A|d/n)2 ≤ λ2|A|.

By the definition of l, and since |Vj| ≥ n/2I for
all j, we conclude that

I

2n
lε2

n2

4I2
d2 ≤ λ2|A|,

implying the desired upper bound for l. 2

3.3 The proof of correctness
The discussion at the end of Section 2

implies that in order to prove that the algorithm
in Subsection 3.1 indeed finds an approximate
median it is sufficient to show the following.

Claim 3.1. For each i, the ranks of at least
half of the elements in Si are between n

4
−200 in√

d

and 3n
4

+ 200 in√
d
.

Proof: We apply induction on i. The result
clearly holds for i = 0. Assuming it holds for i
we prove it for i+ 1. Let Sgoodi be the set of all
members of Si whose ranks r satisfy

n

4
− 200

in√
d
≤ r ≤ 3n

4
+ 200

in√
d
.

Let Smediumi be the set of all members of Si
whose ranks r satisfy

n

4
− 200

(i+ 1)n√
d
≤ r <

n

4
− 200

in√
d

or

3n

4
+ 200

in√
d
< r ≤ 3n

4
+ 200

(i+ 1)n√
d

,

and let Sbadi be all the other members of Si.
We must show that it is impossible that more
than half of the members of Si+1 will come from
Sbadi . Assume this is the case. Then there is a
subset T ⊂ Sgoodi and a subset Z ⊂ Sbadi , so
that |T | = |Z| ≥ |Si|/4 and in the ith iteration,
the normalized outdegree of every z ∈ Z was
closer to 1/2 than the normalized outdegree of
every t ∈ T . We show that this is impossible
by applying Lemma 3.1.

Indeed, by this lemma, with A being the
set of all vertices in W corresponding in the
graph Hi to bolts whose ranks are below n/4−
200ni/

√
d and with ε = 100/

√
d we conclude

that all but at most |Si|/200 members of Sgoodi

have normalized outdegree strictly bigger than
1/4 − 200i/

√
d − 100/

√
d. Similarly, by ap-

plying this lemma with A being the set of all
vertices corresponding to bolts of ranks above
3n/4 + 200ni/

√
d we conclude that all but at

most |Si|/200 members of Sgoodi have normal-
ized outdegree strictly less than 3/4+200i/

√
d+

100/
√
d. Thus, the normalized outdegrees of all

6 Alon, Blum, Fiat, Kannan, Naor and Ostrovsky

but at most 0.01|Si| members of Sgoodi are be-
tween these two bounds.

A similar application of the lemma with A
being the set of all vertices corresponding to
bolts of ranks less than n/4 − 200n(i + 1)/

√
d

(as well as to the symmetric set corresponding
to bolts of ranks greater than 3n/4 + 200n(i +
1)/
√
d) shows that all but at most 0.01|Si|

members of Sbadi have normalized outdegrees
which are either smaller than 1/4 − 200(i +
1)/
√
d + 100/

√
d or bigger than 3/4 + 200(i +

1)/
√
d− 100/

√
d. Therefore, the existence of T

and Z as above is impossible, completing the
proof. 2

4 Conclusions

We have presented an O(n log4 n) time deter-
ministic algorithm for the nuts and bolts match-
ing problem. It is worth noting that since we
applied expanders of polylogarithmic degrees
there are simpler explicit constructions than
those given in [10] and [11] and we can take ap-
propriate Cayley graphs of the groups Zk

2 by ap-
plying some known constructions of Linear Er-
ror Correcting Codes, as described in [6]. This
gives somewhat simpler graphs at the cost of
increasing the complexity by a polylogarithmic
factor. We omit the details.

It is conceivable that using the techniques of
this paper one can get an O(n log2 n) algorithm.
However getting below O(n log2 n) seems to re-
quire a new method. In particular our method
does not reduce the set of active bolts at all, but
keeps all of them “alive”. Finding a O(n log n)
algorithm seems to require a way of sampling
from both the nuts and the bolts while keeping
many of the sampled ones matched.

We can think of two problems where our
deterministic sampling methods may be helpful:
one is local sorting where the goal is to answer
all the the relationships between elements who
are neighbors in a given graph. An optimal
probabilistic algorithm is known [9]. The other
problem is selection where the input is stored in

a read only memroy and ther is also some small
read/write memory [12].

Acknowledgements

The last author wishes to thank Leonard Schul-
man for helpful discussions and Yishay Man-
sour for his hospitality while visiting Tel Aviv.

References

[1] M. Ajtai, J. Komlós, W.L. Steiger and E.
Szemerédi, Almost sorting in one round, Ad-
vances in Computing Research, Vol. 5, 1989,
JAI Press, pp. 117-126.

[2] N. Alon and Y. Azar, Finding an approximate
maximum, SIAM J. on Computing 18, 1989,
pp. 258-267.

[3] N. Alon and Y. Azar, Parallel comparison al-
gorithms for approximation problems, Proc.
29th IEEE Symp. on Foundations of Com-
puter Science, Yorktown Heights, NY, 1988,
pp. 194-203. Also: Combinatorica 11, 1991,
pp. 97-122.

[4] N. Alon and F. R. K. Chung, Explicit con-
struction of linear sized tolerant networks,
Discrete Math. 72(1988), pp. 15-19; (Proc.
of the First Japan Conference on Graph The-
ory and Applications, Hakone, Japan, 1986.)

[5] N. Alon and J. H. Spencer, The Probabilis-
tic Method, Wiley, 1991.

[6] N. Alon and Y. Roichman, Random Cayley
graphs and Expanders, Random Structures
and Algorithms, in press.

[7] B. Bollobás and G. Brightwell, Graphs whose
every transitive orientation contains almost
every relation, Israel J. Math. 59, 1987, pp.
112-128.

[8] T. H. Cormen, C. E. Leiserson and R. L.
Rivest, Introduction to Algorithms, MIT
Press, 1990.

[9] W. Goddard, C. Kenyon, V. King and L.
Schulman, Optimal randomized algorithms
for local sorting and set-maxima, SIAM J. on
Comput. 22, 1993, pp. 272–283.

[10] A. Lubotzky, R. Phillips and P. Sarnak, Ex-
plicit expanders and the Ramanujan conjec-
tures, Proc. 18th ACM Symp. on Theory of

Matching nuts and bolts 7

Computing, 1986, pp. 240-246. See also: A.
Lubotzky, R. Phillips and P. Sarnak, Ra-
manujan graphs, Combinatorica 8, 1988, pp.
261-277.

[11] G. A. Margulis, Explicit group-theoretical
constructions of combinatorial schemes and
their application to the design of expanders
and superconcentrators, Problemy Peredachi
Informatsii 24, 1988, pp. 51-60 (in Russian).
English translation in Problems of Informa-
tion Transmission 24 (1988), pp. 39-46.

[12] J. I. Munro and M. Paterson, Selection and
sorting with limited storage, Theoretical Com-
puter Science 12, 1980, pp. 315-323.

[13] N. Pippenger, Sorting and selecting in rounds,
SIAM J. Comput. 6, 1987, pp. 1032-1038.

[14] G. J. E. Rawlins, Compared to what?
an introduction to the analysis of algo-
rithms, Computer Science Press, 1991.

