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A group of players are supposed to follow a prescribed profile of strate-
gies. If they follow this profile, they will reach a given target. We show that
if the target is not reached because some player deviates, then an outside ob-
server can identify the deviator. We also construct identification methods in
two nontrivial cases.

1. Introduction. Alice and Bob alternately report outcomes (heads or tails), which each
of them is supposed to generate by tossing a fair coin. If both of them follow through, then the
realized sequence of outcomes is random and with probability 1 will pass known statistical
tests. Suppose that the sequence of outcomes does not pass a given test: for example, the long-
run frequency of heads does not converge to 1/2. Can an outside observer who observes only
the sequence of outcomes identify who among Alice and Bob did not generate the outcomes
by tossing a fair coin? The answer is positive: if the outcome sequence fails the test, it is easy
to identify who is responsible by checking separately the long-run frequency of heads in the
sequences produced by each player.

Consider now a different test: Alice’s and Bob’s outcomes control a one-dimensional ran-
dom walk that moves to the right when a head is reported, and to the left when a tail is
reported. Alice controls the odd periods and Bob controls the even periods, and they pass the
test if the realized walk crosses the origin infinitely often. We assume that the coin flips are
generated sequentially, and that each player observes the previous flips of the other player
before announcing her or his next outcome. A version of this test that is also interesting is the
one in which Alice and Bob pass the test if the walk visits the origin at least once after the
initial step.

Here, too, if Alice and Bob generate the outcomes by tossing fair coins, the realized se-
quence passes the test almost surely. Suppose this does not happen. Observing only the re-
ported outcomes, can one identify who among the two is responsible for the test’s failure?
The reader may want to stop at this point and think whether this is possible.

We study a more general form of this question, in which each of several players is supposed
to generate outcomes according to some probabilistic rule in every period. We are also given
a target set, which is a set of infinite sequences of outcomes, and assume that if the players
follow their probabilistic rules, then with probability 1 the generated sequence is within the
set. A blame function is a function from the complement of the target set to the set of players:
if the generated sequence happens to be outside the target set, the blame function identifies
a player who is proclaimed the deviator. In our opening example, the target set is the set of
realizations with long-run frequency 1/2 of heads, and in the second example the target set is
the set of all realizations where the induced random walk crosses the origin infinitely often.
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Given the players’ probabilistic rules and the target set, we seek a blame function with the
property that, if only one player deviates from her prescribed rule, then the probability that
the realization is outside the target set and an innocent player is blamed is small.

Our motivation comes from game theory. The most studied solution concept in game the-
ory is the Nash equilibrium ([14]), which is a profile of strategies, one for each player, that is
immune to unilateral deviations, that is, such that no player can profit by deviating from her
strategy assuming her opponents stick to their equilibrium strategies. A common way to con-
struct a Nash equilibrium in dynamic games is to find a profile of strategies such that if played
together these strategies yield a high payoff to all players, and punish a player who is caught
deviating; see, for example, [4]. To implement such a construction, the players must be able
to identify the deviator once a deviation is detected, assuming there is only one deviator. The
goal of our paper is to study the extent to which a deviator can be correctly identified.

Despite its application to game theory, it appears that in its full generality the question
has not been addressed before in the literature. The reason is perhaps that most papers about
Nash equilibrium in dynamic games either study two-player games, where identifying the
deviator does not play any role (because if a player did not deviate, he knows the other must
have deviated), or environments in which the detection of the deviator is easily done. The
latter include (a) environments where the profile of strategies the players should follow is
deterministic, so that a deviation is immediately detected, as in [4], and (b) environments
where the payoff functions are additive over periods (such as stochastic games with the long-
run average payoff), and the profile of strategies the players should follow has a stationary
flavor. In such an environment, the underlying statistical tests are based on long-run frequency
of actions, as in our opening paragraph, and detecting deviations is done using a law of large
numbers; see, for example, [16, 17].

Dynamic games where the payoff functions are arbitrary functions of the players’ actions
have been studied in the past only in the context of two-player zero-sum games; see, for
example, [12, 13]. In the last few years, researchers turned to study Nash equilibria in mul-
tiplayer dynamic games with general payoff functions, which require detecting deviations
from more complicated strategies; see, for example, [2, 3]. Our result turns out to be useful
in this area. Indeed, it can be used to provide an alternative proof for the existence of an
ε-equilibrium in repeated games with tail-measurable payoffs (see [9]), and to prove that in
every multiplayer stochastic game with finite state and action spaces and with bounded, Borel
measurable payoff functions, for every ε > 0 there is a subgame in which an ε-equilibrium
exists; see [10].

The paper is also related to statistical decision theory. Recall that in a statistical decision
problem (see, e.g., [1], Chapter 7), a statistician observes a realization from a distribution
that depends on an unknown parameter, and then makes a decision. The statistician’s loss is a
function of the unknown parameter and her decision. In our problem, a realization is a finite
or infinite sequence of outcomes, the parameter space is all distributions induced by possible
deviations of a single player, the statistician’s decision is a player to blame, and the statistician
loses if an innocent player is blamed. Our blame function is, in the terminology of statistical
decision theory, a decision rule. The twist is that in our problem the statistician makes a
decision only if the realization is outside the target set. We show that in our environment the
statistician has a decision rule with zero risk (or with a small risk, in case the realization is
finite yet sufficiently long).

The paper is structured as follows. In Section 2 we formally describe the model, the con-
cept of a blame function, and the main results. In Section 3 we construct blame functions
for two nontrivial examples, including the one-dimensional random walk. In Section 4 we
present a nonconstructive proof for the general case, and we conclude in Section 5.
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2. Model and main results. Throughout the paper, we fix a finite set I of players, and
for each player i ∈ I we fix a finite set of actions Ai . Denote by A = ∏

i∈I Ai the set of action
profiles.

The set of finite realizations is the set A<N of finite sequences of action profiles. A pure
strategy for player i is a function σi : A<N → Ai , and a behavior strategy for player i is a
function σi : A<N → �(Ai), where �(Ai) is the set of probability distributions over Ai .
Denote by zn = (zn

i )i∈I the action profile selected by the players in period n, and by
σi(z

n
i |z1, z2, . . . , zn−1) the probability that σi selects the action zn

i in period n, provided the
action profiles selected in the first n − 1 periods are z1, z2, . . . , zn−1. Denote by �i the set of
behavior strategies of player i.

We endow the space AN of realizations with the product topology and the induced Borel
σ -algebra. Every behavior strategy profile σ = (σi)i∈I ∈ ∏

i �i induces a probability distri-
bution Pσ over realizations. Abusing notation, for every finite realization z ∈ A<N we denote
by Pσ (z) the probability that the sequence z will be generated under σ . Given a strategy
profile σ = (σi)i∈I , denote by σ−i = (σj )j �=i the strategies of all players except player i.

Even though we use game theoretic terminology (players, actions, strategies), we empha-
size that we do not define a game between the players, as there are no payoff functions.

2.1. Testability.

DEFINITION 2.1 (Goal). A goal is a pair (σ ∗,D) where σ ∗ ∈ ∏
i �i is a behavior strat-

egy profile and D ⊆ AN is a Borel set of realizations, which is termed the target set.

The strategy profile σ ∗ is a prescribed way for the players to play. The target set D is a set
of realizations that they are supposed to reach if they follow through their prescribed strategy.
We are interested in cases in which the probability Pσ ∗(D) that the prescribed strategy profile
attains the target set is 1 or close to 1.

REMARK 2.2 (Alternate play). In our model, players make their choices simultaneously.
Yet, the model can accommodate alternate play. Indeed, if I = {0,1, . . . , |I | − 1}, and if for
each player i, the strategy σ ∗

i randomizes only in periods n such that n mod |I | = i, then in
effect the players play alternately.

DEFINITION 2.3 (Blame function). A blame function is a Borel function f : Dc → I .

The interpretation of a blame function is that if the players generate a realization s ∈ AN

that misses the target set, player f (s) is blamed as the player who did not follow her part
of σ ∗.

DEFINITION 2.4 (δ-testability). Fix δ ≥ 0. The goal (σ ∗,D) is δ-testable if there exists
a blame function f such that for every player i ∈ I and every strategy σi for player i we have
Pσi,σ

∗−i
(Dc and {f �= i}) ≤ δ.

The interpretation of testability is that if some player i deviates, then the probability that
a different player j is blamed is at most δ. Thus, with probability Pσi,σ

∗−i
(D) no player is

blamed, and with probability at least Pσi ,σ
∗−i

(Dc) − δ the blame function identifies the player
who deviated from σ ∗. We note that if (σ ∗,D) is δ-testable then

Pσ ∗(D) = 1 − Pσ ∗
(
Dc) = 1 − ∑

i∈I

Pσ ∗
(
Dc and {f = i})

= 1 − 1

|I | − 1

∑
i∈I

Pσ ∗
(
Dc and {f �= i}) ≥ 1 − |I |

|I | − 1
δ,
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where the inequality follows from the fact that, by Definition 2.4 with σi = σ ∗
i , we have

Pσ ∗(Dc and {f �= i}) ≤ δ for every i.

REMARK 2.5 (Deviations by more than one player). Our definition of testability involves
deviations of a single player. If more than one player deviates, then identifying all the devi-
ators may not be possible. For simplicity, consider the following example, where each of
Alice and Bob have two actions, denoted a and b, and the players play for a single period:
Alice’s strategy σ ∗

A selects each action with probability 1
2 , while Bob’s strategy σ ∗

B selects a

with probability 1. Let the target set D be the set that contains the two realizations in which
Bob selects a. While detecting a deviation of Bob is trivial, detecting a deviation of Alice
is not possible. Thus, if both Alice and Bob deviate, we will not be able to identify Alice’s
deviation.

2.2. Main results. Our main results are the following.

THEOREM 2.6. Every goal (σ ∗,D) is 2
√

(|I | − 1)ε-testable, as soon as Pσ ∗(D) >

1 − ε.

REMARK 2.7 (Tightness of the bound in Theorem 2.6). The bound in Theorem 2.6 is
tight up to a constant factor; see Section 3.1.

REMARK 2.8 (Random blame function). A random blame function is a function ϕ :
Dc → �(I), with the interpretation that if the realization s is not in D, then each player i is
blamed with probability ϕi(s). If in the definition of δ-testability we allow for random blame
functions, then we could get rid of the constant 2 in Theorem 2.6, as can be seen in the proof
of the theorem.

As the next result states, in the case that Pσ ∗(D) = 1, the goal (σ ∗,D) is in fact 0-testable.

THEOREM 2.9. Every goal (σ ∗,D) such that Pσ ∗(D) = 1 is 0-testable.

As we now observe, Theorem 2.9 is a consequence of Theorem 2.6.

PROOF OF THEOREM 2.9 USING THEOREM 2.6. Fix a goal (D,σ ∗) with Pσ ∗(D) = 1.
Let (δk)

∞
k=1 be a sequence of positive reals such that

∑∞
k=1 δk < ∞. By Theorem 2.6, the

goal (D,σ ∗) is δk-testable for every k ∈ N. Let fk : Dc → I be a blame function such that
Pσi,σ

∗−i
(fk �= i) < δk , for every player i ∈ I and every strategy σi ∈ �B

i . By the Borel–Cantelli
lemma, Pσi,σ

∗−i
(fk �= i for infinitely many k) = 0.

Let f : Dc → I be such that f (s) = i only if fk(s) = i for infinitely many k’s. Then f

satisfies that Pσi,σ
∗−i

(f �= i) = 0, for every player i ∈ I and every strategy σi ∈ �B
i , as desired.

�

REMARK 2.10 (Finite horizon). Though our main results, Theorems 2.6 and 2.9, are
phrased for the problem with infinite horizon, both apply in particular to the case of finite
horizon. That is, suppose there is n ∈ N such that D ⊆ AN depends only on the first n action
profiles: two realizations s and s ′ coincide in their first n coordinates, then either both are
in D or both are outside D.

According to, for example, Theorem 2.6, if Pσ ∗(D) > 1 − ε, and if the choices of the
players in the first n stages (z1, z2, . . . , zn) satisfy that all extensions of this sequence are
not in D, then after stage n, with high probability, one can correctly determine which player
deviated from σ ∗.
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REMARK 2.11 (Construction of blame functions for specific goals). Theorems 2.6
and 2.9 are theoretical results that assert the existence of a blame function that identifies
the deviator. A natural question is whether there is an efficient procedure that constructs such
a blame function for every given problem. Unfortunately, we do not have such a procedure. In
Section 3 we analyze two specific goals and illustrate the complexity of the required blame
functions. Since our proof of Theorem 2.6 uses the minmax theorem, when considering a
set up with finite horizon, as in Remark 2.10, a blame function that correctly identifies the
deviator can be calculated using a linear program, yet the size of the linear program is double
exponential in the length of the problem.

3. Examples. In this section we present three examples; the first shows the tightness of
Theorem 2.6, and in the other two we describe explicit blame functions. The second example
is rather simple, while the third is more sophisticated and is analyzed both in an infinite-
horizon and in a finite-horizon framework. In all examples, there are two players, denoted
A and B. To simplify notation, in the second and third examples we will assume that Player A
is active only in odd periods, and Player B is active only in even periods.

3.1. Tightness of Theorem 2.6. We here consider a problem with finite horizon (of
length 1). Each of the two players chooses a single random bit, where he is supposed to
choose 1 with probability μ and 0 with probability 1 − μ. The target set is D = {00,01,10}.
Here the probability of Dc = {11} is μ2 and each player can deviate by choosing 1, en-
suring that if the other player is honest, then the resulting pair of choices lies in Dc with
probability μ. In this scenario, any blame function must err with probability at least μ under
some deviation. Indeed, suppose that the blame function f satisfies f (11) = A. Then when
Player B deviates and selects 1 with probability 1, with probability μ Player A is erroneously
blamed.

3.2. Adjacent ones. Two players generate an infinite sequence in {0,1}N, where Player
A chooses the odd bits and Player B chooses the even ones. In period n, the player whose turn
it is to choose the bit is supposed to choose 1 with probability μ/n, and 0 with probability
1 − μ/n, where μ > 0 is a small real. Formally, the strategy pair σ ∗ = (σ ∗

A,σ ∗
B) is given

by σ ∗
A(1|z) = μ/n for every z ∈ {0,1}n−1 such that n is odd, and σ ∗

B(1|z) = μ/n for every
z ∈ {0,1}n−1 such that n is even.

Call a sequence in {0,1}N bad if there is an odd number n ≥ 1 such that the bits in both
periods n and n + 1 are 1. That is, Player B chooses 1 exactly one period after Player A
chooses 1. A sequence is good if it is not bad, and the target set D is the set of all good
infinite sequences. The probability of falling into the target set under the process above is
1 − ε, where ε is given by

ε =
∞∑

k=0

( ∏
0≤i<k

(
1 − μ2

(2i + 1)(2i + 2)

))
· μ2

(2k + 1)(2k + 2)
< μ2.

By Theorem 2.6, the goal (σ ∗,D) described above is O(μ)-testable. Intuitively, if
Player A selected 1 too often, she is proclaimed the deviator, and otherwise it is Player B.
Formally, let s = (s1, s2, s3, . . .) be a sequence in Dc, that is, a sequence containing two
consecutive ones in positions 2k + 1, 2k + 2 for some k ≥ 0. If

∑
k≥0,s2k+1=1

μ

2k + 2
> μ,

then f (s) = A. Otherwise, f (s) = B .
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Suppose Player A is honest. If so, then the expectation of the sum
∑

k≥0,s2k+1=1

μ

2k + 2

is ∑
k≥0

μ

2k + 1
· μ

2k + 2
< μ2.

Therefore, by Markov’s inequality, the probability this sum exceeds μ is smaller than μ,
showing that in this case the probability that the blame function blames Player A is less
than μ. This conclusion holds for every strategy of Player B, as this step is independent of
the bits selected by B.

Suppose next that Player B is honest. We show that no strategy of Player A causes Player B
to be blamed with probability exceeding μ while keeping the condition

∑
k≥0,s2k+1=1

μ

2k + 2
≤ μ.

To do so, for every k ∈ N define a random variable δk by δk = μ
2k+2 when s2k+1 = 1, and

δk = 0 when s2k+1 = 0. Let y be a uniform random number in [0,1] that is selected at the
outset, and suppose Player B is blamed in step k if and only if y lies in (

∑
i<k δi,

∑k
i=1 δi].

Since Player B is honest, for every given history in which Player B has not been already
blamed, the conditional probability Player B is blamed in step k is δk

1−∑
i<k δi

≥ δk . As a

result, the probability that Player B is blamed under this construction,
∑∞

k=1 δk , is at least the
probability she is blamed in the original problem. This sum is at most μ, implying the desired
result.

This shows that the goal considered here is μ-testable by the explicit blame function f

described above.

3.3. Avoiding the origin in a random walk. In this subsection we return to the random
walk example in the Introduction. Two players generate an infinite sequence in {−1,1}N,
thought of as the moves in an infinite walk on Z that originates at 1, where Player A chooses
the odd terms and Player B chooses the even terms. In each period, the player is supposed to
choose 1 with probability 1/2. We start by studying the problem with infinite horizon, and
then discuss the problem with finite horizon.

Suppose that the target set D is the set of all infinite random walks w ∈ {−1,1}N such
that there exists n for which

∑
i≤n wi = −1, that is, the walk reaches −1 at least once. The

random walk is recurrent with probability 1, so Pσ ∗(D) = 1.
Let a1, a2, . . . ∈ {−1,1} and b1, b2, . . . ,∈ {−1,1} be the moves that player A plays and

player B plays, in order, that is, w = (a1, b1, a2, b2, . . . ). Let An = ∑n
i=1 ai and Bn =∑n

i=1 bi . Let sn be the position of the random walk at time n, so that s0 = 1, and for n ≥ 1,
s2n = 1 + An + Bn and s2n−1 = 1 + An + Bn−1. Call the player that plays randomly Honest,
and the other player Deviator. We claim that the following blame function f : Dc → {A,B}
allows the statistician to detect Deviator with probability 1. Given w ∈ Dc, the following
steps are performed in order to determine the value of f .

1. If lim supn→∞( An√
n log logn

) > 0, choose player A. Otherwise, if

lim supn→∞( Bn√
n log logn

) > 0, choose player B.

2. If
∑∞

n=2
an√

n(logn)3/4 diverges, choose player A. Otherwise, if
∑∞

n=2
bn√

n(logn)3/4 di-
verges, choose player B.
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3. If
∑∞

n=1
s2
2n+1−s2

2n

2n log(2n)
= ∞, choose player B. Otherwise, if

∑∞
n=2

s2
2n−s2

2n−1
(2n−1) log(2n−1)

= ∞,
choose player A.

4. Otherwise, choose player A.

THEOREM 3.1. The blame function f above correctly identifies the Deviator with prob-
ability 1, regardless of Deviator’s strategy.

REMARK 3.2 (Visiting the origin infinitely often). In the second example in the Intro-
duction, the target set D contains all realizations that visit the origin infinitely often. The
algorithm above can be adapted to this case. Indeed, supposing that the realization s is such
that the origin is visited finitely many times, then applying the above algorithm to the suffix
of the realization after the last visit to the origin identifies Deviator with probability 1.

The idea of the proof is that since Deviator must move to the right during periods where
Honest moves substantially to the left (to avoid going below zero), Deviator must thus move
to the left when Honest moves to the right to avoid being clearly right-biased (Steps 1 and 2
detect right-biased behavior). Thus Deviator must keep the walk fairly close to 0. Since s2

n

increases by 1 in expectation on Honest’s moves, it should decrease on Deviator’s moves to
keep the walk close to 0, and this discrepancy is what is detected in Step 3.

The success of the algorithm can be deduced from the following lemmas.

LEMMA 3.3. Honest is chosen on Step 1 with probability 0.

LEMMA 3.4. Honest is chosen on Step 2 with probability 0.

LEMMA 3.5. If no player is chosen on Steps 1 and 2, and sn is nonnegative for all n,

then
∑∞

n=2
s2
n

n2 logn
converges.

LEMMA 3.6. If A is Honest, then the probability that no player is chosen on Step 1 and∑∞
n=1

s2
2n+1−s2

2n

2n log(2n)
does not diverge to ∞ is 0, regardless of Deviator’s strategy.

Similarly, if B is Honest, the probability that no player is chosen on Step 1 and∑∞
n=2

s2
2n−s2

2n−1
(2n−1) log(2n−1)

does not diverge to ∞ is 0, regardless of Deviator’s strategy.

Lemma 3.5 is the only place where the fact that the walk must be nonnegative is used.
Indeed, in a purely random walk, the analogous statements to the other three lemmas are
true, but since s2

n is generally of order n in a purely random walk,
∑

s2
n/(n2 logn) would be

on the order of the divergent sum
∑

1/(n logn).
We now deduce Theorem 3.1 from these lemmas.

PROOF OF THEOREM 3.1. We show that the probability that the algorithm chooses the
wrong player at any given step is 0.

First, Lemma 3.3 and Lemma 3.4 show that the algorithm chooses the wrong player on
Steps 1 and 2 with probability 0.

By Lemma 3.6, the probability that no player is chosen in Steps 1, 2, and 3 combined is 0.
Thus the algorithm chooses the wrong player on Step 4 with probability 0.

It remains to bound the probability that the algorithm chooses the wrong player on Step 3.
By Lemma 3.6, if A is Honest, then the algorithm fails on Step 3 with probability 0.
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Suppose B is Honest. Then by Lemma 3.5, if we reach Step 3, then
∑∞

n=2
s2
n

n2 logn
converges.

Notice that 1
x logx

has derivative (−1 + o(1)) 1
x2 logx

, so

1

(n − 1) log(n − 1)
− 1

n logn
= (

1 + o(1)
) 1

n2 logn
.

Since the series
∑

s2
n/(n2 logn) converges, we may substitute (dropping the n = 2 term) to

obtain that

(1)
∞∑

n=3

(
1

(n − 1) log(n − 1)
− 1

n logn

)
s2
n

converges. Regrouping terms, we obtain that

(2)
∞∑

n=2

s2
n+1 − s2

n

n logn

converges, as its partial sums differ from those of expression (1) by
s2
2

2 log 2 − s2
n+1

(n+1) log(n+1)
,

which is bounded because sn = O(
√

n log logn) (otherwise a player would have been chosen
on Step 1).

Almost surely either a player was chosen on Step 1 or 2 or the sum of just the odd-
numbered terms (given by B’s moves) of expression (2) diverges to ∞, by Lemma 3.6. In
the latter case, the sum of the even-numbered terms must diverge to −∞ (as the sum of all
terms is convergent), and therefore cannot diverge to ∞. Thus player B is chosen on this step
with probability 0, finishing the proof. �

We now prove the various lemmas.

PROOF OF LEMMA 3.3. As Honest’s partial sums form a truly random walk, this follows
from the law of the iterated logarithm. �

PROOF OF LEMMA 3.4. Suppose without loss of generality that A is Honest. Let Xn =
an√

n(logn)3/4 for n ≥ 2. Since

∞∑
n=3

E
(
X2

n

) =
∞∑

n=3

1

n(logn)3/2 < ∞.

Kolmogorov’s two-series theorem (e.g., [6], Theorem 2.5.6) implies that
∑∞

n=2 Xn converges
almost surely. Thus A is chosen incorrectly on Step 2 with probability 0. �

PROOF OF LEMMA 3.5. Since no player was chosen on Step 1, s2n−1 = 1 + An + Bn−1
and s2n = 1 + An + Bn are both o(

√
n(logn)1/4), so sn = o(

√
n(logn)1/4).

Since no player was chosen on Step 2,

∞∑
n=2

an + bn√
n(logn)3/4

converges. We may rewrite this sum using the fact that an + bn = s2n − s2n−2 to obtain

∞∑
n=2

s2n − s2n−2√
n(logn)3/4 = O(1) +

∞∑
n=2

(
1√

n(logn)3/4 − 1√
n + 1(log(n + 1))3/4

)
s2n.
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This last regrouping is possible because the difference in the partial sums of the two sides is
s2n√

n+1(log(n+1))3/4 , which approaches 0 as sn = O(
√

n(logn)1/4).

Let cn = 1√
n(logn)3/4 − 1√

n+1(log(n+1))3/4 . Since the derivative of the function 1√
x(logx)3/4 is

(
−1

2
+ o(1)

)
1

x3/2(logx)3/4

as x → ∞, we have cn = �( 1
n3/2(logn)3/4 ). Since

∑
cns2n converges and sn ≥ 0 for all n,

∞∑
n=2

s2n

n3/2(logn)3/4

must converge as well. Since |s2n−1 − s2n| ≤ 1 and
∑

n−3/2(logn)−3/4 converges,

(3)
∞∑

n=2

s2n−1 + s2n

n3/2(logn)3/4

converges. Now, the coefficient of sn in expression (3) is (2
√

2 + o(1))n−3/2(logn)−3/4 for
n ≥ 3, so finally the sum

(4)
∞∑

n=2

sn

n3/2(logn)3/4

must converge.
Since sn = o(

√
n(logn)1/4), we may multiply each term in expression (4) by sn√

n(logn)1/4

and retain convergence, using the nonnegativity of sn. Thus
∑∞

n=1
s2
n

n2 logn
converges. �

REMARK 3.7 (The positivity of (sn)). The last step of the proof of Lemma 3.5 is the only
location where the positivity of sn is used. Indeed,

∑
sn/(n

3/2(logn)3/4) would converge with
high probability for a random walk as well. It is only because all sn are positive that this is
surprising.

PROOF OF LEMMA 3.6. We prove the lemma under the assumption that A is Honest; the
proof is analogous when B is Honest.

Notice that

∞∑
n=1

s2
2n+1 − s2

2n

2n log(2n)
=

∞∑
n=1

1 + 2an+1s2n

2n log(2n)
.

Now,
∑

1/(2n log(2n)) diverges to ∞ (at rate on the order of log logn). It thus suffices to
show that the probability that no player is chosen on Step 1 and

(5)
∞∑

n=1

an+1s2n

n log(2n)

diverges is 0.
Let s′

n = min(sn,
√

n log logn). Notice that if no player is chosen on Step 1, s′
n = sn for all

sufficiently large n. Thus the probability that no player is chosen on Step 1 and expression

(5) diverges is at most the probability that
∑∞

n=1
an+1s

′
2n

n log(2n)
diverges.
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Let Dn = an+1s
′
2n

n log(2n)
. Since an+1 is chosen at random after s′

2n is already fixed, it follows that

Dn is a sequence of martingale differences. Since s′
n ≤ √

n log logn, it follows that

∞∑
n=1

E
(
D2

n

) ≤
∞∑

n=1

1

n(logn)3/2 + O(1) < ∞.

Therefore, the partial sums of the infinite series
∑∞

n=1 Dn form a martingale bounded in L2,
and therefore the series converges almost surely. �

We turn to handle the example when the horizon is finite. If we only have a finite number
of samples, say N , we can guarantee a probability of failure ε → 0 as N → ∞ by modifying
the test as follows.

1. If An√
n log logn

> ε for any n with log logN < n ≤ N , choose player A. Otherwise, if
Bn√

n log logn
> ε for any n with log logN < n ≤ N , choose player B.

2. Take C = ∑∞
n=1

1
n(logn)3/2 . If

∑N
n=2

an√
n(logn)3/4 >

√
3C/ε, choose player A. Other-

wise, if
∑N

n=2
bn√

n(logn)3/4 >
√

3C/ε, choose player B.

3. If
∑�N−1

2 

n=1

s2
2n+1−s2

2n

2n log(2n)
> (log logN)/3, choose player B. Otherwise, if

∑�N
2 


n=2
s2
2n−s2

2n−1
(2n−1) log(2n−1)

> (log logN)/3, choose player A.
4. Otherwise, choose player A.

The next result provides the analog of Theorem 3.1 to the finite horizon set up.

PROPOSITION 3.8. If N is sufficiently large in terms of ε, the algorithm above identifies
the deviator with failure probability at most ε.

PROOF. The proof is almost identical to the proof of Theorem 3.1, so we briefly outline
the changes. For sufficiently large N , the probability of failure at Step 1 is at most ε/3.
Similarly, the probability of failure at Step 2 is also at most ε/3 (using a second moment
bound and Markov’s inequality). If both Steps 1 and 2 are passed, then

N∑
n=log logN

s2
n

n2 logn

is bounded by an absolute constant by a similar argument to earlier, so

N∑
n=1

s2
n

n2 logn
= o(log logN).

For the same reason as in the original argument, a player will be chosen in Step 3 with
probability approaching 1 as N → ∞ (independently of ε), and adding the sums yields (up to

a constant)
∑N

n=1
s2
n−s2

n−1
n logn

≈ ∑N
n=1

s2
n

n2 logn
= o(log logN), so only one player is chosen during

this step. If, for example, A is incorrectly chosen as the deviator, a similar computation to
earlier yields that the partial sum of the series (5) up to N is 
(log logN), which occurs with
a probability approaching 0 as N → ∞. Hence, choosing N sufficiently large, the deviator
is incorrectly identified with probability at most ε/3 in this step. In conclusion, the total
probability of failure is at most ε. �
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4. Proof of Theorem 2.6. In this section we prove Theorem 2.6 via a game-theoretic ap-
proach. Roughly speaking, we consider a zero-sum game between an adversary and a statis-
tician, in which the adversary chooses a deviation and the statistician, after observing the
realization s, has to guess the deviator if s /∈ D. A strategy for the statistician in this game is
a blame function. We use the minimax theorem to establish that the statistician has a strategy
that guarantees high payoff. However, for the minimax theorem to apply, we need to make
some modifications to the game.1

First, we may assume without loss of generality that D is closed. Indeed, every probability
distribution over AN is regular, so every Borel set D with Pσ ∗(D) > 1 − ε contains a closed
subset F with Pσ ∗(F ) > 1 − ε. Hence, if D is not closed, we can replace it by F .

For every z = (z1, z2, . . . , zn) ∈ A<N denote by [Tz] = {s ∈ AN : sk = zk for 1 ≤ k ≤ n}
the cylinder set of all realizations with initial segment z. A set in AN is open if and only if it
is a union of cylinder sets.

Since the set D is closed, its complement Dc is open, and therefore there is a set Z ⊆ A<N

that satisfies the following properties:

• For every two elements in Z, none is the prefix of the other.
• Dc = ⋃

z∈Z[Tz].
Since A<N is countable, so is Z.

We now consider the following auxiliary zero-sum game �(D) between an adversary and
a statistician:

• The adversary selects an element of i ∈ I (a player in the original problem) and a behavior
strategy σi ∈ �i for that player.

• Nature chooses a realization s ∈ AN according to Pσi,σ
∗−i

.
• If s /∈ D, the statistician is told the element z ∈ Z such that s ∈ [Tz]. The statistician has

then to select an element j ∈ I .
• The statistician wins if s ∈ D or i = j .
• The adversary wins otherwise, that is, if s /∈ D and i �= j .

The interpretation of the game is as follows. The statistician has to detect which player
deviated, and the adversary tries to cause the statistician to blame an innocent player. Thus,
the adversary’s strategy is to select the identity of the deviator i ∈ I and a strategy for that
deviator. Then Nature chooses a realization s according to the strategy that player i deviated
to and the prescribed strategies of the other players. If s ∈ D, then the statistician wins.
If s /∈ D, then the statistician learns the minimal prefix z of the realization all of whose
extensions are not in D, and she wins only if she correctly guesses the identity of the deviator
based on this information.

LEMMA 4.1. Let D be a closed set such that Pσ ∗(D) > 1 − ε. Then for every strategy
of the adversary, the statistician has a response that wins in �(D) with probability at least
1 − √

(|I | − 1)ε.

PROOF. Fix a strategy (q, σ ) ∈ �(I) × ∏
i �i of the adversary in �(D).

Recall that Dc = ⋃
z∈Z[Tz] for some countable set Z of finite realizations with the property

that no element of Z is a prefix of a different element of Z.
For a finite realization z = (z1, z2, . . . , zm) ∈ Z let

�i(z) :=
m∏

n=1

σi(z
n
i |z1, z2, . . . , zn−1)

σ ∗
i (zn

i |z1, z2, . . . , zn−1)
∀i ∈ I,

1Blackwell [5] gives an example of a statistical game without a value.
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where 0
0 = 1 and c

0 = ∞ for c > 0. Then �i(z) is the likelihood ratio of σi (the deviation
strategy of player i) over σ ∗

i (the goal strategy of player i) under the realized sequence z. We
recall that in the general model, each player chooses an outcome in all periods, and therefore
σi(z

n
i |z1, z2, . . . , zn−1) is defined for every n ∈N.

Note that the probability that a finite realization z will be realized under (σi, σ
∗−i) is

Pσi,σ
∗−i

(z) = �i(z)Pσ ∗(z), provided �i(z) < ∞. Similarly, the probability that z will be re-
alized under (σi, σj , σ

∗−i,j ) is Pσi,σj ,σ ∗−i,j
(z) = �i(z)�j (z)Pσ ∗(z), provided �i(z), �j (z) < ∞,

where σ ∗−i,j = (σ ∗
k )k∈I\{i,j}.

Consider a pure strategy of the statistician that, after observing a finite realization z ∈ Z,
blames a player j whose likelihood ratio is maximal. For each j ∈ I , denote by Ej the set of
all sequences in Z where the statistician blames j . Then

Ej ⊆ {
z ∈ Z : �j (z) ≥ �i(z) for every i �= j

}
,

where the inclusion may be strict when for some z ∈ Z the maximum of {�i(z), i ∈ I } is
attained at j together with some other index.

Observe that

(
Pσi,σ

∗−i
(Ej )

)2 =
( ∑

z∈Ej

�i(z)Pσ ∗(z)
)2

≤
( ∑

z∈Ej

�i(z)
2Pσ ∗(z)

)
·
( ∑

z∈Ej

Pσ ∗(z)
)

(6)

≤
( ∑

z∈Ej

�i(z)�j (z)Pσ ∗(z)
)

·
( ∑

z∈Ej

Pσ ∗(z)
)

(7)

= Pσi,σj ,σ ∗−i,j
(Ej ) · Pσ ∗(Ej ) ≤ Pσ ∗(Ej ),(8)

where equation (6) holds by the Cauchy–Schwarz inequality, equation (7) holds since
�i(z) ≤ �j (z) on Ej , and equation (8) follows from the definitions. By the Cauchy–Schwarz
inequality once again, it follows that

(∑
j �=i

Pσi,σ
∗−i

(Ej )

)2
≤ (|I | − 1

) ·
(∑

j �=i

Pσi ,σ
∗−i

(Ej )
2
)

≤ (|I | − 1
) ·

(∑
j �=i

Pσ ∗(Ej )

)

= (|I | − 1
) · Pσ ∗(Z) ≤ (|I | − 1

) · ε,
and the claim follows. �

We now conclude the proof of Theorem 2.6. For every n ∈ N let Zn = {z ∈ Z : length of
z < n}, and let Dn ⊆ A be the set whose complement is given by

Dc
n = ⋃{[Tz] : z ∈ Zn

}
.

The sequence (Dn)n∈N is a decreasing sequence of closed sets that contain D, and because
D is closed, D = ⋂

n∈N Dn. In particular, Pσ ∗(Dn) > 1 − ε for every n. The set of pure
strategies of the statistician in the game �(Dn) is finite, as the game ends after n periods. By
a standard minimax theorem, the game has a value in mixed strategies, and the statistician
has an optimal strategy, ξn : Zn → �(I).
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By Lemma 4.1, For every n ∈N, the value of the game �(Dn) is at least 1 − √
(|I | − 1)ε.

Let fn : Zn → I be a blame function such that fn(z) ∈ argmaxi∈I ξn[z]. It follows that if
fn(z) �= i then (ξn(z))(I \ {i}) ≥ 1

2 , and hence

Pσi,σ
∗−i

(
Dc

n and {fn �= i}) ≤ 2Pσi ,σ
∗−i ,ξn

(
Dc

n and {j �= i}) ≤ 2
√(|I | − 1

)
ε,

for every i ∈ I and every σi ∈ �B
i . Abusing notation, we view fn as a function from Dc

n to I ,
such that for every z ∈ Zn and every s ∈ [Tz], we set fn(s) = fn(z). It follows that fn is a
blame function that guarantees to the statistician at least 1 − 2

√
(|I | − 1)ε in �(Dn).

For every n ∈ N, the domain of fn is the finite set Zn. By a diagonal argument, there
is a function f : Dc → I that is an accumulation point of the sequence (fn)n∈N: there is a
subsequence (nk)k∈N such that for every z ∈ Z and every s ∈ T[z], f (s) is equal to fnk

(s), for
all sufficiently large k ∈ N.

We argue that f guarantees to the statistician at least 1 − 2
√

(|I | − 1)ε in �(D). Indeed,
let i ∈ I and σi ∈ �B

i be arbitrary. Since Dc = ⋃
k∈N Dc

nk
,

Pσi,σ
∗−i

(
Dc and {f �= i}) = lim

k→∞ Pσi,σ
∗−i

(
Dc

nk
and {f �= i}) ≤ 2

√(|I | − 1
)
ε,

and the result follows.

REMARK 4.2 (The value of the infinite-horizon game). Instead of studying the truncated
games �(Dn), we could have proved that the game �(D) has a value by showing that the
statistician’s payoff function is upper-semi-continuous and her strategy space is compact, and
use a general minimax theorem, like [11], Theorem 4. We chose the path above, as it uses the
simpler version of von Neumann’s minimax theorem. Moreover, Theorems 2.6 and 2.9 are
valid also when the set of actions A is countably infinite.

5. Concluding remarks and open problems. The constant
√|I | − 1 in Theorem 2.6

can be improved to �ln2(I )�, by iteratively dividing the set of players who are suspected as
possible deviators into two groups, and identifying whether a player in one of the groups
deviated.

The example in Section 3.1 shows that the bound in Theorem 2.6 is tight up to a constant
factor. As we now argue, the same holds in the example described in Section 3.2. Indeed,
the set D in this example has probability 1 − ε = 1 − �(μ2), and the blame function shows
that the corresponding goal is μ = O(

√
ε)-testable. It is in fact not difficult to see that for

this example the goal is not δ-testable for any δ smaller than some �(
√

ε) = �(μ), showing
that the quantitative estimate given in Theorem 2.6 is tight up to a constant factor. Indeed,
consider the following two scenarios.

1. Player A chooses s1 = 1 and later plays honestly according to the rules. Player B
plays honestly.

2. Player A plays honestly. Player B chooses s2 = 1 and later plays honestly.

In both scenarios, the probability that s1 = s2 = 1 is �(μ). Moreover, in both scenarios,
if indeed s1 = s2 = 1, then the conditional distribution of s is identical. Therefore, on the
subset of Dc consisting of all sequences s above with s1 = s2 = 1, the two scenarios are
indistinguishable and any blame function chooses one of the players with probability at least
1/2. It thus follows that the probability that s lies in this subset and the blame function blames
the honest player is 
(μ).

Theorem 2.6 is not constructive. In Section 3 we described two cases where a blame func-
tion could be identified, and in these cases, especially in the second one, the blame function
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is quite involved. There are other interesting cases where identifying an explicit blame func-
tion looks challenging. For example, consider the two-dimensional analog of the example in
Section 3.3: two players control a two-dimensional random walk, and the set D is the set of
all realizations that visit the origin infinitely often (or at least once after the initial position).
The same question can be considered for a random walk on any recurrent graph.

It is easy and well known that the probability that a one-dimensional honest random walk
starting at the origin never returns to the origin for N steps is �(1/

√
N). This implies, by

Theorem 2.6, that for the version of the game considered in Section 3.3, where the set D

consists of all walks that visit the origin at least once during the first N steps, there is a blame
function that errs with probability at most O(1/N1/4). The quantitative estimate that can
be derived from the explicit proof described in Section 3.3 is far weaker. Indeed, consider
item 1 in the description following the proof of Lemma 3.6. If A is an honest player, than
the probability that for some fixed n, An√

n log logn
> 1(> ε) is roughly e−(log logn)2/2. There-

fore for, say, n = logN this probability is roughly e−(log log logN)2/2 which is (much) larger
than 1/ logN . It follows that the probability that the honest player A is blamed in this al-
gorithm is larger than 1/ logN � 1/N1/4. It may be interesting to find an explicit blame
function with a better quantitative performance. The corresponding question for an N -steps
two-dimensional random walk is even more challenging. It is well known ([7], see also [8,
15]) that the probability that a standard two-dimensional random walk does not return to the
origin for N steps is �(1/ logN). Theorem 2.6 thus shows that the corresponding goal here
is O(1/(logN)1/2)-testable. It would be very interesting to find an explicit description of a
blame function demonstrating this bound.

Theorem 2.6 states that if there is an agreed upon strategy profile σ ∗ that reaches some
desired target set D with high-probability, and if a single player deviates, then with high
probability, the identity of the deviator can be found by all players when the target set is not
reached. Such a result calls for applications in the construction of equilibria in game theory.
As mentioned in the Introduction, Theorem 2.6 can be used to provide an alternative proof for
the existence of an ε-equilibrium in repeated games with finitely many players each having
finitely many actions, and tail-measurable payoffs; see [9]. Theorem 2.6 has also been used to
prove that in every multiplayer stochastic game with finite state and action spaces, and with
bounded, Borel measurable payoff functions, for every ε > 0 there is a subgame in which an
ε-equilibrium exists; see [10].
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