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It is shown that if n > n0(d) then any d-regular graph G = (V , E) on n vertices contains a

set of u = bn/2c vertices which is joined by at most ( d2 − c
√
d)u edges to the rest of the

graph, where c > 0 is some absolute constant. This is tight, up to the value of c.

1. Introduction

For a graph G = (V , E) and for two disjoint subsets U,W of V , let e(U,W ) denote the

number of edges between U and W . The edge expansion coefficient i(G) of G is defined by

i(G) = Min
e(U,V −U)

|U| ,

where the minimum is taken over all non-empty subsets U of V of cardinality at most

|V |/2. For any integer d define, following Bollobás [3],

i(d) = sup{γ : i(G) > γ for infinitely many d-regular graphs G}.

It is well known that there is a tight correspondence between the second largest

eigenvalue of a regular graph and the above coefficient. In particular, if G is d-regular,

and the second largest eigenvalue of its adjacency matrix is λ, then, by the simple remarks

following Lemma 2.1 in [1],

i(G) ≥ d− λ
2

.

Since it is easy to deduce from the results in [4] or from the constructions in [5, 6], that

for any d there are infinitely many d-regular graphs whose second largest eigenvalue is
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bounded by C
√
d, for some absolute positive constant C , this implies that there is some

C ′ > 0 so that

i(d) ≥ d

2
− C ′

√
d

for any integer d.

A more direct proof of this last inequality is given by Bollobás [3], using probabilistic

arguments.

In this note we show that the above inequality is tight, up to the best possible value of

C ′, namely, the correct value of i(d) satisfies

d

2
− C ′

√
d ≤ i(d) ≤ d

2
− c′
√
d,

for every d, where C ′, c′ > 0 are absolute constants. This follows from the following result.

Theorem 1.1. There exists an absolute constant c > 0 so that if n > 40d9 and G = (V , E)

is a d-regular graph on n vertices, then there is a set U of u = bn/2c vertices of G such that

e(U,V −U) ≤ ( d
2
− c
√
d)u.

The proof is probabilistic and is based on an idea of Shearer [8], together with some

additional combinatorial arguments and the FKG Inequality.

2. The proof

In this section we prove Theorem 1.1. Let G = (V , E) be a d-regular graph on n vertices.

We must show that there is a partition V = V0 ∪ V1, where |V0| = bn/2c , |V1| = dn/2e
and e(V0, V1) ≤ nd

4
(1 − Ω( 1√

d
)). For convenience, we assume that d is odd and hence n is

even; the case of even d and odd or even n can be treated similarly. The basic idea is

very simple: we partition the vertices randomly into two classes, and if a vertex has more

neighbours in the other class than in its own, then we randomly decide whether to shift

it to the other class or leave it where it is. It is then shown that the expected number of

edges between the two classes is at most nd
4

(1− Ω( 1√
d
)). The main problem in the process

of obtaining a rigorous proof along these lines is that we have to keep the two classes of

equal size. This causes several difficulties, and we overcome them by combining the FKG

Inequality with some combinatorial ideas.

We need the following lemma.

Lemma 2.1. Let H be a graph on n = 2m vertices, with maximum degree ∆, and suppose

n > 40∆3. Then there is a perfect matching M = {(ui, vi) : 1 ≤ i ≤ m} of all vertices of H

satisfying the following properties.

(i) Each edge of M is not an edge of H .

(ii) There is no alternating cycle of length 4 or 6 consisting of edges of H and M alternately.

Proof. Since the minimum degree of a vertex in the complement of H is at least

n− 1− ∆ > n/2, there is, by Dirac’s Theorem, a Hamilton cycle in this complement and
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hence, by taking every second edge of this cycle, we conclude that there is a matching M

satisfying property (i). To complete the proof we show that as long as the matching M

violates property (ii), we can modify it so that (i) still holds and the number of alternating

cycles of length 4 or 6 strictly decreases. To do so, suppose there is an alternating cycle

C of length 4 or 6 containing the edge (ui, vi) of M. Let W denote the set of all vertices

of H that can be reached from either ui or vi by an alternating path of length at most

5 (starting with an edge of H). Clearly, |W | ≤ 2(1 + 2∆ + 2∆2 + ∆3) < n/2, and hence

there is an edge of M, say, (uj , vj), no end of which lies in W . Let M ′ be the matching

obtained from M by replacing the two edges (ui, vi) and (uj , vj) by the edges (ui, vj) and

(uj , vi). It is easy to see that M ′ satisfies (i), C is not an alternating cycle after replacing

M by M ′, and no new alternating cycle of length 4 or 6 has been formed, as the newly

added edges cannot be contained in such a cycle. Thus, the number of alternating cycles

of length 4 and 6 has been strictly reduced, and by repeating the procedure we must end

with a matching satisfying the assertion of the lemma.

Returning to the proof of Theorem 1.1, consider the following randomized procedure

for constructing a partition of the set of vertices of G = (V , E) into two equal parts

V0 and V1. First, let H be the graph on V in which two vertices are adjacent if their

distance in G is at most 3. By assumption, the maximum degree ∆ in H satisfies n > 40∆3,

and hence, by Lemma 2.1, there is a matching M = {(ui, vi) : 1 ≤ i ≤ m} satisfying

the assertion of the lemma. Let h : V 7→ {0, 1} be a random function obtained by

choosing, for each i, 1 ≤ i ≤ m, randomly and independently, one of the two possibilities

(h(ui) = 0 and h(vi) = 1) or (h(ui) = 1 and h(vi) = 0), both choices being equally

probable. Call a vertex v ∈ V stable if it has more neighbours u satisfying h(u) = h(v) than

neighbours w satisfying h(w) 6= h(v), otherwise call it active. Call a pair of vertices (ui, vi)

matched under M an active pair if both ui and vi are active, otherwise, call it a stable

pair. Let h′ : V 7→ {0, 1} be the random function obtained from h by randomly modifying

the values of the vertices in active pairs as follows. If (ui, vi) is an active pair then choose

randomly either (h′(ui) = 0 and h′(vi) = 1) or (h′(ui) = 1 and h′(vi) = 0), both choices

being equally probable. Otherwise, define h′(ui) = h(ui) and h′(vi) = h(vi). Finally, define

V0 = h′−1(0) and V1 = h′−1(1).

It is obvious that |V0| = |V1| = m (= n/2). To complete the proof we show that the

expected value of e(V0, V1) is only nd
4

(1 − Ω( 1√
d
)). Fix an edge of G; by renaming the

vertices if needed, we may assume, without loss of generality, that its two vertices are u1

and u2, which are matched under M to v1 and v2 respectively. Our objective is to estimate

the probability that h′(u1) 6= h′(u2). This is done by estimating the conditional probability

of this event assuming that h(u1) = h(u2) and the conditional probability assuming that

h(u1) 6= h(u2). Before starting to estimate these probabilities, note that by the choice of

M the sets {v1} ∪ N(v1) and {v2} ∪ N(v2) of the closed neighbourhoods of v1 and v2,

respectively, are disjoint and both of them do not intersect the set {u1, u2}∪N(u1)∪N(u2).

Moreover, the only edges of M whose two ends lie in the set

{u1, u2, v1, v2} ∪N(u1) ∪N(u2) ∪N(v1) ∪N(v2)

are the two edges {u1, v1} and {u2, v2}. These facts, illustrated in Figure 1, will be useful
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Figure 1 A typical edge u1u2.

as they imply that various events are independent. Thus, for example, the event (v1 is

active and h(v1) = 0) is independent of the event (v2 is active and h(v2) = 1), as those are

determined by disjoint sets of random choices. (Note that for this to hold it is not enough

that the closed neighbourhoods of v1 and v2 are disjoint; one also needs the fact that

there are no edges of M joining these two neighbourhoods.)

To estimate the conditional probability Prob[h′(u1) 6= h′(u2)|h(u1) = h(u2)] note, first,

that in case h(u1) = h(u2) then if at least one of the pairs (u1, v1) or (u2, v2) is active, then this

probability is precisely a half. On the other hand, if they are both stable, it is zero. Therefore

Prob[h′(u1) 6= h′(u2)|h(u1) = h(u2)] =
1

2
− 1

2
Prob[(u1, v1), (u2, v2) stable | h(u1) = h(u2)] (1)

Clearly

Prob[(u1, v1), (u2, v2) stable | h(u1) = h(u2)]

= Prob[(u1, v1) stable | h(u1) = h(u2)] · Prob[(u2, v2) stable | h(u1) = h(u2), (u1, v1) stable]

(2)

However,

Prob[(u1, v1) stable | h(u1) = h(u2)]

= Prob[v1 stable | h(u1) = h(u2)]

+Prob[v1 active | h(u1) = h(u2)] · Prob[u1 stable | h(u1) = h(u2), v1 active].

Since, by the choice of M, the set {u1, u2} does not intersect N(v1) and none of its members

is matched under M to a member of N(v1), it follows that

Prob[v1 stable | h(u1) = h(u2)] = Prob[v1 stable] = 1/2.

Define

εd =

(
d− 1
d−1

2

)/
2d.

We claim that

Prob[u1 stable | h(u1) = h(u2), v1 active]

= Prob[u1 stable | h(u1) = h(u2)] =

(d−1)/2∑
i=0

(
d− 1

i

)/
2d−1 =

1

2
+ εd.
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To see this, note, first, that by the choice of M the event (v1 active) is determined only

by the values of |h(w)− h(v1)| for w ∈ N(v1) and hence does not influence the conditional

probability Prob[u1 stable | h(u1) = h(u2)]. The above expression for the last conditional

probability follows from the fact that if h(u1) = h(u2) then u1 is stable if and only if it has

at most (d− 1)/2 neighbours w ∈ N(u1)− {u2} satisfying h(w) 6= h(u1).

Substituting the expressions above, we conlude that

Prob[(u1, v1) stable | h(u1) = h(u2)] =
1

2
+

1

2

(
1

2
+ εd

)
=

3

4
+

1

2
εd. (3)

We can now apply a similar reasoning to estimate the conditional probability

Prob[(u2, v2) stable | h(u1) = h(u2), (u1, v1) stable].

The crucial point is that when h(u1) = h(u2), the event ((u2, v2) stable) and the event ((u1, v1)

stable) behave monotonely with respect to the h-values on the intersection N(u1) ∩N(u2),

in case this intersection is non-empty. That is, if one of these events occurs, then by

changing the value of some h(w) for w in this intersection from 1 − h(u1) = 1 − h(u2) to

h(u1), this event still occurs. It thus follows from the FKG Inequality (cf., e.g., [2, Chapter

6]) that

Prob[(u2, v2) stable | h(u1) = h(u2), (u1, v1) stable] ≥ 3

4
+

1

2
εd. (4)

Combining (2),(3) and (4),

Prob[(u1, v1), (u2, v2) stable | h(u1) = h(u2)] ≥ 9

16
+

3

4
εd +

1

4
ε2
d,

and therefore, by (1)

Prob[h′(u1) 6= h′(u2)|h(u1) = h(u2)] ≤ 1

2

(
7

16
− 3

4
εd −

1

4
ε2
d

)
. (5)

Similar arguments can be used to estimate the conditional probability

Prob[h′(u1) 6= h′(u2)|h(u1) 6= h(u2)].

Here are the details. Note, first, that

Prob[h′(u1) 6= h′(u2)|h(u1) 6= h(u2)] =
1

2
+

1

2
Prob[(u1, v1), (u2, v2) stable | h(u1) 6= h(u2)] (6)

Next, observe that

Prob[(u1, v1), (u2, v2) stable | h(u1) 6= h(u2)]

= Prob[(u1, v1) stable | h(u1) 6= h(u2)] · Prob[(u2, v2) stable | h(u1) 6= h(u2), (u1, v1) stable]

(7)

However,

Prob[(u1, v1) stable | h(u1) 6= h(u2)]

= Prob[v1 stable | h(u1) 6= h(u2)]

+Prob[v1 active | h(u1) 6= h(u2)] · Prob[u1 stable | h(u1) 6= h(u2), v1 active].
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As before, by the choice of M,

Prob[v1 stable | h(u1) 6= h(u2)] = Prob[v1 stable] = 1/2,

and

Prob[u1 stable | h(u1) 6= h(u2), v1 active]

= Prob[u1 stable | h(u1) 6= h(u2)] =

(d−3)/2∑
i=0

(
d− 1

i

)
/2d−1 =

1

2
− εd,

since if h(u1) 6= h(u2) then u1 is stable if and only if it has at most (d − 3)/2 neighbours

w ∈ N(u1)− {u2} satisfying h(w) 6= h(u1).

Substituting, we conclude that

Prob[(u1, v1) stable | h(u1) 6= h(u2)] =
1

2
+

1

2

(
1

2
− εd

)
=

3

4
− 1

2
εd. (8)

By a similar computation, and using the FKG Inequality it follows that

Prob[(u2, v2) stable | h(u1) 6= h(u2), (u1, v1) stable] ≤ 3

4
− 1

2
εd, (9)

since when h(u1) 6= h(u2) then the event ((u1, v1) stable) is monotone increasing with respect

to changing the values of some h(w) for w ∈ N(u1) ∩ N(u2) from h(u2) to h(u1), whereas

the event ((u2, v2) stable) is monotone decreasing with respect to such a change.

By (7),(8) and (9),

Prob[(u1, v1), (u2, v2) stable | h(u1) 6= h(u2)] ≤ 9

16
− 3

4
εd +

1

4
ε2
d,

and therefore, by (6)

Prob[h′(u1) 6= h′(u2)|h(u1) 6= h(u2)] ≤ 1

2

(
25

16
− 3

4
εd +

1

4
ε2
d

)
. (10)

Combining (5) and (10), we finally conclude that

Prob[h′(u1) 6= h′(u2)]

= Prob[h(u1) = h(u2)] · Prob[h′(u1) 6= h′(u2)|h(u1) = h(u2)]

+Prob[h(u1) 6= h(u2)] · Prob[h′(u1) 6= h′(u2)|h(u1) 6= h(u2)]

≤ 1

4

(
32

16
− 3

2
εd

)
=

1

2
− 3

8
εd.

Since (u1, u2) was a typical edge, by linearity of expectation, the expected value of e(V0, V1)

is at most

nd

2

(
1

2
− 3

8
εd

)
.

We have thus proved the following explicit form of Theorem 1.1.

Proposition 2.2. If n > 40d9 and d is odd, then any d-regular graph G = (V , E) on n
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vertices contains a partition V = V0 ∪ V1 where |V0| = |V1| = n/2 such that

e(V0, V1) ≤ nd

4

(
1− 3

4
εd

)
.

In [8, Lemma 1], it is observed that for every d ≥ 1, εd ≥ 1

2
√

2
√
d
, and since it is not difficult

to prove a version of the last proposition for even values of d as well, it follows that

i(d) ≤ d

2

(
1− 3

8
√

2
√
d

)
. (11)

3. Concluding remarks

The assumption n > 40d9 in Theorem 1.1 can be easily relaxed, and we make no attempt

to optimize it here. Note, however, that some assumption of the form n > n0(d) is essential,

since the assertion of the theorem fails for the complete graph Kd+1 or for the complete

bipartite graph Kd,d.

As noted in the end of the previous section our proof actually shows that i(d) ≤
d
2
(1 − 3

8
√

2
√
d
) for all d ≥ 1. It seems possible to improve the constant 3

8
√

2
by modifying

slightly the update probability in the definition of h′, but the problem of finding the best

possible value of this constant seems very difficult. In [3] it is shown that as d tends to

infinity

i(d) ≥ d

2

(
1− (2 + o(1))(ln2)1/2

√
d

)
,

Thus the correct value of i(d) is d
2
−Θ(

√
d), but the problem of determining this function

precisely remains open.

Our proof clearly works for non-regular graphs as well, as long as the maximum degree

is small with respect to the number of vertices. Repeating the arguments in Section 2, one

can prove the following:

Proposition 3.1. There exists an absolute positive constant c so that the following holds. Let

G = (V , E) be a graph on n vertices with degree sequence d1, . . . , dn, and suppose n > 40d9
i

for all i. Then there is a partition V = V0 ∪V1, where |V0| = bn/2c, |V1| = dn/2e, such that

e(V0, V1) ≤ 1

2

n∑
i=1

di

(
1

2
− c√

di

)
.

Theorem 1.1, together with the fact mentioned in the introduction that for any d-regular

graph G on n vertices with second largest eigenvlaue λ, i(G) ≥ d−λ
2

, imply that if n is

sufficiently large with respect to d then λ ≥ Ω(
√
d). A tighter inequality is known, however.

In this case λ ≥ (1 − o(1))2
√
d− 1, where the o(1) term tends to 0 as n tends to infinity.

This is tight, and the proof is, in fact, much easier than the proof of Theorem 1.1 here

(see, for example, [7]). We note that the fact that for any d there are infinitely many

d-regular graphs satisfying λ ≤ 2
√
d+ o(d) can be deduced from the results in [4], or from

the constructions in [5, 6] by packing together various graphs, so as to obtain d-regular

ones. We omit the details.
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The bisection width of a graph on n vertices is the minimum possible value of e(V0, V1),

as V0, V1 range over all partitions of V into two parts satisfying |V0| = bn/2c, |V1| = dn/2e.
This notion arises naturally in the study of embedding problems motivated by questions

in the design of VLSI circuits. Thus, our result here shows that the maximum possible

bisection width of a d-regular graph on n vertices is nd
4

(1−Ω(1/
√
d)). Moreover, the proof,

as presented in the previous section, supplies an efficient randomized algorithm for finding

a partition V0, V1 with e(V0, V1) bounded as ensured by the theorem, and it is not too

difficult to apply the method of conditional expectations (see, for example, [2, Chapter

15]) and convert this algorithm into an efficient deterministic one.

For small values of d it is possible to improve the upper bound provided for i(d) in (11).

Trivially, i(1) = i(2) = 0 and in [3] it is proved that i(3) ≤ 1. In fact, this bound can be

improved to i(3) ≤ 1/2 as follows. Let G be a cubic graph on n vertices, where n is large.

It is easy to see we may assume G is connected. Take a spanning tree in G and observe

that since its maximum degree is at most 3, it can be broken into connected pieces, each

containing, say, between
√
n and 4

√
n vertices. Now split these pieces randomly into two

classes. By standard Chernoff estimates, with high probability the total number of vertices

in each class will be ( 1
2

+ o(1))n. The expected number of edges whose ends lie in the two

classes is only half of the number of edges that do not lie in the pieces, namely, half of
3
2
n− (1− o(1))n. This implies that i(3) ≤ 1/2 and a similar argument shows that i(4) ≤ 1.

We omit the details. The known lower bounds for these quantities, proved in [3], are

i(3) > 2/11 and i(4) > 11/25.
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