A parallel algorithmic version of the Local Lemma

Noga Alon *
Department of Mathematics
Raymond and Beverly Sackler Faculty of Exact Sciences
Tel Aviv University, Tel Aviv, Israel

Abstract

The Lovész Local Lemma is a tool that enables
one to show that certain events hold with positive,
though very small probability. It often yields exis-
tence proofs of results without supplying any effi-
cient way of solving the corresponding algorithmic
problems. J. Beck has recently found a method for
converting some of these existence proofs into effi-
cient algorithmic procedures, at the cost of loosing
a little in the estimates. His method does not seem
to be parallelizable. Here we modify his technique
in several points and achieve an algorithmic version
that can be parallelized, thus obtaining determinis-
tic NC'! algorithms for various interesting algorith-
mic search problems. Two representing examples
are the problem of finding a directed even simple
cycle in a digraph in which the maximum outde-
gree is at most a small exponent of the minimum
indegree and the problem of exhibiting a satisfying
assignment for a Boolean CNF Formula in which
the maximum number of occurences of each literal
is bounded by a small exponent of the minimum
number of literals in a disjunction.

1 Introduction

In a typical application of the probabilistic method
we try to prove the existence of a combinatorial
structure (or a substructure of a given structure)
with certain prescribed properties. To do so, we
show that a randomly chosen element from an ap-
propriately defined sample space satisfies all the re-
quired properties with positive probability. In most

*Research supported in part by a United States Israel
BSF Grant and by a Bergmann Memorial Grant

applications, this probability is not only positive,
but is actually high and frequently tends to 1 as
the parameters of the problem tend to infinity. In
such cases, the proof usually supplies an efficient
randomized algorithm for producing a structure of
the desired type, and in many cases this algorithm
can be derandomized and converted into an effi-
cient deterministic one. By efficient we mean here,
as usual, an algorithm whose running time -(or ex-
pected running time, in case we consider random-
ized algorithms)- is polynomial in the length of the
input.

There are, however, certain examples, where
one can prove the existence of the required combi-
natorial structure by probabilistic arguments that
deal with rare events; events that hold with posi-
tive probability which is exponentially small in the
size of the input. Such proofs usually yield neither
randomized nor deterministic efficient procedures
for the corresponding algorithmic problems.

A class of examples demonstrating this phenomenon

is the class of results proved by applying the Lovész
Local Lemma, proved in [14]. The exact statement
of this lemma (for the symmetric case) is the fol-
lowing.

Lemma 1.1 Let Aq,..., A, be events in an arbi-
trary probability space. Suppose that the probability
of each of the n events is at most p, and suppose
that each event A; is mutually independent of all
but at most b of the other events A;. Ifep(b+1) <1
then with positive probability none of the events A;
holds.

Many applications of this lemma can be found
in [14], [21], 2], [4], [7], [8], [9], [10], [11]. For sev-
eral years there has been no known method of con-
verting the proofs of any of these examples into

an efficient algorithm, and the problem of finding
such algorithms is mentioned, among other places,
in [21]. Very recently J. Beck [12] found such a
method that works for many of these examples with
a little loss in the constants. He demonstrated his
elegant method by considering the problem of hy-
pergraph 2-coloring. A hypergraph H = (V| E) is
2-colorable if there is a two coloring of V' so that no
edge in F is monochromatic. The following result
is due to Erdos and Lovéasz. Its derivation from the
Local Lemma is very simple [14].

Theorem 1.2 If e(d+ 1) < 2"~ then any hyper-
graph H in which every edge has at least n > 2
vertices and no edge intersects more than d other
edges s 2-colorable.

Recall that a hypergraph is n-uniform if each of its
edges contains precisely n vertices. Observe that
there is no loss of generality in assuming that H is
n-uniform in Theorem 1.2, since otherwise we can
simply replace each edge of H by a subset of size n
of it. Let H be an n-uniform hypergraph with N
edges satisfying the assumptions in Theorem 1.2,
and suppose, for simplicity, that n, d are fixed. Can
we find a proper two coloring of H (i.e., a vertex
coloring in which no edge is monochromatic) effi-
ciently? Beck showed that indeed we can, in case
d is somewhat smaller, say d < O(2"/*%). In this
case there is a randomized as well as a determin-
istic algorithm whose running time is polynomial
in N for finding a proper two coloring. Beck’s
method does not seem to provide a parallel effi-
cient algorithm (i.e., an algorithm that runs in poly-
logarithmic time using a polynomial number of pro-
cessors). Here we modify Beck’s elegant idea and
combine it with some additional ones to obtain a
version which is parallelizable. The main ingredi-
ents in our algorithm that differ from those of the
one in [12] are the recoloring phase (together with
the definition of bad edges) and its analysis, and
the application of the derandomization techniques
dealing with (almost) d-wise independent events in
small sample spaces.

We first describe the randomized version of our
algorithm and then comment briefly on its deran-
domization and parallelization. Let us denote, as

usual, the binary entropy function by H(z) = —x logy z—

(1 —z)logy(1 —).

Theorem 1.3 Suppose n > 2,d are fized and sup-

pose that for some a > 0
ded?® < 2n(1—H(a)) (1)

and
2e(d+1) < 29, (2)

Then there is a randomized algorithm that finds
a proper 2-coloring of any given n-uniform hyper-
graph H with N edges in which no edge intersects
more than d others in expected running time N
This algorithm can be derandomized and parallelized,
providing a deterministic algorithm that finds a proper
coloring in time O(log N) using N°Y processors.

We note that for large n, any d < 2"/8 satisfies
the above (by taking an appropriate o > 1/8). We
also note that by assuming that d is smaller, say
that d < 27/5%0 the expected running time can be
reduced to almost linear in N. In addition, if indeed
d < 27/590 the assumption that n,d are fixed can
be omitted.

Our technique is useful for exhibiting NC! al-
gorithms to several additional algorithmic search-
problems. These include the problem of finding an
even directed simple cycle in a digraph with some
(weak) regularity properties; a problem which is
related to the study of sign-solvability of systems
of linear equations ([22]). Another example (first
considered by Beck in [12]) is that of finding a
satisfying assignment of a conjunction of disjunc-
tions, in which no literal appears more times than
a small exponent in the length of the shortest dis-
junction. Several problems of obtaining a covering
of the edges of a given graph by a small number
of subgraphs satisfying various conditions can also
be solved in NC' by similar techniques. Some of
these problems are suggested by the analysis of ra-
dio networks. More details appear in Section 3.
We note that although the technique seems rather
general there are some known applications of the
Local Lemma for which it does not seem to provide
efficient solutions for the corresponding algorithmic
problems. An example of such an application ap-
pears in [10].

The rest of this paper is organized as follows. In
Section 2 we describe the basic algorithm, includ-
ing an essentially full proof of Theorem 1.3, and
mention some of its extensions. In Section 3 we
describe briefly some of the additional algorithmic
search problems that can be solved in NC! using
similar methods.

2 The basic algorithm

Let H be as in Theorem 1.3. Here is the ran-
domized algorithm for finding a proper 2-coloring
of H. In the First Pass we color all the vertices
of H, randomly and independently by two colors,
where each point is colored either red or blue with
equal probability. Call an edge bad if at most an
of its points are red or at most an of its points
are blue. The probability of a fixed edge to be bad
is clearly at most 23", .. (7)/2" < 2. 2(H(@)=bn,
Put p = 2. 2(H(@)=1n and let B denote the set of
all bad edges.

Let G be the dependency graph for the prob-
lem, i.e., the graph whose vertices are the edges of
H in which two are adjacent iff they intersect. Ob-
serve that if S is an independent set in G then the
probability that S C B is at most p!°l, since these
|S| events are mutually independent. Let us call
a set of vertices C of G a 1,2-tree if C' is the set
of vertices of a connected subgraph in the square
of G. Le., C is a 1,2-tree if the A; € C are such
that drawing an arc between A;, A; € C if their
distance in G is either 1 or 2 the resulting graph is
connected.

Lemma 2.1 The probability that every 1,2-tree in
G all of whose vertices belong to B has size at most
dlog(2N) is at least 1/2.

Proof Call T C G a 2, 3-tree if the A; € T are such
that all their mutual distances in G are at least two
and so that, drawing an arc between A;, A; € T if
their distance in G is either 2 or 3 the resulting
graph is connected. We first bound the number
of 2,3-trees of size u in G. Consider the graph
on the set of vertices of G in which two vertices
are adjacent if their distance in G is either 2 or
3. Every 2, 3-tree on a set T of vertices of G must
contain a tree on T in this new graph. The new
graph has maximum degree smaller than D = d°.
It is well known (see [18]) that an infinite D-regular
rooted tree contains precisely m (") rooted
subtrees of size u, and this easily implies that the
number of trees of size u containing one specific
given vertex in any graph with maximum degree
at most D does not exceed this number, which is
smaller than (eD)".

For any particular 2, 3-tree T' of size u we know
that Pr[T C B] < p*. Hence the expected number
of 2,3-trees T C B of size u is at most N(eDp)™.

As eDp < 0.5 by (1), if u = log(2N) this term is
at most 1/2. Thus with probability at least 1/2
there is no 2, 3-tree of size bigger than log(2N) all
of whose vertices are in B. We actually want to
bound the size of any 1,2-tree C' of G all of whose
vertices lie in B. A maximal 2,3-tree T in such
a C' must have the property that every A; € C is
a neighbor (in G) of an A; € T. (This is because
otherwise there is an A; € C which is not a neighbor
of any set in T and yet it is of distance 2 or 3 from
some A; € T. Such an A; can be added to T,
contradicting its maximality). There are less than
d neighbors A; of any given A; so that log(2N) >
|T| > |C|/d and so

C] < dlog(2N)

completing the proof of the lemma. O

Let us call the First Pass successful if there is no
1, 2-tree of size greater than dlog(2N) all of whose
vertices lie in B. By the last lemma the probability
the First Pass is successful is at least 1/2. In case
it is not, we simply repeat the entire procedure. In
expected linear time the First Pass is successful.

We can now fix the coloring by recoloring, in
the Second Pass, the vertices of H that belong to
the bad edges. Let us call an edge dangerous if
it contains at least an vertices that belong to bad
edges. (Thus, in particular, bad edges are also dan-
gerous). Observe that if an edge is not dangerous
then it will not become monochromatic after the re-
coloring. This is because less than an of its points
will change color, and it has at least an points of
each color before the recoloring. Thus we only have
to worry about the dangerous edges. However, if we
recolor all the vertices in bad edges randomly and
independently than we recolor at least an vertices
in each dangerous edge, and hence the probability
it becomes monochromatic does not exceed 2~%".
Since each dangerous edge intersects at most d oth-
ers it follows from (2) and from Theorem 1.2 (or
directly from the Lovdsz Local Lemma) that there
exists a recoloring in which no edge is monochro-
matic.

The crucial point is that the recoloring of the
points in the edges of each maximal 1,2-tree C'
of bad edges can be done separately. This is be-
cause there is no dangerous edge that intersects
edges from two distinct such maximal 1,2-trees,
and hence it suffices to recolor the points in the
edges of each such C' in a way that only makes sure

that no dangerous edge intersecting an edge in C'
becomes monochromatic. Since each of the 1,2-
trees C' as above has only O(log N) vertices that
have to be recolored, we can find the required re-
coloring by ezhaustive enumeration! Examining all
possible two-colorings in each such C' only takes
time O(2°00°¢N)) = NO() and hence doing it for
all the above C-s can be done in polynomial time.

This completes the description of the random-
ized algorithm with expected polynomial running
time. In case d < 2°" for a smaller ¢ we can make
another pass similar to the first one in each 1, 2-tree
separately, get new 1,2-trees of size O(loglogN)
and complete as before obtaining an expected run-
ning time which is nearly linear- O(N (log N)©™).
We omit the detailed computation.

The randomized algorithm above is trivially par-
allelizable and can be implemented on a standard
EREW-PRAM in time O(log N) using N°() par-
allel processors. (See [17] for the basic definitions
of an EREW-PRAM and the complexity classes
NC and NC'. Here we extend the definition of
NC' and consider it as a class containing search
problems as well as decision problems.) Moreover,
the algorithm can be derandomized maintaining the
running time (with some increase in the number
of processors), showing that the problem can be
solved in NC'. To see this observe that the re-
coloring step is deterministic even in the version
described above, so the only problem is the deran-
domization of the First Pass. This can be done
by applying the techniques developed in [20] and
improved and simplified in [6]. (It is also possi-
ble to apply the methods of [19] and [13], but this
will not supply NC'-algorithms, although it would
yield algorithms with a smaller number of proces-
sors). The basic idea is that for every constant c¢
there is a constant b = b(c) such that for every m
there are explicit sample spaces of size at most m®
in which one can embed m uniform {0, 1} random
variables in which every set of clogm of the vari-
ables is nearly independent. The details of these
constructions appear in the above mentioned pa-
pers. Let us only mention here that one possibility
of performing the first pass described above deter-
ministically is the following.

Let ¢ > N® be a prime, where b is a constant de-
pending only on n. Let x be the quadratic charac-
ter defined on the elements of the finite field GF(q),
ie., x(z) = 1if z is a quadratic residue modulo ¢

and x(z) = —1 otherwise. Define a family of ¢
two-colorings of the set of vertices of H as follows.
For each i € GF(q), the color of the j-th point in
the 4-th coloring is blue if x(i — j) = 1 and is red
if x(i —j) = —1. Using the results in [6] (based
on the ideas in [20] (see also [3])), it can be shown
that at least one of the ¢ colorings defined above
will produce a successful First Pass. All these (de-
terministically defined) colorings can be checked in
parallel, completing the proof of Theorem 1.3. O

It is worth noting that one can give a differ-
ent variant of the first pass in the basic algorithm,
which is also parallelizable, but since it yields an
NC? and not an NC" algorithm we do not describe
it here.

The argument in the proof of Theorem 1.3 can
be extended to the case where n and d are not fixed,
provided d is somewhat smaller as a function of n,
say, d < 27/590 Moreover, we can also obtain a
coloring in which each edge contains many points of
each of the two colors. By iterating such a coloring
procedure one can obtain a coloring with more than
2 colors in which every edge contains points in each
color. The detailed description of these algorithms
will be given in the full version of the paper. Here
we merely state their existence in the following two
statements.

Theorem 2.2 For any n > 2,d satisfying d <
2n/500 there is an NC' algorithm whose input is
a hypergraph H = (V| E) in which each edge has
at least n vertices and each edge intersects at most
d other edges, and whose output is a vertex two-
coloring of H such that each edge has at least n/1000
points of each color. The algorithm Tuns in time
O(log N) on an EREW-PRAM with N°M) parallel
processors, where N is the number of edges of H.

We note that the constants 500 and 1000 can
be easily improved, and we make no attempt to
optimize them here.

Theorem 2.3 For every fixed k there is an ¢ =
e(k) > 0 such that the following holds. There is an
NC' algorithm whose input is a hypergraph H =
(V, E) in which each edge has at least n > 2 vertices
and each edge intersects at most d others, where
d < 2, and whose output is a k-coloring of the
vertices of H so that each color occures in each
edge. The algorithm runs in time O(log N) on an
EREW-PRAM with N°Y) parallel processors, where
N is the number of edges of H.

3 Additional algorithmic appli-
cations

In this section we describe several additional al-
gorithmic problems for which the technique above

yields efficient deterministic parallel algorithms. Some

of these can be obtained directly from the results
on hypergraph coloring and some require additional
ideas based on the same basic approach. We do not
know of any efficient (deterministic or randomized,
sequential or parallel) algorithm for any of these
problems which does not use the methods of [12] or
these of the present paper.

3.1 Even cycles in directed graphs

The problem of deciding whether a given directed
graph contains a (simple) even (directed) cycle arises
in various contexts, including the study of the prob-
lem of sign-solvability of a system of linear equa-
tions, (see [22]). There is no known polynomial
time algorithm for answering this decision problem,
but it is also not known to be NP-complete. (It
easily follows from the results of [15] that the sim-
ilar decison problem of deciding whether a given
directed graph contains an even cycle through a
given edge is NP-complete). There are several re-
sults that supply a sufficient condition for a digraph
to contain such a cycle. Friedland ([16]) showed
that for every r > 7, any r-regular digraph con-
tains an even cycle. His proof supplies no poly-
nomial time agorithm for finding an even cycle in
such a digraph. In [9] it is shown that one can
assume much less than exact regularity. In fact,
any digraph in which the maximum indegree is not
much bigger than the minimum outdegree contains
an even cycle. The proof applies the Local Lemma.
The results here enable us to convert this proof into
an efficient NC' algorithm, as shown in the next
theorem. (Here and from now on we make no at-
tempt to optimize the constants.)

Theorem 3.1 There is an NC' algorithm whose
input is a digraph D = (V, E) in which each outde-
gree is at least § > 0 and each indegree is at most

A, where
9(5+1)/500
AL ———,
- 041

and whose output is an even directed cycle in D.
The algorithm runs in time O(log N) on an EREW-

PRAM with N parallel processors, where N is
the number of edges of D.

Proof We may assume, by deleting edges if nec-
essary, that every outdegree is precisely §. For
each vertex v of D, let Nt (v) denote the set of
all vertices u of D such that there is a directed
edge from v to u. Let H be the hypergraph whose
vertex set V(H) is the set V of all vertices of D,
and whose edges are all the sets v U Nt (v), where
v € V. Every edge of H has precisely + 1 ver-
tices. We claim that every edge intersects at most
200+1)/500 gther edges. To see this observe that for
any vertex v of D and for any w € N7T(v) there
are at most A — 1 vertices u other then v such that
w € N*(u). There are at most A vertices u such
that v € N (u) and there are at most ¢ additional
vertices u with « € N*(v). Altogether, there are
at most (A—1)0+A+6 = A(6+1) vertices u with
(WUNT(u))N(vUN*(v)) # 0, and this number is,
by assumption, at most 2(0+1)/500 a5 claimed.

It thus follows from Theorem 2.2 that we can
find a proper two coloring f : V — {0,1} of H
in time O(log N) using N parallel processors.
For each vertex v € V, let u = u(v) be a vertex
so that f(u) # f(v) and (v,u) is a directed edge
of D. (Such a u exists and can be found quickly
for all v since f is not a constant on v U N (v)).
Let G denote the subgraph of D consisting of all
the (directed) edges (v,u(v)). Observe that each
directed cycle in G is even, since the values of f on
the vertices along this cycle alternate. Moreover,
every outdegree in G is precisely 1. It is easy to
see that one can find a directed cycle in G in time
O(log N) using N processors, completing the
proof. O

The assertion of the last theorem can be gener-
alized by applying Theorem 2.3 rather then Theo-
rem 2.2 for deriving an algorithmic version of the
general result in [9], dealing with cycles of length
0 modulo k. This gives the following result, whose
detailed proof (which is analogous to that of the
previous theorem) is omitted.

Theorem 3.2 For every fixed k there is an € =
e(k) > 0 such that the following holds. There is an
NC* algorithm whose input is a digraph D = (V, E)
in which each outdegree is at least 6 > 0 and each
indegree is at most A, where

A§2£57

and whose output is a (simple) directed cycle in D
whose length is divisible by k. The algorithm runs
in time O(log N) on an EREW-PRAM with N©(1)
parallel processors, where N is the number of edges
of D.

3.2 Star arboricity

A star forest is a forest whose connected compo-
nents are stars. The star arboricity of a graph G,
denoted by st(G), is the minimum number of star
forests whose union covers all edges of G. For an
integer A > 1 define st(A) = Max{st(G)}, where
the maximum is taken over all simple graphs with
maximum degree A.

The star arboricity of graphs was introduced by
Akiyama and Kano [1] and has been studied in var-
ious papers. The asymptotic behaviour of st(A) is
determined in [11], improving a previous estimate
from [2]. In particular it is known that for every
v > 0 there is a A = Ag(y) such that for every
A>Ag, st(A) < (5 +7)A.

Given a small fixed v > 0 and a graph G with
maximum degree A, where A > Ag(7y) is fixed, can
we find efficiently a family of at most (1 +~)A star-
forests that cover all edges of G? As shown in the
next subsection this question is naturally suggested
by the study of a certain communication model.
The next result, shows that the desired star-forests
can be found efficiently and in parallel. The proof
here requires some additional ideas besides the ba-
sic approach presented in Section 2 and will appear
in the full version of the paper.

Theorem 3.3 For every fixred v > 0 there is a
Ay = Ag(7y) such that the following holds. There
exists an algorithm whose input is a (simple) graph
G with a fixed maximum degree A > Ag, and whose
output is a family of at most (% + 7)A star-forests
whose union covers all edges of G. If N is the num-
ber of vertices of the graph, then the algorithm runs
on an EREW-PRAM in time O(log N) using N©(*)
PTOCESSOTS.

3.3 Radio networks

The study of star arboricity is naturally suggested
by the analysis of certain communication networks.
A radio network is a synchronous network of proces-
sors that communicate by transmitting messages to
their neighbors. A processor P can receive at most

one message in one step. Let us mention here two
possible models.

Type I : P receives a message from its neighbor
Q@ in a given step if P is silent,) transmits and P
chooses to receive from @ in this step.

Type II: P receives a message from its neighbor @)
if P is silent, and @ is the only neighbor of P that
transmits in this step.

Suppose, now, that the model is the Type I
model and the network is represented by an undi-
rected graph G = (V,E) whose vertices are the
processors and two are adjacent if they can trans-
mit to each other. Suppose, further, that we need
to transmit once along every edge (in one of the
two possible directions), say, in order to check that
there is indeed a connection between each adjacent
pair. It is easy to see that the minimum number of
steps in which we can finish all the required trans-
missions is precisely st(G), since the set of edges
corresponding to the transmissions performed in a
single step forms a star forest. Theorem 3.3 thus
supplies an upper bound for the minimum number
of required steps. Observe that if G is a A-regular
graph on N vertices then clearly at least A/2 steps
are necessary, simply because each star-forest has
at most N — 1 edges. Therefore, the (3 + 7)A es-
timate is almost tight in many cases, and the re-
quired communication pattern can be found in this
case efficiently in parallel. We note that obtaining
a covering with A star-forests is trivial, so the sav-
ing here is only by a factor of 2 (which could still be
significant if the communication time is our main
concern). As shown below, in the analogous prob-
lem corresponding to type II networks we improve
the trivial bound by more than a constant factor.

The model of type II networks is much more
popular, and has been considered in many papers
(see, e.g., [4] and its many references). A basic
parameter of a network represented by a directed
graph D in this model is its hitting number h(D)
defined as follows. Given a digraph D = (V, E) and
a subset A of V', we say that A hits a directed edge
(z,y) € Fifz € A, y ¢ A and the only vertex
in N~(y) N A is , where N~ (y) is the set of all
vertices v such that there is a directed edge from v
to y. A family of subsets of V' hits D if for every
directed edge e of D there is a set in the family that
hits e. Let h(D) denote the minimum cardinality of
a family that hits D. One can easily see that this is
precisely the minimum number of steps in which it

is possible to complete a transmission along every
edge of D. This parameter is of central interest in
the study of the task referred to as a Single Round
Simulation in [5].

For simplicity let us restrict our attention to
symmetric graphs, i.e., (z,y) is an edge of D iff
(y,x) is an edge. In [4], [5] it is shown that there
exist two positive constants ¢; and ¢y such that
(i) For every (symmetric) digraph D with maxi-
mum degree A, h(G) < c;Alog A.

(ii) For every A there is a symmetric digraph with
maximum degree A such that h(D) > coAlog A.

The proof of the upper bound stated in (i) ap-
plies the Local Lemma and improves a trivial bound
of A?. Given a symmetric digraph D with maxi-
mum degree A, can we find efficiently and in paral-
lel a family of cardinality O(AlogA) that hits it?
This problem is suggested naturally by the discus-
sion in [4], [5]. The technique described here can
be used to answer this as follows.

Theorem 3.4 There exists a constant ¢ > 0 such

that for every fixed A there exists an algorithm whose
input is a symmetric digraph D = (V, E) with maz-

imum degree A, and whose output is a family F

of subsets of V' that hits D, where |F| < cAlog A.

Such a family can be computed in time O(log N) on

an EREW-PRAM with N°®) processors, where N

is the number of vertices of D.

The detailed proof will appear in the full version of
the paper.

3.4 Satisfying assignments for restricted

CNF formulae

The proof of the following Theorem is almost iden-
tical to the proof of the results dealing with hyper-
graph 2-coloring, and is omitted. An efficient se-
quential algorithm to this problem was first given
in [12].

Theorem 3.5 For any n > 2,d satisfying d <
27/100 there is an NC' algorithm whose input is
a Conjunction of Disjunctions in which each Dis-
Junction contains at least n literals and each lit-
eral appears in at most d disjunctions and whose
output is a satisfying assignment for this formula.
The algorithm runs in time O(log N) on an EREW-
PRAM with N parallel processors, where N is
the length of the formula.

3.5 Acyclic edge-coloring

We have seen several algorithmic problems that can
be solved efficiently in parallel using the technique
described in the first sections. In his original paper,
Beck [12] describes several other results obtained by
the Local Lemma, for which he obtains efficient (se-
quential) algorithms. There are several additional
examples, including the main results in [7] and in [8]
that can be converted into efficient algorithms by
similar methods. It is not yet clear if this technique
suffices for converting all the known applications of
the Local Lemma into efficient algorithms. An ex-
ample which looks difficult is finding an algorithmic
version for the following theorem proved in [10]:

Theorem 3.6 The edges of any graph with maxi-
mum degree A can be colored by 64A colors so that
there are no two adjacent edges having the same
color and there is no 2-colored cycle.

Acknowledgement I would like to thank Jézsef
Beck for sending me an early draft of his paper and
Joel Spencer for helpful comments.

References

[1] J. Akiyama and M. Kano, Path factors of a
graph, in: Graph Theory and its Applications
(Wiley and Sons, New York, 1984).

[2] 1. Algor and N. Alon, The star arboricity of
graphs, Discrete Mathematics 75 (1989), 11-
22.

[3] N. Alon, L. Babai and A. Itai, A fast and sim-
ple randomized parallel algorithm for the max-
1mal independent set problem, J. of Algorithms
7 (1986), 567-583.

[4] N. Alon, A. Bar-Noy, N. Linial and D. Pe-
leg, On the complexity of radio communica-
tion, Proc. 21" ACM STOC, Seattle, Wash-
ington, ACM Press (1989), 274-285.

[5] N. Alon, A. Bar-Noy, N. Linial and D. Peleg,
Single round simulation on radio networks, to
appear in J. of Algorithms.

[6] N. Alon, O. Goldreich, J. Hastad and R. Per-
alta , Simple constructions of almost k-wise in-
dependent random variables, Proc. 31°¢ FOCS,
St. Louis, Missouri, IEEE (1990), 544-553.

[7]

8]

[18]

[19]

N. Alon, The linear arboricity of graphs, Israel
J. Math. 62(1988), 311-325.

N. Alon, The strong chromatic number of a
graph, to appear in Random Structures and
Algorithms.

N. Alon and N. Linial, Cycles of length 0 mod-
ulo k in directed graphs, J. Combinatorial The-
ory, Ser. B 47(1989), 114-119.

N. Alon, C. McDiarmid and B. Reed, Acyclic
coloring of graphs, to appear in Random Struc-
tures and Algorithms.

N. Alon, C. McDiarmid and B. Reed, Star Ar-
boricity, to appear in Combinatorica.

J. Beck, An algorithmic approach to the Lovdsz
Local Lemma I, to appear in Random Struc-
tures and Algorithms.

B. Berger and J. Rompel, Simulating logn-
wise independence in NC, Proc. 30" IEEE
FOCS (1989), 2-7.

P. Erdos and L. Lovasz, Problems and results
on 3-chromatic hypergraphs and some related
questions, in:” Infinite and Finite Sets” (A. Ha-
jnal et. al. eds), Colloq. Math. Soc. J. Bolyai
11, North Holland, Amsterdam, 1975, pp. 609-
627.

S. Fortune, J.E.Hopcroft and J.Wyllie, The di-
rected subgraph homeomorphism problem, The-
oret. Comp. Sci. 10(1980),111-120.

S. Friedland, Any T7-regular digraph contains
an even cycle, J. Combinatorial Theory Ser.
B, 46 (1989), 249-252.

R. M. Karp and V. Ramachandran, A sur-
vey of parallel algorithms for shared memory
machines, in: Handbook of Theoretical Com-
puter Science (J. Van Leeuwen Ed.), Chapter
17, MIT Press (1990), 871-941.

D. Knuth, The Art of Computer Programming,
Vol. I, Addison Wesley, London, 1969, p. 396
(Exercise 11).

R. Motwani, J. Naor and M. Naor, The proba-
bilistic method yields deterministic parallel al-
gorithms, Proc. 30" IEEE FOCS (1989), 8-13.

[20]

J. Naor and M. Naor, Small-bias probabil-
ity spaces: efficient constructions and appli-
cations, Proc. 22"% annual ACM STOC, ACM
Press (1990), 213-223.

J. Spencer, Ten Lectures on the Probabilistic
Method, STAM, Philadelphia, 1987.

C. Thomassen, Sign-nonsingular matrices and
even cycles in directed graphs, Linear Algebra
Appl. 41 (1986), 27-42.

