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Abstract

Let C be a code of length n over an alphabet of q letters. A codeword y is called a descendant
of a set of t codewords {x1, . . . , xt} if yi ∈ {x1

i , . . . , x
t
i} for all i = 1, . . . , n. A code is said to

have the Identifiable Parent Property of order t if for any word of length n that is a descendant
of at most t codewords (parents), it is possible to identify at least one of them. Let ft(n, q) be
the maximum possible cardinality of such a code. We prove that for any t, n, q, (c1(t)q)

n
s(t) <

ft(n, q) < c2(t)qd
n
s(t) e where s(t) = b( t2 + 1)2c − 1 and c1(t), c2(t) are some functions of t. We

also show some bounds and constructions for f3(5, q), f3(6, q), and ft(n, q) when n < s(t).

1 Introduction

Let Q be an alphabet, |Q| = q and suppose C ⊆ Qn. C is called a code, and the elements of C are
called codewords.

Let P be a set of t codewords P = {p1, . . . , pt} ⊆ C. We define the set of its descendants, D(P ),
by:

D(P ) = {y ∈ Qn|yi ∈ {p1
i , . . . , p

t
i}, i = 1, . . . , n}

A code is said to have the identifiable parent property of order t (or said to have t-IPP for
short) if for any s ∈ Qn (a son), either it is not a descendant of any set of t codewords, or there
exists a codeword p (a parent) that can be identified from s, that is:

∀P ⊆ C, |P | ≤ t : (s ∈ D(P )⇒ p ∈ P ).

Note that identifying more than one parent is impossible, since any codeword is a descendant of
itself and any other (t− 1) codewords.
Define:

ft(n, q) = max{|C| : C ⊆ Qn has t-IPP}.
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The study of ft(n, q) is motivated by questions about schemes that protect against piracy of soft-
ware, see, e.g. [5], [7].

The following definition will be helpful later: For a code C ⊆ Qn, we say that a codeword y ∈ C
is unique in coordinate i, if

∀x ∈ C, x 6= y : xi 6= yi

2 Bounding the growth of ft(n, q)

Our main interest is to explore the growth of ft(n, q) for some values of n and t, as a function of q.
The main result in this section is that ft(n, q) grows polynomially with q, and the degree depends
on n and a function of t, as follows. Denote:

s(t)
def
=

{
t2

4 + t when t is even
t2

4 + t− 1
4 when t is odd

The results of this section are summarized in the following theorem:

Theorem 2.1 There exist two functions c1(t) and c2(t), such that for every n,q:

(c1(t)q)
n
s(t) < ft(n, q) < c2(t)qd

n
s(t)
e

The lower bound is shown using a probabilistic construction of such codes following the method
of [3], while the upper bound is achieved by combining ideas from [6] with some new techniques.
The upper bound, with a somewhat worse value of c2(t), has been obtained, independently, by
Blackburn [4].

2.1 The upper bound

Lemma 2.2 For every t,q,n,a: ft(n · a, q) ≤ ft(n, qa)

Proof. Suppose C ⊆ Qn·a has t-IPP. We split the codewords in C into n blocks of a coordinates
each. We view the codewords as words of length n over an alphabet of size qa. It is easy to see
that this code has t-IPP, proving the lemma. 2

Lemma 2.3 For every t:
ft(s(t), q) ≤ s(t) · q

Proof. Let C ⊆ Q1 × . . . × Qs(t) have t-IPP, and suppose |C| ≥ s(t) · q + 1. We show there is
some descendant whose parents cannot be identified.

First, we construct a code Ĉ ⊂ C as follows: Whenever there is still a codeword containing
a unique coordinate (unique among the words that have not been deleted so far), delete it. Any
symbol among the q and any coordinate i = 1, . . . , s(t) can be responsible for deleting at most
one codeword: If some symbol was unique in some place, after deleting that word it will never
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appear there again. Hence we delete at most s(t)q codewords, and we are thus left with at least
one codeword in Ĉ (this means that in fact we deleted at most s(t)(q− 1) codewords, but since we
are intersted in fixed t and large q, we ignore the low order terms). Note that by construction, in
Ĉ, no codeword will have a unique symbol (and we will thus have, in fact, several codewords in Ĉ).

Suppose t is even, hence s(t) = t2

4 + t = ( t2 + 1)2 − 1.
We choose the set of parents X ⊂ Ĉ as follows: Start by picking some codeword, x1 ∈ Ĉ.

Next, we pick a codeword x2 ∈ Ĉ whose ( t2 + 1)’th coordinate equals to that coordinate in x1. The
construction of Ĉ assures us such a codeword exists in Ĉ. Also, denote m1 = ( t2 + 1).

To choose x3, we consider the symbol in place 2( t2 + 1) = t + 2 of x2. This symbol appears in
some other codeword in Ĉ. If that other codeword is x1, we move to the symbol in place t+ 3 and
check it. We do so until we find the first symbol that appears in some codeword that is distinct
from x1, x2. Call this coordinate m2, and that other codeword x3.

Later on, the (k+ 1)’th codeword is chosen as follows: let mk be the first mk ≥ mk−1 + ( t2 + 1)
such that xk ’s symbol in the mk’th coordinate equals to that coordinate in some codeword y which
we have not picked yet, i.e. ymk = xkmk and y /∈ {x1, x2, . . . , xk}. Denote this codeword xk+1 = y.
If no such mk exists, say that mk is undefined.

We stop when the next mk is undefined. Note that at most ( t2 + 1) codewords were chosen this
way. At the end of this process we have a set of codewords X = {xi} and indices {mi}, such that
the mk’th coordinate of xk equals to that coordinate in xk+1 for k = 1, ..., |X| − 1.

The descendant s takes its first m1 = ( t2 + 1) coordinates from x1, the following coordinates
until m2 from x2, and so on. The last parent contributes at most t

2 coordinates that do not belong
to the other members of X.

Obviously, s ∈ D(X). Yet, |X| ≤ ( t2 + 1) and any xi ∈ X can be replaced by at most t
2

codewords that give the (at most) t
2 coordinates it contributed to s, and no other xj ∈ X did. This

gives a set of parents of size ≤ t, that does not include xi.
Thus, none of the elements in X is a parent, and certainly no other codeword in Ĉ is. Therefore,

no parent of s can be identified and the code does not have t-IPP.
If t is odd, we do exactly the same, only taking mk+1 ≥ mk + ( t+1

2 ), which gives |X| ≤ ( t+3
2 ),

and all the sets of parents we use are, again, of size at most t.
2

Combining Lemma 2.2 and Lemma 2.3 we obtain the upper bound of Theorem 2.1.

2.2 The lower bound

We use the techniques of [3] to establish the lower bound. Recall the following definition:

Definition 2.4 A code C ⊂ Qn is (t, u)-partially hashing if for any two subsets T,U of C such
that T ⊂ U ⊂ C, |T | = t, |U | = u, there is some coordinate i ∈ [1 . . . n] such that

∀x ∈ T, y ∈ U, y 6= x : xi 6= yi
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To prove the lower bound we need the following result:

Lemma 2.5 ([3], Corollary 3) Let u = s(t) + 1. If a code C is (t, u)-partially hashing, then C
has t-IPP.

We prove the lower bound of Theorem 2.1 using the probabilistic method. We show there is a
large enough code that is (t, u)-partially hashing, which therefore has t-IPP.

Pick at random, with uniform distribution, a set C ⊂ Qn of |C| = M codewords. For any pair
of sets T ⊂ U ⊂ C that violate the partially hashing property, we delete some codeword in U .
This leaves a code that is (t, u)-partially hashing. We choose M such that the expected number
of such “bad” couples T,U is at most M

2 . This assures existence of a t-IPP code of size at least
M − M

2 = M
2 .

We now find the probability PRbad of some fixed two sets |T | = t, |U | = u, T ⊂ U to violate the
partially hashing property:

PRbad =

(
1− q(q − 1) · · · (q − t+ 1)(q − t)u−t

qu

)n

=

(∑u−1
i=0 ai(t)q

i

qu

)n

≤
(
b(t)
q

)n
for some functions ai(t), b(t).

The expectation of the number of bad couples therefore satisfies:

Ebad =

(
M

u

)(
u

t

)
PRbad

≤ c(t)Mu
(
b(t)
q

)n
Choosing M ≤ ( q

d(t))
n
u−1 for an appropriate d(t) assures Ebad < M

2 .

This construction gives t-IPP codes of size at least (c1(t)q)
n
s(t) , and completes the proof of

Theorem 2.1.

Remark 2.6 The correct power of q for lengths n 6≡ 0 (mod s(t)) remains open. The case t = 2,
studied in [1] , and the result on f3(6, q) which we prove in the next section, show there is still
much to learn on these cases.

3 The case t=3

Note that for t = 2, s(2) = 3. In [6] it is proved that f2(3, q) ≥ (3− o(1))q (Example 4). It is also
shown there that this code is essentially optimal since f2(3, q) ≤ 3q − 1 (a similar bound follows
from Lemma 2.3). We prove an analogous result for t = 3: In this case, s(3) = 5 and hence by
Lemma 2.3 f3(5, q) ≤ 5q.
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Theorem 3.1 f3(5, q) ≥ (5− o(1))q (and hence f3(5, q) = (5− o(1))q.)

Proof. Split the alphabet Q into 5 pairwise disjoint sets as follows: Q1, . . . , Q4 consist of c · q
3
4

letters each for some constant c to be determined later. Q5 consists of the rest of the alphabet.
Construct the code C as follows: C consists of five sets of codewords, i.e.- C =

⋃5
i=1Ci. Each

set Ci ⊂ Qi ×Qi+1 × . . .×Q5 ×Q1 × . . . Qi−1.
First, using the results shown in section 2.2, we construct a code Ĉ ⊂ Q1 ×Q2 ×Q3 ×Q4 with

the following properties:

(i) Ĉ has 2-IPP

(ii) No two codewords of Ĉ share more than one coordinate

(iii) |Ĉ| = |Q5|

This consruction is done first by picking the code Ĉ at random. Property (i) is acheived
by removing one codeword from any set of codewords that violate the (2, 4)- partially hashing
property of Ĉ. Then, we remove one codeword from any pair of codewords that share more than
one coordinate, in order to achieve property (ii). A calculation similar to the one shown in the
proof of Theorem 2.1 shows that a sufficiently large q, and a proper choice of c and the initial size
of Ĉ ensure the existence of such a code. The existence of Ĉ also follows (with room to spare) from
the results in [1].

To each of the symbols in Q5 we match one codeword from Ĉ. Each such couple forms a single
codeword in C1, and with an appropriate cyclic shift, forms a codeword in each of the other Cis.
Hence, each Ci consists of |Q5| codewords. The size of the code C is therefore 5|Q5| = 5(q−4cq

3
4 ) =

(5− 4cq−
1
4 )q = (5− o(1))q. We prove that C has 3-IPP by showing how to find a parent of a given

descendant s ∈ Q5. If s is not a descendant of any 3 codewords, the search for a parent will fail.
Note that in any coordinate, the 5 sets of symbols used by each Ci, are pairwise disjoint. Thus, for
each one of s’s coordinates we can determine from which Ci it came.

We handle the following cases separately:

Case 1 - All symbols in s are from a single Ci : One of s’s coordinates is taken from Q5. In
this case, there is only one codeword with this symbol at that coordinate, and this codeword
has to be in any set of parents.

Case 2 - Symbols from 2 different Ci’s appear in s: First, suppose s contains 4 coordinates
of a single Ci and one coordinate of some other Cj . Then the 4 coordinates are taken from at
most 2 codewords in Ci, since we still need another parent from Cj . If one of the 4 coordinates
is a symbol from Q5, then we can identify the parent immediately. Otherwise, we have the 4
coordinates that form a 2-IPP code, hence again we can identify a parent.

Now, assume s contains 3 coordinates from Ci, and the other 2 coordinates are taken from
Cj (i 6= j). If a codeword x ∈ Ci equals s in 3 coordinates, it must be among its parents:
Otherwise, since no 2 distinct codewords in Ci share more than 1 coordinate, s should have
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at least 3 parents from Ci, but this would leave no room for the essential parent from Cj .
If no such x exists, than two of s’s parents are members of Ci, and there is only one parent
from Cj . Yet s has 2 of that parent’s coordinates, and so there is only (at most) one possible
parent in Cj .

Case 3 - Symbols from 3 different Ci’s appear in s: In this case, the set of parents must
consist of exactly one member from each of the 3 Ci sets. Yet, at least one of the parents
contributed 2 coordinates or more to s, which allows us to identify it.

Case 4 - s contains symbols from more than 3 Ci’s: In this case, s is surely not a descen-
dant of any 3 codewords of C.

This covers all possibilities, hence C indeed has 3-IPP. 2

By Theorem 2.1 we know that Ω(q
6
5 ) ≤ f3(6, q) ≤ O(q2). Using the techniques of [1] modified

appropriately, we can prove the following theorem:

Theorem 3.2 f3(6, q) = o(q2)

To prove this upper bound, we need the following result, proved in [2] by applying the regularity
lemma of Szemerédi [8].

Lemma 3.3 ([2], Proposition 4.4) For every γ > 0 and every integer k there exists a δ =
δ(k, γ) > 0 such that every simple graph G on n vertices containing less than δnk copies of the
complete graph Kk on k vertices, contains a set of less than γn2 edges whose deletion destroys all
copies of Kk in G.

Suppose that for some ε > 0 and every q, f3(6, q) ≥ εq2. Let C be such a code, for a large
enough q. We will show that C doesn’t have 3-IPP.

Lemma 3.4 No two codewords in C share two coordinates.

Proof. By the result of [1], we have f2(q, 4) = o(q2). Thus for a large enough q, f2(4, q) < (εq2−2).
Therefore, considering the code induced by C without any two codewords on any 4 coordinates
gives a code that does not have 2-IPP.

Suppose we have some 2 codewords x, y ∈ C such that x equals y in 2 coordinates i1, i2.
Inducing the code C \{x, y} on the other 4 coordinates, gives a non-2-IPP code. Suppose z is some
descendant with 2 or 3 possible sets of parents {Pj}j in that code, that violate the 2-IPP. That is,
for every j: z ∈ D(Pj) , and ∩jPj = ∅.

Consider the following codeword: We take the symbols in i1, i2 from x (and y), and the other
4 coordinates from z. Call this codeword w. For every j, w is a descendant of both Pj ∪ {x} and
Pj ∪ {y}. All these sets are of size ≤ 3, and surely have an empty intersection. Therefore, a parent
of w cannot be identified, contradicting the fact that C has 3-IPP.
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2

Proof of Theorem 3.2 Construct a 6-partite graph G = (V,E) as follows: Each vertex class consists
of q vertices, i.e. V = Q1∪Q2∪ ...∪Q6, |Qi| = q. We relate Qi to coordinate i. For every codeword
q1q2q3q4q5q6 ∈ C we add a copy of K6 on the vertices q1 ∈ Q1, ..., q6 ∈ Q6.

By Lemma 3.4, G is simple, and hence contains 15εq2 edges. As it is the edge-disjoint union of
εq2 copies of K6, one has to delete at least εq2 of its edges to destroy all copies of K6 contained in
G. By Lemma 3.3, the graph G contains at least δq6 copies of K6, for a constant δ = δ(ε) > 0.

Among these copies of K6, the number of K6 copies that contain at least two edges arising
from the same x ∈ C is at most O(q5): There are at most q2 ways to choose x, and 15·14

2 ways to
choose two of its edges. This determines already at least three vertices of the K6, leaving at most
q3 options for the remaining vertices.

It follows that G contains a copy of K6 in which every edge comes from a different x ∈ C.
Suppose q1, . . . , q6 are the vertices of this K6. Then, the codeword x = q1 . . . q6 is a descendant of
both

(i) The three codewords giving the edges (q1, q2), (q3, q4), (q5, q6)

(ii) The three codewords giving the edges (q2, q3), (q4, q5), (q6, q1)

Since all these codewords are different, a parent of x cannot be identified, hence C does not
have 3-IPP. 2

4 The case n ≤ s(t)

In this section we explore some values of ft(n, q) in those cases where the size of the largest possible
code is linear in q. Our main interest is in the constant multiplying q. The sublinear additive error
terms will usually be disregarded.

4.1 n ≤ t

The results on this case are summarized in the following simple lemma:

Lemma 4.1 For any t, and n ≤ t: ft(n, q) = q

Proof. Suppose we have a code of q + 1 codewords. In this case, in each coordinate, there is some
symbol that appears in two different codewords. Take such a symbol in each coordinate, to generate
s ∈ Qn. Clearly s is a descendant of at most n ≤ t codewords; simply take, for each coordinate
i, a codeword whose i-th coordinate is si. It is also not difficult to see that no parent of s can be
identified. This is because we can choose the above set of at most n codewords that generate s
even if we have to avoid any single codeword (simply because we have at least two choices in each
coordinate). Hence, this code does not have t-IPP. This shows that ft(n, q) ≤ q.
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Furthermore, the repetition code of any length over a set of q symbols has t-IPP. This code
achieves the upper bound, completing the proof.

2

4.2 n = t+ 1

We have an asymptotically tight result for this case too:

Theorem 4.2 For any t ≥ 2,

ft(t+ 1, q) =

(
1 +

1
t− 3

2

− o(1)

)
q.

We first note the following simple fact.

Fact 4.3 Assume C ⊆ Qt+1 has t-IPP, and |C| > q+2 . Then there are no two distinct codewords,
x, y ∈ C, such that x is not unique in some two coordinates i1, i2, and y is not unique in two
coordinates i3, i4, where all four coordinates i1, i2, i3, i4 are distinct.

Proof. Suppose such codewords x, y ∈ C exist. By taking x’s symbols in i1, i2 and y’s symbols
in i3, i4, and any symbol that appears in at least two codewords besides x, y in each of the rest
of the coordinates, we obtain a descendant whose parents cannot be identified (contradicting our
assumption on C). 2

Proof of Theorem 4.2 We prove the upper bound first: Assume we have some code C ⊆ Qt+1,
|C| > (1 + 1

t− 3
2

)q, that has t-IPP.
Suppose C does not contain any codeword that is not unique in two coordinates. In this case,

every codeword of C is unique in at least t coordinates, and since at most q − 1 codewords can be
unique at each of the t+ 1 coordinates we get

t|C| ≤ (q − 1)(t+ 1).

Therefore
|C| < (1 +

1
t
)q < (1 +

1
t− 3

2

)q

which contradicts our assumption on the size of C.
Hence C must contain a codeword that is not unique in at least 2 coordinates. We may assume,

without loss of generality, that x ∈ C is not unique in coordinates {1, 2} . By Fact 4.3, there is no
codeword y ∈ C that is not unique in 2 coordinates among {3, . . . , t+ 1}.

First, assume that there is some codeword y ∈ C \ {x} that is not unique in coordinates {1, 3}
and that no other codeword of C is not unique in coordinates {2, 3}. In this case, if a codeword of C
is not unique in some two coordinates, then at least one of them has to be coordinate 1 (otherwise
we would get two codewords that are not unique in two disjoint pairs of coordinates, contradicting
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Fact 4.3). Thus any codeword in C (including x and y) has at most one unique coordinate among
{2, . . . , t+ 1}. Hence, for the last t coordinates we get

(t− 1)|C| ≤ (q − 1)t

that is
|C| < (1 +

1
t− 1

)q < (1 +
1

t− 3
2

)q

and again a contradiction is obtained.
We are left with the last option in which there are both y ∈ C that is not unique in coordinates

{1, 3}, and z ∈ C which is not unique in coordinates {2, 3}. If a codeword w ∈ C is not unique in
coordinate i, for some i ∈ {4, . . . , t + 1}, then this must be the only coordinate in which w is not
unique (otherwise, a contradiction to Fact 4.3 is obtained). We split the code C into 2 disjoint sets:
C1 contains all the codewords that are not unique in exactly one of the coordinates {4, . . . , t+ 1}.
C2 contains all the codewords of C that are unique in all the coordinates {4, . . . , t + 1} (but may
not be unique in some of the coordinates {1, 2, 3}). We also split the code C1 into t − 2 pairwise
disjoint sets as follows: for i ∈ {4, . . . , t + 1}, Ci1 consists of the codewords that are not unique in
coordinate i.

We first claim that the induced code of C2 on coordinates {1, 2, 3} (which we denote by C2|{1,2,3})
must have 2-IPP. To prove this claim, suppose we have some descendant s ∈ Q3 whose parent cannot
be identified, i.e. there are sets of parents {Pj} such that |Pj | ≤ 2, Pj ⊂ C2|{1,2,3}, s ∈ D(Pj) and⋂
j Pj = ∅. In this case, C itself does not have t-IPP: we construct a descendant by taking the first

3 coordinates from s, and the i’th coordinate from some representative of Ci1 for i ∈ {4, . . . , t+ 1}
(Ci1 cannot be empty: Otherwise, all the codewords of C would be unique in coordinate i, hence
the cardinality of C would not exceed q). This codeword is a descendant of any of the following
sets of parents: Taking some Pj and adding one of at least two possible codewords from each Ci1.
It is easy to see that the intersection of these sets is empty, proving the claim.

In the first three coordinates, the codewords of C2 use different symbols then the ones used
by C1, since the codewords of C1 are always unique in coordinates {1, 2, 3}. Thus, the size of the
alphabet left for C2 in each of these coordinates is q−|C1|. Yet, C2 has 2-IPP in these coordinates,
and since f2(3, q̂) ≤ 3q̂ (by Lemma 2.3), we get:

|C2| ≤ 3(q − |C1|) (1)

Moreover, for the i’th coordinate ( i ∈ {4, . . . , t + 1} ), there are |C1| + |C2| − |Ci1| codewords
that are unique in coordinate i. Therefore, for i ∈ {4, . . . , t+ 1}, we have:

|C1|+ |C2| − |Ci1| ≤ q (2)

Adding the inequalities (2) for i = 4, . . . , t+ 1, and dividing by t− 2 we obtain:

(1− 1
t− 2

)|C1|+ |C2| ≤ q (3)
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Inequality (1) can also be written as

3|C1|+ |C2| ≤ 3q (4)

Multiplying it by 1
2(t−2) , and adding it to inequality (3), we get(

1 +
1

2(t− 2)

)
|C1|+

(
1 +

1
2(t− 2)

)
|C2| ≤

(
1 +

3
2(t− 2)

)
q (5)

Hence

|C1|+ |C2| ≤

1 + 3
2(t−2)

1 + 1
2(t−2)

 q =

(
1 +

1
t− 3

2

)
q

which again contradicts our assumption on the size of C and completes the proof of the upper
bound.

We now construct a proper code. The construction of the code C simply follows the last part
of the proof of the upper bound. To simplify the presentation, we omit all floor and ceiling signs
in what follows. Since t is fixed and q is large, this clearly does not affect the asymptotic result.

We choose some special symbol q0 ∈ Q. First, we construct t − 2 sets of codewords, Ci1, as
follows: The i’th set (i ∈ {4, . . . , t + 1}) consists of ( 1

t− 3
2

)q codewords with unique symbols in all
coordinates except for coordinate i, in which the symbol q0 appears.

This way we get C1 =
⋃t+1
i=4 C

i
1. The size of C1 is:

|C1| = (t− 2)

(
1

t− 3
2

)
q =

(
1− 1

2t− 3

)
q

We add another set of codewords, C2: For each of the first three coordinates, we find the set of
symbols that have not been used yet (by codewords in C1). Using the construction in [6] (Example
4) we obtain a 2-IPP code of length 3. The size of the alphabet in each coordinate is

q̂ = q − |C1| = q − (1− 1
2t− 3

)q =
q

2t− 3
Hence, the size of this code is

(3− o(1))q̂ =
(

3
2t− 3

− o(1)
)
q.

To each such codeword we add t− 2 unique symbols to create codewords of length t+ 1. There
are enough symbols, since in each coordinate (among {4, . . . , t+ 1}) we have

q − 1− q(t− 3)(
1

t− 3
2

) = q

(
1− t− 3

t− 3
2

)
− 1 = q(

3
2t− 3

− o(1))

unused symbols after creating C1.
The code C is the union C = C1 ∪ C2. Its size is

|C| = |C1|+ |C2| =
(

1− 1
2t− 3

)
q +

(
3

2t− 3
− o(1)

)
q =

(
1 +

1
t− 3

2

− o(1)

)
q
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To complete the proof, we show that C has t-IPP: If a descendant s has some symbol that is
unique (i.e. appears only once) in some coordinate, we can identify the parent from which it came.
Assume s does not have any unique symbol. In this case, any set P ⊂ C such that s ∈ D(P ) and
|P | ≤ t, must contain at least one codeword from each Ci1 (i ∈ {4, . . . , t + 1}). Yet |P | ≤ t, hence
P contains at most 2 codewords from C2, that give s its first 3 coordinates (if s inherits one of its
first 3 symbols from a codeword in C1, then this symbol is unique). Since C2|{1,2,3} has 2-IPP, a
parent of s from C2 can be identified.

2

4.3 t+ 1 < n < s(t)

For these cases we do not have a general tight bound. The following lemma, however, provides
good upper bounds in some cases:

Lemma 4.4 Suppose b+m− 1 ≤ t, then

ft(b ·m, q) ≤ (b+ o(1))q

Proof. We actually show that ft(b ·m, q) < b(q − 1) + m. Assume we have such a code of size at
least b(q − 1) +m. Split the coordinates into m sets (blocks) of b coordinates each. In each block,
there are at most b(q − 1) codewords that are unique in some coordinate in that block. Therefore,
there are at least m codewords whose symbols in each coordinate of that block are not unique.

This enables us to find a set X of m representatives: xi, the representative of the i’th block,
has no unique symbol in the i’th block. We choose a different representative for each block.

A descendant s that inherits its coordinates in each block from that block’s representative is
a descendant of X = {x1, . . . , xm}. Yet every xi can be replaced by some b codewords, and since
b + m − 1 ≤ t, we still have a set of at most t parents of s that does not contain xi. This shows
that identifying a parent for s is impossible, and the code does not have t-IPP.

2

Remark 4.5 In the case n = s(t), we only have the upper bound of Lemma 2.3. By [6] (Example
4) and by Theorem 3.1 here this bound is asymptotically optimal for t = 2, 3. We conjecture that
constructions, similar to the one appearing in the proof of Theorem 3.1, may show this bound is
tight also for all other values of t.
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