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Abstract—This paper considers the problem of linear
Boolean classification, where the goal is to determine in
which set, among two given sets of Boolean vectors, an
unknown vector belongs to by making linear queries.
Finding the least number of queries is formulated as
determining the minimal rank of a matrix over GF (2)
whose kernel does not intersect a given set S. In the case
where S is a Hamming ball, this reduces to finding linear
codes of largest dimension. For a general set S, this is
an instance of “the critical problem” posed by Crapo and
Rota in 1970, open in general. This work focuses on the
case where S is an annulus. As opposed to balls, it is shown
that an optimal kernel is composed not only of dense but
also of sparse vectors, and the optimal mixture is identified
in various cases. These findings corroborate a proposed
conjecture that for an annulus of inner and outer radius
nq and np respectively, the optimal relative rank is given by
the normalized entropy (1− q)H(p/(1− q)), an extension
of the Gilbert-Varshamov bound.

I. INTRODUCTION

A. Linear coding

One of the fundamental problems of coding theory is
to identify the largest dimension of a binary code with
a given length and distance. This means to identify the
largest cardinality of a subset of Fn

2 whose elements are
at distance at least d from each other. This is a well-
known open problem in general. Even for the case of a
linear code, i.e., a subspace of Fn

2 , the problem is open.
From the parity-check matrix viewpoint, constructing a
linear code of distance d is equivalent to constructing
a matrix M such that Mx allows to recover x for all
x having weight at most b(d − 1)/2c, equivalently, to
construct a matrix M of least rank such that

Mx 6=Mx′, ∀x, x′ ∈ B(0n, s), x 6= x′, (1)

where

B(0n, s) = {x ∈ Fn
2 : w(x) ≤ s}, (2)

s = b(d− 1)/2c, (3)

is the Hamming ball of centre 0n and radius s, and
where w(x) denotes the Hamming weight of x. Note
that for a fixed s and n, the least rank of matrices
satisfying property (1) is a finite integer, we denote it by
m∗(2s, n). The factor 2 will be justified later. Finding
m∗ for general values is a difficult problem as mentioned
previously, and even in the asymptotic regime of s, n
diverging with a fixed ratio s/n = δ/2, the problem is
still open. In fact, it is believed by some (e.g., Goppa’s
conjecture) that the answer is given by

m∗(δn, n) = nH(δ) + o(n), (4)

the Gilbert-Varshamov (GV) bound [5], [9], where

H(δ) = −δ log2 δ − (1− δ) log2(1− δ), (5)

if δ ∈ [0, 1/2] and H(δ) = 1 if δ ∈ (1/2, 1].
It is not difficult to establish this bound, with a greedy

algorithm or with a probabilistic argument, but it has not
been improved since the 50’s in the asymptotic regime,
nor has it been proved to be tight.

Linear codes are particularly interesting for several
reasons. Their encoding complexity is reduced from
exponential (in the worst case) to quadratic in the
blocklength (specifying a basis). Moreover, most of the
codes studied in the literature and used in applications
with efficient decoding algorithms are linear. There are
also other interesting features of linear codes, such as
their duality with linear source codes. The parity-check
matrix of a linear code can be viewed as a linear
source compressor, for a source distribution (or a source
model in the worst-case setting) equivalent to the error
distribution (or model). In particular, if the source model
is given by the k-sparse sequences, i.e., binary sequences
with at most k ones, then the optimal compression
dimension, assuming the Gilbert-Varshamov bound to be
tight, is given by nH(2k/n)+o(n), where the first term
is approximately 2k log n/k, when k/n is small.



B. Linear Boolean classification
Given two disjoint classes S1, S2 ⊆ {0, 1}n, we are

interested in constructing a linear map M : Fn
2 → Fm

2

such that for x ∈ S1 ∪ S2, Mx allows to determine if x
belongs to S1 or S2, i.e., MS1 ∩MS2 = ∅. We refer to
this problem as linear Boolean classification. Our goal
is to identify the least dimension m for which linear
classification is possible when the two classes are given.

Consider the following toy example. The unknown
vector x ∈ Fn

2 represents the pixels of a black and white
image. Assume that there are two models for the image,
the dark and bright images, modelled by the two sets
S1 = B(1n, s) and S2 = B(0n, s), where s < n/2. This
means that the bright images are all vectors with at most
s black pixels, whereas the dark images are all vectors
with at most s white pixels. Our goal is to identify the
least dimension of a linear projection for which we can
still classify if an image is dark or bright. The reader
can easily check that in this case the least dimension
is 2s + 1, as further discussed in the next section. This
shows that linear classification, as compared to linear
compression, can be simpler to address for Hamming
balls. The reason behind this difference will be clarified
in the next section.

Note that we do not specify how to decide among the
two classes by accessing y = Mx. A general approach
is to find a solution x0 of y = Mx, and to then
verify if x0 + ker(M) intersects S1 or S2. This may
be of course computationally costly, but our goal in
this paper is only to identify the least rank of M for
which the intersection always happens only with one of
the two sets. The computational efficiency would be an
interesting problem to pursue.

II. PRELIMINARY RESULTS AND “THE CRITICAL
PROBLEM”

A. Linear coding for general models
As expressed in (1), linear coding can be viewed

as constructing flat matrices which are injective for
sequences constrained to have a bounded number of
ones. This concerns linear coding for the traditional
Hamming ball model. One can consider more general
models, in which case the injectivity property (1) needs
to be guaranteed for vectors x belonging to a specified
set S ⊆ Fn

2 . From now on, we define linear codes by
means of parity-check matrices.

Definition 1. A linear code M : Fn
2 → Fm

2 can compress
losslessly a source model S ⊆ Fn

2 (or can correct the
error patterns in S ⊆ Fn

2 ), if

Mx 6=Mx′, ∀x, x′ ∈ S, x 6= x′, (6)

i.e., if M is S-injective.

Definition 2. For a given set S ⊆ Fn
2 , we define the

linear compression dimension of S by

m∗(S) = min
M∈S-injective

rank(M), (7)

and the linear compression rate of S by m∗(S)/n.

Note that m∗(S) can be equivalently defined by

m∗(S) = n− max
V :(V \{0})∩(S+S)=∅

dim(V ), (8)

where V denotes a subspace of Fn
2 . In other words, we

need to find the largest dimension of a subspace avoiding
(S + S) \ {0}. Throughout the paper, the sum of two
sets is defined by S1 + S2 = {s1 + s2 : s1 ∈ S1, s2 ∈
S2}. The problem of finding the largest dimension of a
vector space which does not intersect a given subset of
Fn
q (where q is a power of a prime) is known as “the

critical problem” and was posed1 by Crapo and Rota in
[3]. Even for q = 2, it is an open problem for arbitrary
sets.

Note also that if one is allowed to use a non-linear
map M , required to be S-injective, the “dimension” of
M can be as low as log2(|S|), but not lower. Quotes are
used on “dimension” since the map is non linear and
since a priori log2(|S|) may not be an integer. For linear
maps, we then have

log2(|S|) ≤ m∗(S). (9)

One can also obtain the following upper-bound with a
probabilistic argument.

Lemma 1. For any S ⊆ Fn
2 ,

log2(|S|) ≤ m∗(S) ≤ blog2(|S + S| − 1)c+ 1. (10)

A proof of this simple lemma is available in [1]. For
Hamming balls, the above bounds are equivalent to the
Hamming and Gilbert-Varshamov bounds. Note that if
S is a subspace, then the bounds match and are equal to
log2(|S|).

B. Linear coding for subspaces
The lower bound (9) is clearly achieved if S is a

subspace of Fn
2 , i.e., if S + S = S, using for M the

projection on S. One may ask for what kind of set S are
the two bounds in the lemma matching in the asymptotic
regime, i.e., up to o(n). This is equivalent to asking for
the doubling constant of S to be sub-exponential, i.e.,

|S + S|
|S|

= 2o(n). (11)

1In fact, an even more general formulation is proposed in [3]



One may expect that this holds only if the set S is closed
to a subspace in some sense. In fact, this is related to
the Polynomial Freiman-Ruzsa conjecture (see [6]):

Conjecture 1. [Polynomial Freiman-Ruzsa conjecture]
If S has a doubling constant at most K, then S is
contained in the union of KO(1) translates of some
subspaces of size at most |S|.

By the probabilistic bound in (10), we are therefore
motivated to state the following conjecture.

Conjecture 2. If the linear compression dimension of
S is given by log2(|S|) + o(n) (hence matches the non-
linear compression dimension) then S is contained in
the union of 2o(n) translates of some subspaces of size
at most |S|.

The above condition can only happen for sets which
are non symmetric, i.e., not invariant under permutations
of the n coordinates (like a subspace), unless the set is
very small (of size 2o(n)) or very large (of size 2n+o(n)).
In the next section, we will focus on symmetric sets.

C. Linear Boolean classification for general models

Definition 3. Let S1, S2 ⊆ {0, 1}n with S1 ∩ S2 = ∅. A
linear classifier for (S1, S2) is a linear map M : Fn

2 →
Fm
2 which is (S1, S2)-separable in the sense that

Mx1 6=Mx2, ∀x1 ∈ S1, x2 ∈ S2. (12)

The linear classification dimension of the set pair
(S1, S2) is defined by

m∗(S1, S2) = min
M∈(S1, S2)-separable

rank(M). (13)

Note that m∗(S1, S2) can also be expressed as

m∗(S1, S2) = n− max
V :V ∩(S1+S2)=∅

dim(V ), (14)

where V denotes a subspace of Fn
2 . In other words,

we need to find the largest dimension of a subspace
avoiding S1 + S2. This is again an instance of “the
critical problem”. The linear classification rate is defined
by m∗(S1, S2)/n.

Note however that the two simple bounds obtained in
the previous section do not give interesting results here.
First, if non-linear maps are allowed, the lower bound
on m∗ is simply 1 as there are only two sets. In terms of
probabilistic bounds, if M is drawn uniformly at random,
then we obtain

m∗(S1, S2) ≤ dlog2(|S1 + S2|)e. (15)

Unlike in the coding problem, this is not a strong bound
in general, as shown in Section IV. In particular, it does

not take advantage of the fact that S1+S2 is away from
0n.

III. DEFINITIONS OVERVIEW AND PROBLEM
STATEMENT

Let n ∈ Z+ and S, S1, S2 ⊆ {0, 1}n.

Definition 4. A matrix M is
• S-distinguishable if Mx 6= 0 for all x ∈ S,
• S-injective if Mx 6=Mx′ for all x, x′ ∈ S, x 6= x′,
• (S1, S2)-separable if Mx1 6= Mx2 for all x1 ∈
S1, x2 ∈ S2.

Note that
• M is S-distinguishable iff ker(M) ∩ S = ∅,
• M is S-injective iff M is ((S + S) \ {0})-

distinguishable,
• M is (S1, S2)-separable iff M is (S1 + S2)-

distinguishable.
From the first item above, a matrix of minimal rank
which is S-distinguishable can be equivalently con-
structed by finding a space of maximal dimension which
avoids S, an instance of “the critical problem”. The
meaning of previous mathematical objects in terms of
compression, coding and classification notions are:
• M is a lossless compressor for the source model S

iff M is S-injective,
• M is the parity-check matrix of an error-correcting

code for the error model S iff it is a lossless
compressor for the source model S,

• M is a linear classifier for the class models (S1, S2)
iff M is (S1, S2)-separable.

One could also use classification in a coding context for
errors, to determine if an error pattern belongs to two
different classes (e.g., typical or atypical patterns, high
or low SNR regimes). In this case the linear constraint
on the classifier is important to allow the source-channel
coding duality.

In this paper, we are interested in symmetric sets,
i.e., sets which are invariant under permutations. Note
that these are defined by the Hamming weights of their
elements. One of the most fundamental symmetric sets
is the Hamming ball at 0n, studied extensively in coding
theory. The only other symmetric Hamming ball is the
one centered at 1n. A natural set structure to consider
next is the annulus, which contains the cases above and
extends to more general symmetric sets. In particular, an
arbitrary symmetric set is a union of annuli. In addition,
the sum of two annuli, which matters for classification,
is again an annulus (except in particular cases where the
two annuli have a single weight, and their sum contains
only even or odd weight vectors).



Definition 5. Let 1 ≤ a ≤ b ≤ n,

A(a, b, n) = {x ∈ {0, 1}n : w(x) ∈ [a, b]}, (16)
m∗(a, b, n) = min

M∈A(a,b,n)-distinguishable
rank(M) (17)

= n− max
V :V ∩A(a,b,n)=∅

dim(V ), (18)

where M is a matrix over F2 with n columns and V is
a subspace of Fn

2 .

Note that m∗(1, b, n) = m∗(b, n), i.e., when the annu-
lus degenerates into the punctured ball B(0n, b) \ {0n},
the definition is consistent with the one of Section I-A.

Our goal is to characterize m∗(a, b, n) for finite values
of the parameters and in the asymptotic regime.

IV. RESULTS

Recall that m∗(1, b, n), the least rank of a parity-check
matrix of a code of distance b + 1 on a blocklength n,
has no known explicit form in general. It is clear that
m∗(1, b, n) = n, if b = n, and it is known that

m∗(1, b, n) = n+ o(n), if b ≥ n/2, (19)

from Plotkin’s bound [8]. Also, the GV bound provides
the inequality

m∗(1, βn, n) ≤ nH(β) + o(n), (20)

which is conjectured to be tight. In this paper we
are interested in characterizing m∗(a, b, n) for a ≥ 2,
possibly in terms of m∗(1, b, n). In other words, we
want to study how the “hole” in an annulus allows one
to decrease the dimension of M when compared to a
Hamming ball.

We obtain the following result.

Proposition 1. For any 1 ≤ a ≤ b ≤ n with b ≥ 2a−2,

m∗(a, b, n) = m∗(1, b, n− a+ 1). (21)

Assuming the GV bound to be tight, the above result
takes the following asymptotic form

m∗(αn, βn, n) = n(1− α)H
(

β

1− α

)
+ o(n). (22)

In the proof of this proposition, we show that an op-
timal kernel for an A(a, b, n)-distinguishable matrix is
composed by a mixture of a− 1 unit vectors and a code
of largest dimension and minimal distance at least b+1
on the remaining components.

Using (19), we obtain the following corollary which
provides a characterization of m∗ in certain cases.

Corollary 1. If b ≥ 2a− 2 and 2b ≥ n− a+ 1,

m∗(a, b, n) = n− a+ 1 + o(n). (23)

It is also straightforward to show that the following
holds for any a:

m∗(a, n, n) = n− a+ 1. (24)

The proof simply uses the fact that a subspace containing
a linearly independent vectors must generate a vector of
weight at least a.

Going back to the toy example of Section I-B, where
S1 = B(1n, s) and S2 = B(0n, s), s < n/2, are the two
classes, we have S1+S2 = B(1n, 2s) = A(n−2s, n, n).
Hence, by (24), m∗ = 2s+1. This is indeed verified by
the fact that the identity matrix of dimension 2s + 1
allows to classify the two sets (by a simple majority
count on any 2s + 1 coordinates). This also shows that
the classification dimension can be simpler to find than
the compression dimension, since the sum of two disjoint
sets S1 + S2 is typically away from 0n and hence V
can contain sparse vectors, whereas the sumset S + S
contains a ball around 0n and requires a packing of dense
vectors, which is more challenging.

We conjecture that Proposition 1 holds uncondition-
ally, besides for degenerated cases of the form

m∗(a, a, n) = 1, a odd, n even. (25)

It is straightforward to verify (25) by noting that packing
vectors of even weight will never produce an odd weight
vector.

Conjecture 3. Proposition 1 holds for all 1 ≤ a < b ≤
n, except for degenerate cases of the form of (25).

The upper-bound holds in full generality.

Proposition 2. For any 1 ≤ a ≤ b ≤ n,

m∗(a, b, n) ≤ m∗(1, b, n− a+ 1). (26)

To achieve the above, it is enough to take for the
kernel of M a basis consisting of a − 1 unit vectors
and an optimal subspace of weight at least b+ 1 on the
complement coordinates.

We further obtain a few more cases which corroborate
the conjecture.

In particular, as observed by the second author in the
80s (c.f. [4]), a theorem of Olson [7] can be used to
show that if a is a power of 2 then any binary linear
code of dimension a (and any length) contains a vector of
Hamming weight divisible by a. This implies that if a >
n/2 is a power of 2 then k(a, a, n) = n−m∗(a, a, n) =
a − 1. A more general result is proved in [4] where it
is shown that for any even a > n/2, k(a, a, n) = a− 1.
Further results on codes with a forbidden distance can
be found in [2].



V. FUTURE WORK

For symmetric sets, the next steps would be to in-
vestigate further regimes for the radius of the annulus,
supporting or disproving the conjecture or to consider
the union of two annuli. It would also be interesting
to consider a probabilistic rather than worst-case model
for the linear Boolean classification problem. The com-
plexity of the classification would be another interesting
direction to pursue. Finally, a natural extension is to
consider the problem of constructing matrices that allow
to classify certain sets while compressing others. This
will be another instance of “the critical problem”.

VI. PROOFS

In the proofs we work with the kernel approach,
maximizing the dimension of V = ker(M) without
intersecting the annulus A(a, b, n). We use the notation
k(a, b, n) = n − m∗(a, b, n) and provide a proof of
Proposition 1 based on the weight of the sparsest vector
in an optimal basis.

Lemma 2. If b ≥ 2a− 2 and a ≥ 2,

k(a, b, n) ≤ max
1≤s≤a−1

[s+ k(a− s, b, n− s)] .

Proof of Lemma 2:
Let V be a subspace that does not intersect A(a, b, n),

and s be the sparsity of the sparsest non-zero vector
in V . If s ≥ a then dim(V ) ≤ k(1, b, n) and using
k(1, b, n− 1) + 1 ≥ k(1, b, n),

dim(V ) ≤ k(1, b, n) ≤ 1 + k(1, b, n− 1) (27)
≤ 1 + k(a− s, b, n− 1) (28)
≤ max

1≤s≤a−1
[s+ k(a− s, b, n− s)] . (29)

On the other hand, if s < a, we will show that dim(V ) ≤
s+ k(a− s, b, n− s), proving the Lemma.

Let v be a vector in V that is exactly s-sparse. We
permute (the coordinates of) V so that v is 1 in the first
s components and 0 elsewhere. We represent V by a
matrix (below) with its rows forming a basis of V , we
pick such a representation such that v is the first row.[

11×s 01×(n−s)
...

...

]
,

If dim(V ) < s then the result is trivial, so we will
focus on the case dim(V ) ≥ s, using Gauss Elimination
one can find a basis of V such that v is the first row and
the first s by s block is upper triangular, meaning:

 1 11×(s−1) 01×(n−s)
0(s−1)×1 T R

0(dim(V )−s)×1 0(dim(V )−s)×(s−1) V ∗

 ,
with T upper-triangular.

Note that V ∗ is a basis for a subspace in n − s
coordinates of dimension dim(V ) − s. We next argue
that V ∗ ∩ A(a − s, b, n − s) = ∅. Indeed, suppose
u ∈ V ∗ ∩A(a− s, b, n− s) then
• If a ≤ w(u) ≤ b then the vector [0s×1 u] ∈ V is in
A(a, b, n).

• On the other hand, if a− s ≤ w(u) < a the vector
[0s×1 u] ∈ V summed to the s sparse vector v ∈
V will give a vector in A(a, a − 1 + s, n). Since
a − 1 + s ≤ a − 1 + a − 1 = 2a − 2 ≤ b then
A(a, a− 1 + s, n) ⊂ A(a, b, n).

This means that dim(V ∗) ≤ k(a − s, b, n − s) and
dim(V )− s ≤ k(a− s, b, n− s).

The proof of Proposition 1 follows then by a strong
induction on a and Proposition 2.
Remark 1. Note that the proof above would carry
through if b < 2a−2, as long as there exists an element
in the optimal subspace, whose Hamming weight is
smaller or equal to b−a+1. This means that, for Conjec-
ture 3, the subspace must have all its elements’ weights
not only avoiding [a, b] but also avoiding [1, b− a+ 1].
Remark 2. An intuitive way of thinking about the condi-
tion b ≥ 2a−2 is that it enforces that any sum of sparse
vectors x, y ∈ A(a, b, n) (meaning w(x), w(y) ≤ a− 1)
cannot be dense, as w(x+ y) ≤ b. Indeed, one can use
this fact to provide an alternative proof to Proposition 1.
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