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Abstract

For a code C = C(n, M) the level k code of C, denoted Cy, is the set of all vectors resulting
from a linear combination of precisely k distinct codewords of C. We prove that if k is any
positive integer divisible by 8, and n = vk, M = Sk > 2k then there is a codeword in C} whose

weight is either 0 or at most n/2 — n(% - ﬁ) + 1. In particular, if v < (48 — 2)2/48 then

there is a codeword in C} whose weight is n/2 — ©(n). The method used to prove this result
enables us to prove the following: Let k be an integer divisible by p, and let f(k,p) denote the
minimum integer guaranteeing that in any square matrix over Z,, of order f(k,p), there is a
square submatrix of order k£ such that the sum of all the elements in each row and column is
0. We prove that liminf f(k,2)/k < 3.836. For general p we obtain, using a different approach,
that f(k,p) < plk/Ink)(1+ok(1))

1 Introduction

For standard coding theory notations the reader is referred to [6]. The minimum weight of a code
C is the smallest Hamming weight of a codeword of C other than zero. Coding theory bounds such
as Plotkin’s bound or the Linear Programming bound show that if the dimension of a binary code
is large enough as a function of its length, then some linear combination has a small Hamming
weight. In other words, the code spanned by the codewords of C has small minimum weight. In
this paper we present an alternative coding theory bound for the code obtained by fized size linear
combinations. For a positive integer k, let C) denote the code obtained by linear combinations of
precisely k distinct codewords of C. In particular, C; = C, and if C is a linear code then Cy C C.
We call Cy, the level k code of C. Let w(Cy) denote the minimum weight of Cy. Notice that if k
is odd then w(C%) can be very large. Indeed, consider a code C = C(n, M) where M is the size

of the code and n is the length of the codewords, and assume the first n — [log M| coordinates of
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all codewords are one. We can still have all M codewords distinct, and clearly, for such a code,
w(Ck) > n — [log M for all odd k. (If we allow C to contain repeated words we can even have
all coordinates of all its members being 1). Thus, to avoid this non-interesting case, we assume k
is even. For M > k, let w(k,n, M) denote the maximum possible value of w(C}) ranging over all
codes of size M and length n. A theorem of Enomoto et al. [3] shows that w(k,k — 1, M) = 0 for
M > 2k and the result is tight. In general, however, no nontrivial bound is known. It is interesting
to find general cases which guarantee that w(k,n, M) is significantly less than n/2. In this paper
we present a nontrivial bound of this type. Our main result is the following:

Theorem 1.1 Let k be divisible by 8. Let C = C(n, M) be any code with M > 2k. Put M = pk
and n = vk. Then, either 0 € Cy, or else
n 1 6
<P _pl=- 2 )41
00 < 5 =0 (55~ pm) *
In particular, if v < (48 — 2)%/48 then w(Cy) =n/2 — O(n).

The constants appearing in Theorem 1.1 are not optimal. It is not difficult to obtain somewhat
better constants for specific values of 5 and y, but we prefer a general statement at the price of some
loss in the constants. For example, Theorem 1.1 gives w(64,800,640) < 396 and w(64, 640, 640) <
315. Theorem 1.1 is an application of a more general technical lemma, Lemma 2.2 proved in Section
2, whose proof has another interesting application. Let A be a matrix over Z,. A submatrix B of A
is called zero-sum if the sum of all elements in each row and in each column of B is zero. Consider the
following Ramsey-type extremal problem: Let f(k,p) denote the least integer such that any square
matrix of order f(k,p) over Z, has a square submatrix of order k¥ which is zero-sum. Standard
Ramsey-type arguments show that f(k,p) is finite for all £ = 0 mod p. If p does not divide k then
the all one matrix shows that f(k,p) is infinite. The problem of determining f(k,p) was first raised
in [1]. It is proved there that liminf f(k,2)/k < 4, liminf f(k,2)/k > 2 and liminf f(k,3)/k < 20
(in fact, the authors show that f(k,2) < 4k(1 4 0(1)) for all even k). It is conjectured there that
for every prime p, liminf f(k,p)/k < ¢, where ¢, is a constant depending only on p. The conjecture
is open for all primes except p = 2,3. Using the proof method of Lemma 2.2 and the theorem
of Enomoto et al. mentioned above we are able to show that liminf f(k,2)/k < 3.836. We also
present a nontrivial upper bound for f(k,p) (which is, however, still very far from the conjectured
O(k) upper bound).

The rest of this note is organized as follows: In Section 2 we prove Theorem 1.1 and the lemmas

that are needed for its proof. In Section 3 we present the application to zero-sum square matrices.

2 The proof of the main result

The main tool in the proof of Theorem 1.1 is a more general lemma whose proof is presented next.

Before we state the lemma we need some definitions and notations. An r-subvector of a vector v



is obtained by picking r (not necessarily consecutive) coordinates of v. Let s and r be positive
integers where s > r. For v € (Z3)* let z,(r) denote the fraction of r-subvectors of v whose sum
of coordinates is odd. Let z(s,r) denote the maximum of z,(r) ranging over all v € (Z;)*. This
quantity can be expressed in terms of the minimum possible value of the corresponding Krawchouk
polynomial (see., e.g., [6] for the definition and some properties of these polynomials). Trivially, if
r is odd then z(s,r) = 1. However, when r is even it is not difficult to show that when s > r/2,
z(s,r) is close to 0.5 for large s. We shall be interested, however, in more precise approximations
and in fixed values of . An easy exercise gives that z(s,2) = s/(2(s — 1)) when s is even and
z(s,2) = (s +1)/(2s) when s is odd. However, for r > 4 there seems to be no nice formula.

Another tool that we use is a theorem of Enomoto et al. [3] also mentioned in the introduction:

Lemma 2.1 [[3]] Let t be an even integer. If s < t — 1 then any sequence of at least 2t vectors

from (Z3)* contains a t-subsequence whose sum is zero. O
We are now ready to prove the following lemma.

Lemma 2.2 Let k = 0 mod 4 and let r be any positive integer dividing k/4. Suppose C = C(n, M)
is a binary code with M >k + k/(2r). Then, either 0 € Cy, or else

w(Cg) < (n—k/(2r) + D)z(|2rM/k| — 1,2r).

Proof: Partition each v € C into two parts, v, and v, where v, consists of the first k/(2r) — 1
coordinates, and vy, consists of the remaining coordinates (if n < k/(2r) — 1 take v, = v and there is
no vp). Let A= {v, : v € C} (although the vectors in A are not necessarily distinct, we consider
each v, as labeled by the original vector v, and in this sense, they are distinct). Since k/(2r) is
even and since M > k/r, we have, by Lemma 2.1, that there exists A; C A with |4;]| = k/(2r)
such that the sum of all vectors in A; is zero. Throwing the vectors of A; away from A we can
repeat this process and find another set of k/(2r) vectors whose sum is zero. We can repeat this
process precisely d = [2rM/k| — 1 times obtaining subsets of vectors A, ..., Ag4, that correspond
to disjoint subsets of vectors of C, such that the sum of the k/(2r) vectors in A; is zero for
i=1,...,d. Since M > k+ k/(2r) we have d > 2r. If n < k/(2r) — 1 we have that the sum
of the vectors in Aq,..., A9, is a sum of k distinct vectors of C. Since this sum is zero, we have
0 € C and we are done. We therefore assume n > k/(2r). Let B; = {vp : v, € A;}. For each
j=1,...,n—Fk/(2r) + 1 let u; = {ujl,,u;l} be defined by “3 = D ueB; 'ub Let U; denote the
family of (2r)-sets of {1,...,d} for which the corresponding (2r)-subvector of u; has an odd number
of ones. By definition, |U | < z(d, 2r)( ). Hence, Zn k/(@r)+1 |Uj| < (n—k/(2r) + 1)z(d, 2r)($).
It follows that there exists a (2r)-set U such that if B’ = U;cyB; then Z cp Vb contains at most
(n—k/(2r) 4+ 1)2(d, 2r) ones. Notice that |B'| = 2rk/2r = k. Now let C' = {v : v, € B'}. Clearly
Y vect v € Ck and has at most (n — k/(2r) 4+ 1)z(d, 2r) ones. O



It is interesting to obtain general cases where w(C}y) is significantly less than n/2. If we use

Lemma 2.2 with r = 1 we can obtain such a statement only when n < M.

Proposition 2.3 Let k = 0 mod 4. Suppose B > 2 is an integer. Then, for any code C = C(n, M)
with M > Bk and n < pk, 0 € Cy, or else w(Ck) < n/2— (Bk —n)/(48 —2) + 1.

Proof: Clearly we may assume M = k. Put n = vk. We use Lemma 2.2 with » = 1. Using
the fact that z(28 — 1,2) = 1/2 + 1/(2(28 — 1)) we get that either 0 € Cj or else w(Cj) <
(n—Fk/2+1)(1/2+1/(2(28 —1))). Now,
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The real power of Lemma 2.2 is demonstrated when r > 2. In this case we can show that even

if n > M we can still have w(Cy) < n/2 — O(n). In fact, we can have n/M as large as we want,
assuming M is sufficiently large (but still M = O(k)). It turns out that using r = 2 already suffices
for this purpose. Before we complete the proof of Theorem 1.1, we need to provide a tight upper
bound for z(s,4).

Lemma 2.4 For s > 7, z(s,4) < 0.5+ 6/s2.

Proof: Consider a binary vector of length s. Let z denote its Hamming weight. The number of
4-subvectors with an odd number of ones is (s — ) (g) + a:(sgz) Hence, we need to show that for
all s > 7,
(s = o)) +2(57)
S
(2)

Consider the numerator of the left-hand-side of the last inequality as a real polynomial (of degree 4)

1,6

-2 %

of  (which can be expressed in terms of the corresponding Krawchouk polynomial). Its derivative

is a polynomial of degree 3, and z = n/2 is a root of the derivative and is a local minimum. The

other two roots are local maxima (yielding the same value, and hence each is also a global maxima)

and they are (s & 1/3s — 4)/2. The value at these maxima is s*/48 — s3/8 + 1752/48 — 5/2 + 1/3.

Hence,

(s—=z)(3) +z(°3%) < s1/48 — */8 +175% /48 —s/24+1/3 _ 1 N s2/8 —3s/8 +1/3
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It follows that for s > 7,

s 1 32/8—33/8+1/3:1 3(s-1)(s—2)+2 _
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Proof of Theorem 1.1: Since k = 0 mod 8 we can use 7 = 2 in Lemma 2.2. Let C = C(n, M)
be any code with M > 2k. M = Bk and n = vk. By Lemma 2.2, either 0 € Cj, or else w(Cy) <
(n—k/4+1)z(|48] — 1,4). Assuming the latter, and since S > 2, we have 48] —1 > 7, so using

Lemma 2.4 we get

w(Cy) < (n— k/4+1) <%+m> <k<fy—%> (%+ﬁ)+1:
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It is easy to see from Theorem 1.1, that when M grows, our upper bound for w(C}) approaches

n/2—n/(8y). When M becomes very large we can gain some more as demonstrated by the following
simple example: Suppose m > 9n2%1" n = vk with, say, v > 1. We can find 9n vectors that agree
on the first 0.1n coordinates. Putting M' = 9n and n' = 0.9n we have M’ = 10n’, v/ = 0.9y and
B' = 9. By Theorem 1.1 we have

n! 1 6 1 5.4 n
o< — —pf [ — - — ~ 1 =0.45n — S — 1<0.45n — — + 1.
(O < 5 ”(87' (36’7—2)2)+ " ”(87 (367—2)2)+ S0 gy T

3 Zero sum square matrices

In the following upper bound for lim inf f(k,2)/k we use Lemma 2.2 without change. In fact, the
following theorem supplies an upper bound for f(k,2) valid for all ¥ = 0 mod 12.

Theorem 3.1 Let k£ = 0 mod 12. Every square binary matriz of order at least 50447k/13008 +
2221/2168 has a square submatriz of order k which is zero sum. In particular liminf f(k,2)/k <
3.879.

Proof: Let A be a square binary matrix of order n > 50447k /13008 + 2221/2168. Clearly we may
assume n — 1 < 4k. We consider the first n — 1 rows of A as codewords of an (n,n — 1) binary code.
Since kK = 0 mod 12 we can use Lemma 2.2 with » = 3. Since 23 < 6(n — 1)/k < 24 we have, by
Lemma 2.2, that there are k rows of A whose sum contains at most (n —k/6 4+ 1)z(22,6) ones. The
maximum number of 6-subvectors with an odd number of ones of a vector v € (Z3)* is obtained
when v has 5 or 17 ones and it is 37757. Thus, 2(22,6) = 37757/74613 = 2221/4389. It follows
that there are k rows of A whose sum has at least

2221 k 2168 2221 2221 _ 2168 (50447k 2221) 2221 2221

_ ko _ _ — 2k
" 389" 6TV = 389"t 26331" 1339 = 1339 \ 13008 ' 2168 ) T 26334" 4389

zeroes. Thus, A has a submatrix B with k& rows and 2k columns, such that the sum of all rows of

B is zero. Ignoring the last row of B, and using Lemma 2.1 with ¢t = kK and s = k — 1 we have a



submatrix B’ of B with k columns and k rows such that sum of all rows of B’ is zero and the sum
of all columns is a vector whose first £ — 1 coordinates are zero. However, the last coordinate must
also be zero since the total number of ones in B’ is even. Hence B’ is a zero sum square submatrix
of order k. O

The choice of r = 3 in the proof of Theorem 3.1 is optimal. A similar approach using r = 2
yields the constant 144/37 > 3.89 instead of the constant 50447/13008 < 3.879 that appears in
Theorem 3.1. However, using r = 2 applies to all K = 0 mod 8. Using values of r > 4 again yields
inferior results. This is because z(s,r) > 0.5, by a simple probabilistic argument. Now if r > 5
take n = 3.89k and then the number of ones in the sum of the k rows guaranteed by Lemma 2.2
is not less than (3.9k — k/2r)/2 > 1.9k so there are less than 3.89k — 1.9k < 2k guaranteed zeroes
and we cannot define B as in the proof of Theorem 3.1. Thus, even a constant of 3.89 cannot be
guaranteed in this way. For r = 4 one can check specifically that the obtained constant is inferior.

A slightly better upper bound for liminf f(k,2)/k is obtained using the following idea, that
supplies an upper bound for f(k,2) valid for large k that is of the form k = 12¢q where ¢ is a prime
power. The following coding theory bound has been proved by Bassalygo et al. in [2] using a
theorem of Frankl and Wilson [5]:

Lemma 3.2 Let A < 0.5. For every n sufficiently large, if An is twice a prime power and C is a

linear code of dimension dn that does not contain the weight An then
d<1—H(\)+ H(\/2)

where H(x) = —zlogy(x) — (1 — x)logy(1 — x) is the binary entropy. O

We therefore obtain the following corollary:

Corollary 3.3 For every sufficiently large m for which m/2 is a prime power, the following holds:
Every binary matriz with [1.41m] rows and [5.95m]| columns has m columns whose sum is the zero
vector of (Zy)!14m1,

Proof: Choose m sufficiently large such that n = [5.95m] is sufficiently large for the parameter
A=m/n <1/5.95 in Lemma 3.2 and so that A > 1/5.9449. Let A be a binary matrix with [1.41m]
rows and n columns. Consider the linear code C' whose parity check matrix is A. The dimension
of C is at least n — [1.41m] > 4.54m — 1 > 0.763n. Now, since

1— H(\) + H(\/2) < 0.763

it follows from Lemma 3.2 that C contains the weight An = m. In particular, there are m columns
whose sum is zero. [J

Corollary 3.3, together with (a slightly modified) version of Lemma 2.2 give the following:

Theorem 3.4 For k sufficiently large for which k/12 is a prime power, f(k,2) < 3.836k + 1.



Proof: Assume m is sufficiently large and chosen as in Corollary 3.3. Put £ = 6m. Let A be a
square matrix of order ¢ > 3.836k = 23.016m. By Corollary 3.3 we can arrange the rows of A such
that the sum of all m rows sm + 1,...,(s + 1)m is zero in the first [1.41m] coordinates, for each
s =0,...,17. For each of these 18 sums, let S; denote the vector corresponding to the remaining
t — [1.41m] coordinates of the corresponding sum vector. As in Lemma 2.2, we can find a set
of 6 vectors of the S; such that their sum has at most z(18,6)(t — [1.41m]) ones. This implies
the existence of 6m = k rows of A whose sum has at least ¢ — 2(18,6)(¢ — [1.41m]) zeroes. Since
z(18,6) = 26/51 we have t — z(18,6)(t — [1.41m]) > 12m = 2k. Thus, A has a submatrix B with
k rows and 2k columns, such that the sum of all rows of B is zero. As in Theorem 3.1 we get that
there exists a zero sum square submatrix B’ of order k. [

We conclude this section with an upper bound for f(k,p). In fact, our upper bound follows
from a proposition which is a (weak) analog of the theorem of Enomoto et al. for Z, instead of Z.
For k a multiple of p, let g(k,p) be the minimum integer that guarantees that in any sequence of
g(k,p) elements of (Z,)* there is a k-subsequence whose sum is zero. The theorem of Enomoto et
al. gives, almost immediately, that g(k,2) < 4k — 1 for all even k. In fact, using a theorem of Olson
[7] we can get g(k,2) < 2k + 1 whenever k is a power of 2. In [1] it is proved that g(k,3) < 15k — 8
if £ is a power of 3 (no linear bound is known for all k£ divisible by 3). For p > 3 there is no
known linear bound for g(k,p) which holds for infinitely many values of k. A trivial upper bound
is obviously (k — 1)p* + 1. A much smaller upper bound (but still, a non polynomial one) is given

in the following theorem:
Proposition 3.5 Let p be a fixed prime. For infinitely many values of k, g(k,p) < plk/Ink)(1+ox (1))

Proof: Let r be a positive integer. Let k& be the smallest integer such that k/p is divisible by
all 1 < s < r. Clearly, k/p is obtained by multiplying appropriate powers of all primes g up to
r, where each prime ¢ is raised to the maximum power z, for which ¢« < r. Hence k/p < r(r)
where 7(r) is the number of primes up to r. It is well known that 7(r) < (1 + o(1))r/Inr, and
hence k/p < e’(1tor(1) Now, suppose m satisfies (m_TkTQ) > pFrrp™tl. We claim that g(k,p) < m.

Consider a sequence of m vectors from (Z,)*.

By the pigeonhole principle, there is a family 7'
of at least t > p"T1™ r-subsequences, such that for each U € T, the sum of all r vectors of U
is the same. It is well-known that in any family of at least (p — 1)"T!r! < ¢ distinct (but non
necessarily disjoint) sets, each with 7 elements, there is a delta system with p petals [4]. In other
words, there are p sets in the family such that the common intersection of all of them is identical
to the intersection of any two of them. Hence, there are Uy,...,U, € T, where M;_; = S and
Ui\ S)N(U;\ S) =0 for i # j. Putting W; = U; \ S we have that the sum of all the vectors in
W; is the same for all i = 1,...,p. Hence the sum of all vectors in U_, W; is zero (in Z,). Now,
r > |W;| =r —|S| > 1. Putting r — |S| = ¢1 we have found ¢;p distinct vectors whose sum is

zero. Recall that k is divisible by gip. Deleting these ¢1p vectors and repeating this process kr/p



times we have kr/p disjoint subsequences of ¢;p vectors for i = 1,...,kr/p, such that the sum of
the vectors in each subsequence is zero. There exist some 1 < s < r such that ¢; = s for at least
k/p distinct values of i. As k/(ps) < k/p is an integer, we can select k/(ps) sequences of size sp
each. The union of these sequences is a sequence of k vectors whose sum is zero, as required. Now,
m = ptk/Ink)(1+or (1)) gatisfies (mfrkrz) > pFrmp+1 and the result follows. O

It remains to show the relation between f(k,p) and g(k,p). Let z(s, k,p) denote the minimum
possible fraction of k-subvectors of a vector v € (Z,)* whose sum is divisible by p. This generalizes
the definition of z(s,k) = 1 — z(s, k,2) appearing in Section 2. It is proved in [1] that z(s,k,p) >
217P(1—04(1)) for k < s/2. This, together with an immediate counting argument, shows that in any
matrix over Z, with s > 2k rows and ¢ columns there is a submatrix with &k rows and #2177 (1—0(1))
columns such that the sum of the rows is zero. By definition of g(k,p), if 12" P(1 — o4(1)) >
g(k,p) then there is a square zero-sum submatrix of order k. Since ¢ > s, it follows that any
square matrix of order ¢ over Z, has a square submatrix of order k which is zero-sum. Hence

f(k,p) < 2P 1g(k,p)(1 + 0(1)). By Proposition 3.5 we have that for infinitely many values of k,
k.p) < 2p—1p(k/Ink)(1+ox (1)) — 4(k/Ink)(1+0k(1))
f(k,p) <2°77p p
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