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Abstract. Let Bdn denote the family which consists of all subsets
S1 × · · · × Sd, where Si ⊆ [n], and Si 6= ∅, for i = 1, . . . , d. We
compute the L2–discrepancy of Bdn and give estimates for the Lp–
discrepancy of Bdn for 1 ≤ p ≤ ∞.

1. Introduction

For a family of subsets H of a finite set Ω, a colouring χ : Ω →
{−1, 1}, and A ∈ H, let χ(A) =

∑
a∈A χ(a). Then, for 1 ≤ p <∞, we

set

discp(H, χ) =

(
1

|H|
∑
A∈H

|χ(A)|p
)1/p

,

while for p =∞

disc∞(H, χ) = disc(H, χ) = max
{
|χ(A)| : A ∈ H

}
.

The Lp-discrepancy discp(H) of H, where 1 ≤ p ≤ ∞, is defined as
the minimum value of discp(H, χ) over all possible colourings χ : Ω→
{−1, 1}. We shall sometimes call the L∞–discrepancy just the discrep-
ancy and write disc(H) instead of disc∞(H).

In this note we study the Lp–discrepancy of the family Bdn of boxes
(or combinatorial rectangles,) which consists of all sets of type S1 ×
S2×· · ·×Sd, where ∅ 6= Si ⊆ [n] = {1, 2, . . . , n}, for i = 1, 2, . . . , d. We
compute the L2–discrepancy of Bdn precisely and estimate discp(Bdn) for
all p, 1 ≤ p ≤ ∞.
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Theorem 1. For every d, n ≥ 1 we have

disc2(Bdn) =

[( 2n

2n − 1

)(n+ 1
2
(1− (−1)n+1)

4

)]d/2
.

Theorem 2. Let d, n ≥ 1. Then, for 1 ≤ p <∞,

8−d/2nd/2 ≤ discp(Bdn) ≤ p72−d/2(n+ 1)d/2 , (1)

for p ≥ 2,

discp(Bdn) ≥ disc2(Bdn) ≥ 2−dnd/2,

while for the L∞-discrepancy of Bdn we have

8−d/2n(d+1)/2 ≤ disc(Bdn) ≤ 2−d/2+1
√
d(n+ 1)(d+1)/2 . (2)

In the special case d = 2, Theorem 2 improves the bound

1
15
n3/2 − 4

5
n ≤ disc(B2

n) ≤ 2n3/2 (3)

proven in [1]. Using the method presented in this note one can get a
further improvement (for large n) of the lower bound in (3) to (1/

√
8π+

o(1))n3/2.

2. L2-discrepancy

Let H be a family of subsets of a finite abelian group G. We say that
H is shift-invariant if for every A ∈ H and g ∈ G we have also g+A ∈
H. In this section we compute disc2(H) for any shift-invariant family
H of subsets of G. Since, clearly, the family of boxes Bdn, considered as
a family of subsets of Zdn, is shift-invariant, Theorem 1 will follow.

For A ∈ H and g ∈ G we set

νA(g) =
∣∣{(e, e′) ∈ A× A : e− e′ = g}

∣∣ ,
and

ν(g) =
∑
A∈H

νA(g).

Lemma 3. Let H be a shift-invariant family of subsets of a finite
abelian group G and χ : G→ {−1,+1}. Then∑

A∈H

χ2(A) =
1

|G|
∑
g,g′∈G

χ(g)χ(g′)ν(g − g′) .
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Proof. Let A ∈ H. Then∑
g∈G

χ2(A+ g) =
∑
g∈G

(∑
a∈A

χ(a+ g)
)2

=
∑
g∈G

∑
a,a′∈A

χ(a+ g)χ(a′ + g)

=
∑
g,g′∈G

χ(g)χ(g′)νA(g − g′).

Since H is shift-invariant, we get

|G|
∑
A∈H

χ2(A) =
∑
A∈H

∑
g∈G

χ2(A+ g)

=
∑
g,g′∈G

χ(g)χ(g′)
∑
A∈H

νA(g − g′)

=
∑
g,g′∈G

χ(g)χ(g′)ν(g − g′) ,

which completes the proof.

Proof of Theorem 1. Let χ0 : Zdn → {−1,+1} be a “chessboard colour-

ing” of Zdn, i.e., χ0(x1, . . . , xd) = −1, or 1, if the sum
∑d

i=1 xi is odd,
or even, respectively. We shall show that for an arbitrary colouring
χ : Zdn → {−1,+1} of Zdn,

disc2(Bdn, χ) ≥ disc2(Bdn, χ0) ,

and compute

disc2(Bdn, χ0) = disc2(Bdn) .

For a given g = (g1, . . . , gd) ∈ Zdn, let

ind(g) = |{i ∈ [d] : gi = 0}| .

Notice that

ν(g) = nd2d(n−2)+ind(g).

For every h = (h1, . . . , hd) ∈ Zdn, and I ⊆ [d], define

C(h, I) = {h′ = (h′1, . . . , h
′
d) ∈ Zdn : hi = h′i for i ∈ I}

= {h′ ∈ Zdn : h′|I = h|I} .
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From Lemma 3 it follows that

∑
A∈Bdn

χ2(A) = 2d(n−2)

d∑
i=0

2i
∑

g,g′∈Zdn,
ind(g−g′)=i

χ(g)χ(g′)

= 2d(n−2)
∑
C(h,I)

( ∑
g∈C(h,I)

χ(g)
)2

, (4)

where the sum is taken over all families C(h, I). Indeed, observe that
every term χ(g)χ(g′), with g 6= g′, appears in the last double sum of (4)
2ind(g−g′)+1 times, and every term χ2(g) appears 2d times. Separating
the summands with I = [d] we get

∑
A∈Bdn

χ2(A) = 2d(n−2)
∑
g∈Zdn

χ2(g) + 2d(n−2)
∑
C(h,I)
I 6=[d]

( ∑
g∈C(h,I)

χ(g)
)2

= 2d(n−2)nd + 2d(n−2)
∑
C(h,I)
I 6=[d]

( ∑
g|I=h|I

χ(g)
)2

.

Now let us consider two cases. If n is even, then, clearly,∑
A∈Bdn

χ2(A) ≥ 2d(n−2)nd.

On the other hand, for every I ⊆ [d], I 6= [d], and every h,∑
g∈C(h,I)

χ0(g) = 0

so, if n is even,

[disc2(Bdn)]2 = [disc2(Bdn, χ0)]2 =
( 2n

2n − 1

)d(n
4

)d
.

If n is odd, then for every I ⊆ [d] and h ∈ Zdn∣∣ ∑
g|I=h|I

χ(g)
∣∣ ≥ 1.
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Furthermore, it is not hard to see that each such sum equals one for
the colouring χ0. Hence∑

A∈Bdn

χ2(A) ≥
∑
A∈Bdn

χ2
0(A) = 2d(n−2)nd + 2d(n−2)

∑
C(h,I)
I 6=[d]

1

= 2d(n−2)nd + 2d(n−2)

d−1∑
i=0

(
d

i

)
ni = 2d(n−2)

d∑
i=0

(
d

i

)
ni

= 2d(n−2)(n+ 1)d.

Consequently, for odd n we have

[disc2(Bdn)]2 =
( 2n

2n − 1

)d(n+ 1

4

)d
and the assertion follows.

The above proof of Theorem 1 has a combinatorial flavour but one
can explore the fact that Bdn is a “product family” using an algebraic
argument. Below we sketch such an alternative proof of Theorem 1 for
the case in which n is even.

Let χ : V 7→ {−1, 1} be a colouring of the set of vertices of a hyper-
graph H = (V,E). Denote by B = (Be,v)e∈E,v∈V the incidence matrix
of H in which Be,v = 1 if and only if v ∈ e. It is easy to see that then

[disc2(H, χ)]2 =
1

|E|
χTBTBχ.

This implies that if the smallest eigenvalue of BTB is λ and |V | = n,
then

[disc2(H, χ)]2 ≥ 1

|E|
λn,

and equality holds if and only if there is an eigenvector of BTB corre-
sponding to the smallest eigenvalue with {−1, 1}-coordinates.

If H1,H2, . . . ,Hd are d hypergraphs, where Hi = (Vi, Ei), then the
product of H1,H2, . . . ,Hd is the hypergraph H whose set of vertices is
the Cartesian product

∏d
i=1 Vi and whose set of edges are all Cartesian

products
∏d

i=1 ei, for each choice of ei ∈ Ei. It is not difficult to
check that if Bi is the incidence matrix of Hi and B is the incidence
matrix of H, then BTB is the tensor product of the matrices BT

i Bi.
Therefore, the set of all eigenvalues of BTB is the set of all products∏d

i=1 µi where µi ranges over all eigenvalues of BT
i Bi. In particular,

the smallest eigenvalue of BTB is
∏d

i=1 λi, where λi is the smallest
eigenvalue of BT

i Bi, and the tensor product of any d vectors vi, where
vi is an eigenvector corresponding to the smallest eigenvalue of BT

i Bi,
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is an eigenvector of BTB , corresponding to its smallest eigenvalue. We
have thus proved the following.

Lemma 4. Let Hi = (Vi, Ei), i = 1, . . . , d be hypergraphs, and sup-
pose λi is the smallest eigenvalue of BT

i Bi, where Bi is the incidence
matrix of Hi. Let H be the product of all hypergraphs Hi, and let ni
denote the number of vertices of Hi. Then

disc2(H, χ) ≥
[

1∏d
i=1 |Ei|

d∏
i=1

λini

]1/2

. (5)

Moreover, if for each i there is an eigenvector of BT
i Bi corresponding

to the smallest eigenvalue with {−1, 1}-coordinates, then (5) holds with
equality.

In particular, if for 1 ≤ i ≤ d, Hi = B1
n is the hypergraph whose

set of vertices is [n] and whose set of edges is the set of all nonempty
subsets of [n], then BT

i Bi is an n by n matrix with each diagonal entry
being 2n−1 and each other entry being 2n−2. It follows that its smallest
eigenvalue is 2n−1 − 2n−2 = 2n−2 (with multiplicity n − 1). Thus, by
Lemma 4 (where here the product H is Bdn, ni = n, λi = 2n−2 and
|Ei| = 2n − 1 for all i):

disc2(Bdn) ≥
[( 2n

2n − 1

)(n
4

)]d/2
.

Moreover, equality holds for every even n, as in this case every {−1, 1}-
vector of length n whose sum of coordinates is 0, is an eigenvector of
the smallest eigenvalue of BT

i Bi.

3. Lp-discrepancy: the lower bound

Our proofs of the lower bounds in (1) and (2) rely on the following
probabilistic theorem, proved by Szarek [3].

Lemma 5. Let a1, . . . , an be real numbers and let ε̃1, . . . , ε̃n denote in-
dependent identically distributed random variables such that

Pr(ε̃i = 1) = Pr(ε̃i = −1) = 1/2 for i = 1, 2, . . . , n .

Set X =
∑n

i=1 ε̃iai. Then for the expectation E |X̃| of |X̃| we have

E |X̃| ≥ 1√
2

( n∑
i=1

ai

)1/2

.
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Let R̃ = R̃n denote the random subset of [n], where each element
of [n] is included in R̃ independently with probability 1/2, or, equiva-
lently, where each subset of [n] appears as R̃ with probability 2−n. The
following corollaries are straightforward consequences of Lemma 5.

Corollary 6. Let a1, . . . , an be a sequence of real numbers and Ỹ =∑
i∈R̃ ai. Then

E |Ỹ | = 2−n
∑
A⊆[n]

∣∣∣∑
i∈A

ai

∣∣∣ ≥ 1√
8n

n∑
i=1

|ai| .

Proof. For every vector e = (ε̃1, . . . , ε̃n) ∈ {−1, 1}n define Ae = {i :
ε̃i = 1} and A′e = {i : ε̃i = −1}. Then, by the triangle inequality

∣∣∑
i∈Ae

ai
∣∣+
∣∣∑
i∈A′e

ai
∣∣ ≥ ∣∣ n∑

i=1

ε̃iai
∣∣.

As ε̃ ranges over all 2n members of {−1, 1}n, Ae, as well as A′e range
over all 2n subsets of {1, 2, . . . , n}. Thus, using Lemma 5 and Cauchy-
Schwartz inequality we infer that

2E|Ỹ | ≥ E
∣∣∣ n∑
i=1

ε̃iai

∣∣∣ ≥ 1√
2

( n∑
i=1

ai

)1/2

≥ 1√
2n

n∑
i=1

|ai| .

Remark. If |a1| = · · · = |an| = 1, then X̃ =
∑n

i=1 ε̃iai is asymptotically
a normal random variable with standard deviation

√
n, and hence

E |Ỹ | ≥ 1

2
E |X̃| = 1

2
(1 + o(1))

√
n

∫ ∞
0

2√
2π
xe−x

2/2dx

= (1 + o(1))
√
n/2π .

(6)

Corollary 7. Let χ : [n]d → {−1, 1}. Then for every `, 0 ≤ ` ≤ d,

2−`n
∑
x1∈[n]

· · ·
∑

xd−`∈[n]

∑
Ad−`+1⊆[n]

· · ·
∑
Ad⊆[n]∣∣∣ ∑

xd−`+1∈Ad−`+1

· · ·
∑
xd∈Ad

χ(x1, x2, . . . , xd)
∣∣∣ ≥ 8−`/2nd−`/2 .

Proof. We use induction on `. For ` = 0 there is nothing to prove.
In order to show the assertion for ` ≥ 1 it is enough to set for each
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(d− `)-tuple x1, . . . , xd−` and all Ad−`+2, . . . , Ad ⊆ [n],

ai(x1, . . . , xd−`, Ad−`+2, . . . , Ad)

=
∑

xd−`+2∈Ad−`+2

· · ·
∑
xd∈Ad

χ(x1, x2, . . . , xd−`, i, xd−`+2, . . . , xd),

and apply Corollary 6.

Proof of the lower bounds in Theorem 2. Note that for every family of
sets H and 1 ≤ r ≤ s ≤ ∞, we have

discr(H) ≤ discs(H) . (7)

Now it is enough to observe that Corollary 7 applied with ` = d, gives
the required lower bound for disc1(Bdn), and thus, for discp(Bdn) with
1 ≤ p <∞. For p ≥ 2 we get a slightly better lower bound, as in this
case

discp(Bdn) ≥ disc2(Bdn) ≥ 2−dnd/2,

by Theorem 1.
In order to deal with disc(Bdn) note that Corollary 7 with ` = d− 1

gives

2−(d−1)n
∑
A2⊆[n]

· · ·
∑
Ad⊆[n]

∑
x1∈[n]

∣∣χ({x1}×A2×· · ·×Ad)
∣∣∣ ≥ 8−(d−1)/2n(d+1)/2.

Thus, there exist sets S2, . . . , Sd such that∑
x1∈[n]

∣∣χ({x1} × S2 × · · · × Sd)
∣∣ ≥ 8−(d−1)/2n(d+1)/2.

Let S±1 be the set of all x1 ∈ [n] for which

±χ({x1} × S2 × · · · × Sd) > 0 .

Take as S1 any of the sets S−1 , S+
1 , such that∑

x1∈S1

∣∣χ({x1} × S2 × · · · × Sd)
∣∣ = |χ(S1 × · · · × Sd)|

≥ 8−(d−1)/2n(d+1)/2/2 > 8−d/2n(d+1)/2 .

The above holds for arbitrary χ : [n]d → {−1, 1}, so disc(Bdn) ≥
8−d/2n(d+1)/2.

Finally, from (6) we get disc(B2
n) ≥ (1/

√
8π + o(1))n3/2.
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4. Lp-discrepancy – the upper bound

Proof of the upper bounds in Theorem 2. Let us divide the set [n] =
{1, 2, . . . , n} into m = dn/2e subsets, setting Pi = {2i − 1, 2i} for
i = 1, 2, . . . , bn/2c and, if n is odd, Pm = {n}. Let also

P = {Pi1 × · · · × Pid : 1 ≤ i1, . . . , id ≤ m} .

Hence, the family P is a partition of the set [n]d into md boxes, each
of at most 2d elements.

Note that for each P ∈ P there exist two “natural” colourings
χodd(P ), χeven(P ) : P → {−1, 1} which colour elements (x1, . . . , xd)

of P according to the parity of
∑d

i=1 xi, so that no two points at Ham-
ming distance one are coloured with the same colour. Let χ̃ : [n]d →
{−1, 1} denote a random colouring of [n]d in which for each P ∈ P
independently we choose with probability 1/2 one of the colourings
χodd(P ), χeven(P ). Our aim is to show that with positive probability
discp(Bdn, χ̃) is small; this will imply the existence a colouring χ with
small discp(Bdn, χ) and the assertion will follow.

Let us first find the upper bound for discp(Bdn), where 1 ≤ p < ∞.
Note that from Theorem 1 and (7) it follows that for 1 ≤ p ≤ 2

discp(H) ≤ disc2(H) ≤ 2−d(n+ 1)d/2 < p72−d/2(n+ 1)d/2,

so it is enough to verify (1) for 2 ≤ p < ∞. Since the colouring χ̃ is
random, [discp(Bdn, χ̃)]p is a random variable with expectation

E[discp(Bdn, χ̃)]p = E

[
1

|Bdn|
∑
B∈Bdn

|χ̃(B)|p
]

=
1

|Bdn|
∑
B∈Bdn

E |χ̃(B)|p ≤ max
B∈Bnd

E |χ̃(B)|p .
(8)

In order to estimate the above sum we study the behaviour of the
random variable χ̃(B), for B ∈ Bdn. Note that for any colouring χ
of [n]d,

χ(B) =
∑
P∈P

χ(P ∩B) .

Let us assume now that χ is such that for every P ∈ P we have
χ|P = χα(P ) for some α = odd, even. It is not hard to see that then,
for any box B ∈ Bdn,

|χ(P ∩B)| ≤ 1 ,

and equality holds if and only if |P ∩B| = 1. Thus, for a fixed B, χ̃(B)
is a sum of w independent identically distributed random variables
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ε̃1, . . . , ε̃w, where

w = w(B) =
∣∣{P ∈ P : |P ∩B| = 1}

∣∣ ≤ md (9)

and Pr(ε̃i = −1) = Pr(ε̃i = 1) = 1/2 for i = 1, . . . , w. Thus, using
Chernoff’s bounds for the tails of the binomial distribution (see, for
instance, [2], Corollary A.1.2), we infer that for every t > 0

Pr(|χ̃(B)| ≥ t) < 2 exp
(
− t2

2w(B)

)
≤ 2 exp

(
− t2

2md

)
. (10)

Set τi = 2imd/2 for i = 0, 1, . . . . Then, from (10), we get

E |χ̃(B)|p ≤ τ p0 +
∞∑
i=0

τ pi+12 exp
(
− τ 2

i

2md

)
= mpd/2 +mpd/2

∞∑
i=0

2ip+p+1 exp
(
− 22i−1

)
= mpd/2

∞∑
j=0

2jp+1 exp
(
− 22j−3

)
.

A crude estimate of the above sum gives
∞∑
j=0

2jp+1 exp
(
− 22j−3

)
≤

∞∑
j=0

2jp+1−22j−3

≤ 5 log2 p 25p log2 p+1 +
∑

j≥5 log2 p

2jp+1−p52j−3

≤ 10p5p log2 p+ 1 ≤ p7p .

Hence E[discp(Bdn, χ̃)]p ≤ p7pmpd/2 , so there exists a colouring χ :
[n]d → {−1, 1} such that [discp(Bdn, χ)]p ≤ p7pmpd/2. Hence

discp(Bdn) ≤
[
p7pmpd/2

]1/p ≤ p72−d/2(n+ 1)d/2 .

Finally, note that (10) implies that the probability that for some set
B of Bdn we have |χ̃(B)| ≥ t is at most

|Bdn|2 exp(−t2/2md) ≤ 2dn+1 exp(−t2/2md) .

The above expression is strictly smaller than 1 for t = 2
√
dnmd/2, so

for some colouring χ we have disc(Bdn, χ) ≤ 2
√
dnmd/2 and

disc(Bdn) ≤ 2
√
dnmd/2 ≤ 2−d/2+1

√
d(n+ 1)(d+1)/2 .

We conclude the section with a remark that in the proof of the up-
per bound in Theorem 2, instead of the random colouring χ̃ one can
use the random colouring χ̃′, in which each element of [n]d is coloured
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independently with −1 or 1. Then, similarly as in the argument above,
for a given B ∈ Bd

n the random variable χ̃′(B) is a sum of independent
identically distributed random variables ε̃i, but in this case the number
of ε̃i’s can be substantially larger than for χ̃(B). Consequently, Cher-
noff’s bounds we used in the paper would give a weaker estimate for
discp(Bdn, χ̃′).
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