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ABSTRACT. Let B¢ denote the family which consists of all subsets
Sp x -+ x 84, where S; C [n], and S; # 0, for i = 1,...,d. We
compute the Lo—discrepancy of BE and give estimates for the L,—
discrepancy of BZ for 1 < p < oo.

1. INTRODUCTION

For a family of subsets H of a finite set €2, a colouring x : Q —
{—1,1}, and A € H, let x(A) = > .4 X(a). Then, for 1 < p < oo, we

set
1/p
dise(4.) = (3 S WAP)

AeH
while for p = oo

discoo (H, x) = disc(H, x) = max {|x(A)|: A€ H}.

The L,-discrepancy disc,(H) of H, where 1 < p < oo, is defined as
the minimum value of disc,(H, x) over all possible colourings x : 2 —
{—1,1}. We shall sometimes call the L., —discrepancy just the discrep-
ancy and write disc(H) instead of disco,(H).

In this note we study the L,discrepancy of the family B? of boxes
(or combinatorial rectangles,) which consists of all sets of type S X
Sg X+ x S, where ) # S; C [n] ={1,2,...,n}, fori=1,2,...,d. We
compute the Ly—discrepancy of BY precisely and estimate disc,(B¢) for
all p, 1 <p < 0.
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Theorem 1. For every d,n > 1 we have

n n4+ 11— (=1)"t! d/2
discz(Bg):[<2n2_1)< + 30 4( 1) ))} '

Theorem 2. Let d,n > 1. Then, for 1 < p < o0,

8422 < disc,(BY) < p'27%*(n 4 1)¥2, (1)
forp =2,
disc,(B%) > discy(B%) > 27n%/?,
while for the Loo-discrepancy of BE we have
]—d/2,,(d+1)/2 < disc(BZ) < 27d/2+1\/3(n+ 1)(d+1)/2_ (2)
In the special case d = 2, Theorem 2 improves the bound

%n?’/g — %n < disc(B?) < on3/? (3)

proven in [1]. Using the method presented in this note one can get a
further improvement (for large n) of the lower bound in (3) to (1/v/87+
o(1))n?/2.

2. Lo-DISCREPANCY

Let H be a family of subsets of a finite abelian group G. We say that
H is shift-invariant if for every A € ‘H and g € G we have also g+ A €
H. In this section we compute disco(H) for any shift-invariant family
H of subsets of G. Since, clearly, the family of boxes BZ, considered as
a family of subsets of Z¢, is shift-invariant, Theorem 1 will follow.

For A € H and g € G we set

va(g) = |{(e.¢) € Ax Are—¢ =g}

Y

and

v(g) = _valg).

AeH

Lemma 3. Let H be a shift-invariant family of subsets of a finite
abelian group G and x : G — {—1,+1}. Then

o XA) = é > xox(g)wig—d).

AeH g9,9'€G
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Proof. Let A € H. Then

d XP(A+g) =) (Zx(a+g))2

geG geG a€A
=Y > xla+g)x(d +g)
g€G a,a’€A
= Y x(9)x(g)wvalg — g
9,9'€G

Since H is shift-invariant, we get

G XA =D x(A+y)

AeH A€H geG
= x(ox(d) Y valg—9)
9,9'€G AeH
=) x(9x(dvg—9g),
9,9'€G
which completes the proof. O

Proof of Theorem 1. Let xo : Z2 — {—1,+1} be a “chessboard colour-
ing” of Z&, i.e., xo(xy,...,24) = —1, or 1, if the sum 27:1 z; is odd,
or even, respectively. We shall show that for an arbitrary colouring
X Z% — {—1,+1} of Z2,

discy (B2, x) > disca (B2, x0)
and compute
discy (B2, o) = discy(BY) .
For a given g = (g1, ...,9q4) € Z, let
ind(g) = [{i € [d]: g: = 0}].

Notice that
I/(g) _ ndzd(nf2)+ind(g)'

For every h = (hy,...,hg) € Z¢, and I C [d], define

Ch,I)={W = (h),...,h)) € Z: h; = b} for i € I}
={h ez W|;=h|}.
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From Lemma 3 it follows that

DA =213 " Y x(g)x(g)

AeBd =0 g.g'€zd,
ind(g—g’)=i
_ 9d(n-2) Z ( Z )
geC(h,I)

(4)

where the sum is taken over all families C(h, I'). Indeed, observe that
every term x(g)x(g’), with g # g’, appears in the last double sum of (4)
2ind(8—8")+1 times, and every term x2(g) appears 2¢ times. Separating

the summands with [ = [d] we get

Z X2<A):2d(n—2) ZX2( +2dn 2) Z ( Z

AeBd gezZd Cl<h[f> geC(h,I)

— 91(n=2)pd 4 9d(n=2) Z ( Z X(g)) )

e, ) =h
fns glr=h|;

Now let us consider two cases. If n is even, then, clearly,

Z X2(A> > 2d(n—2)nd

AeBd

On the other hand, for every I C [d], I # [d], and every h,

Z Xo(g) =0

geC(h,I)

so, if n is even,

disea( B = disea( Bl = (50—) ()

2n —1 4

If n is odd, then for every I C [d] and h € Zd

®)
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Furthermore, it is not hard to see that each such sum equals one for
the colouring xo. Hence

DA = ) xG(A) =20t 42l N

AeBd AeBd C(h,I)
T#(d]
4 (d
—9 d(n— 2) d an 2) _ 2d(n 2) i
+ Z n 2 ()
= 242 (4 1)4,
Consequently, for odd n we have
2" Nd/n+ 1\¢
diea( B = (57=5) ()
dises (B9 = (50— ) ("
and the assertion follows. O

The above proof of Theorem 1 has a combinatorial flavour but one
can explore the fact that BY is a “product family” using an algebraic
argument. Below we sketch such an alternative proof of Theorem 1 for
the case in which n is even.

Let x : V +— {—1,1} be a colouring of the set of vertices of a hyper-
graph ‘H = (V, E). Denote by B = (B.,)ecrvev the incidence matrix
of H in which B, =1 if and only if v € e. It is easy to see that then

[disco(H, x))* = xI' BT By.

B
This implies that if the smallest eigenvalue of BT B is A and |V| = n,
then

1
[discy(H, x)]* > |E|)\n
and equality holds if and only if there is an eigenvector of BT B corre-
sponding to the smallest eigenvalue with {—1,1}-coordinates.

If Hi,Hs, ..., Hq are d hypergraphs, where H; = (V;, E;), then the
product of ‘Hy, Ha, ..., Hy is the hypergraph H whose set of vertices is
the Cartesian product Hle V; and whose set of edges are all Cartesian
products Hle e;, for each choice of e; € E;. It is not difficult to
check that if B; is the incidence matrix of H; and B is the incidence
matrix of H, then BT B is the tensor product of the matrices BI B;.
Therefore, the set of all eigenvalues of BT B is the set of all products
Hle w; where p; ranges over all eigenvalues of Bl B;. In particular,
the smallest eigenvalue of BT B is Hle Ai, where )\; is the smallest
eigenvalue of B! B;, and the tensor product of any d vectors v;, where
v; is an eigenvector corresponding to the smallest eigenvalue of B! B;,
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is an eigenvector of BT B , corresponding to its smallest eigenvalue. We
have thus proved the following.

Lemma 4. Let H; = (V;, E;), i = 1,... ,d be hypergraphs, and sup-
pose \; is the smallest eigenvalue of BY B;, where B; is the incidence
matriz of H;. Let 'H be the product of all hypergraphs H;, and let n;
denote the number of vertices of H;. Then

] d 1/2
disca(H, x) > [7 )\mi] : (5)
ITi, 1E] 11

i=1

Moreover, if for each i there is an eigenvector of BY B; corresponding
to the smallest eigenvalue with {—1,1}-coordinates, then (5) holds with
equality. O]

In particular, if for 1 < ¢ < d, H; = B} is the hypergraph whose
set of vertices is [n] and whose set of edges is the set of all nonempty
subsets of [n], then B B; is an n by n matrix with each diagonal entry
being 2"~ and each other entry being 2"~2. It follows that its smallest
eigenvalue is 271 — 2772 = 2"~2 (with multiplicity n — 1). Thus, by
Lemma 4 (where here the product H is BY, n; = n, \; = 2"72 and
|E;| = 2" — 1 for all 7):

et = [(55) ()]

Moreover, equality holds for every even n, as in this case every {—1,1}-
vector of length n whose sum of coordinates is 0, is an eigenvector of
the smallest eigenvalue of B! B;.

3. L,-DISCREPANCY: THE LOWER BOUND

Our proofs of the lower bounds in (1) and (2) rely on the following
probabilistic theorem, proved by Szarek [3].

Lemma 5. Let ay,...,a, be real numbers and let €, ..., €, denote in-
dependent identically distributed random variables such that

Pr(¢, =1)=Pr(¢, =-1)=1/2 for i=1,2,...,n.
Set X = 31" &a;. Then for the expectation E|X| of | X| we have

~ 1 n 1/2
E|X|>— a; .o
1 5 (3e)

i=1
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Let R = R, denote the random subset of [n], where each element
of [n] is included in R independently with probability 1/2, or, equiva-
lently, where each subset of [n] appears as R with probability 27". The
following corollaries are straightforward consequences of Lemma 5.

Corollary 6. Let ay,...,a, be a sequence of real numbers and Y =
> ici@i- Then

EV|=2" 3 [Ya|>

AC[n] i€A

1 n
- 8n;‘ai|'

Proof. For every vector e = (€1,...,€,) € {—1,1}" define Ao = {i
€& =1} and A, = {i: § = —1}. Then, by the triangle inequality

}Zaz\+lzazl>lzwz

ZeAe IGA/

As € ranges over all 2" members of {—1,1}", A., as well as AL range
over all 2" subsets of {1,2,... ,n}. Thus, using Lemma 5 and Cauchy-
Schwartz inequality we infer that

n

1 ( )1/2 1 n
> — a; > — la;|. O

Remark. If |a;| = - - - = |a,| = 1, then X = 327, &a; is asymptotically
a normal random variable with standard deviation y/n, and hence

2BV | > E‘ 3 éa;
1=1

—2*/2g

1 1
B[V| > S EIX| = (1 +0(1) f/ e o
= (1+40(1))\/n/2m.

Corollary 7. Let x : [n]? — {—1,1}. Then for every £, 0 < ¢ < d,

2D RS ZZ-Z

xle[n] Tgq_ /E[n] Ag_ g+1C[ ] AdC
E E —0/2, d—£/2
‘ X(x17m27"’7xd> 28 /n /
Tg—g41€Ad—41 rqg€Aq

Proof. We use induction on ¢. For ¢ = 0 there is nothing to prove.
In order to show the assertion for ¢ > 1 it is enough to set for each
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(d — 0)-tuple xy,..., 24 0 and all Ay yio,..., A C [n],

ai(‘rlv"‘7xd—€7Ad—€+27"' aAd>
= E E X($1,$2,..-,l'd,g,i,fljd,prg,..-,l'd),
Tg—e+2€Ad—042 Tg€AG
and apply Corollary 6. O

Proof of the lower bounds in Theorem 2. Note that for every family of
sets H and 1 <r < s < oo, we have

disc, (H) < discs(H) . (7)

Now it is enough to observe that Corollary 7 applied with ¢ = d, gives
the required lower bound for disc;(BY), and thus, for dlscp(Bd) with
1 <p < oo. For p > 2 we get a slightly better lower bound, as in this
case

disc,(B%) > discy(B%) > 27n/?,

by Theorem 1.
In order to deal with disc(B%) note that Corollary 7 with £ = d — 1
gives

Z Z Z ‘X ({m1} x Agx-- xAd)‘ > g~ (d=1)/2p (d+1)/2
AxC[n]  AaCln] z1€ln

Thus, there exist sets S, ...,5; such that

Z IX({z1} x S2 x -+ x Sg)| > g—(d=1)/2,(d+1)/2

z1€[n]
Let ST be the set of all 2; € [n] for which
Ex({x1} X Sg x -+ x Sy)>0.

Take as S any of the sets S, S;, such that

D ) x Sy x - x Sg)| = [x(S1 x -+ x Sy

r1E€S51

Z 87(d71)/2n(d+1)/2/2 > 87d/2n(d+1)/2 .

The above holds for arbitrary y : [n]¢ — {—1,1}, so disc(B%) >
§—d/2,,(d+1)/2

Finally, from (6) we get disc(B2) > (1/v/87 4 o(1))n?/2. O
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4. L,-DISCREPANCY — THE UPPER BOUND

Proof of the upper bounds in Theorem 2. Let us divide the set [n] =
{1,2,...,n} into m = [n/2] subsets, setting P; = {2i — 1,2i} for
i=1,2,...,|n/2| and, if n is odd, P,, = {n}. Let also

P:{Pilx..-xpid: ].Sll,,ldém}

Hence, the family P is a partition of the set [n]? into m? boxes, each
of at most 2¢ elements.

Note that for each P € P there exist two “natural” colourings
Xodd(P); Xeven(P) : P — {—=1,1} which colour elements (x1,...,zq)
of P according to the parity of Zle x;, so that no two points at Ham-
ming distance one are coloured with the same colour. Let ¥ : [n]¢ —
{—1,1} denote a random colouring of [n]? in which for each P € P
independently we choose with probability 1/2 one of the colourings
Xodd(P); Xeven(P). Our aim is to show that with positive probability
disc,(B%,¥) is small; this will imply the existence a colouring x with
small disc, (B2, x) and the assertion will follow.

Let us first find the upper bound for disc,(B%), where 1 < p < oo.
Note that from Theorem 1 and (7) it follows that for 1 < p <2

disc,(H) < disca(H) < 27%(n + 1)¥? < p'2=Y2(n + 1)¥2,

so it is enough to verify (1) for 2 < p < oo. Since the colouring ¥ is
random, [disc,(B%, Y)]P is a random variable with expectation

E[disc,(B%, X))’ = E [ﬁ > \X(B)V’}

(8)
1
— Y P < v P
B Y ERMB)P < gle%fsE!x(B)l :
BeBd
In order to estimate the above sum we study the behaviour of the

random variable y(B), for B € B%. Note that for any colouring x
of [n]?,
X(B) =Y x(PNB).
PeP

Let us assume now that y is such that for every P € P we have
X|P = Xao(P) for some a = odd, even. It is not hard to see that then,
for any box B € B¢,

Ix(PNB)| <1,

and equality holds if and only if |PN B| = 1. Thus, for a fixed B, x(B)
is a sum of w independent identically distributed random variables
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€1, ..., €y, Where
w=w(B)={PeP:|PNB|=1} <m? (9)

and Pr(¢; = —1) = Pr(§; = 1) = 1/2 for i = 1,...,w. Thus, using
Chernoff’s bounds for the tails of the binomial distribution (see, for
instance, [2], Corollary A.1.2), we infer that for every ¢ > 0

2 2

Pr(|x(B)| > t) <2€Xp(—#®> gZeXp<—2t—md> : (10)

Set 7; = 2!m¥2 for i = 0,1,.... Then, from (10), we get

y - s
ERBIP <+ 3 mha2exp (- 55)
=0

2m
— P2 g pd/2 f: 9P+ oy ( _ 221‘-1)
i=0
= mP? i 2Pt exp ( — 22j_3) .

j=0

A crude estimate of the above sum gives

o0 o0
> oitlexp (—2978) < ot
j=0 Jj=0

< 5log, p2°Plosrtl 4 E 9ip+1-p°2/~3
j>5logy p

< 10p™logyp+1 < p™.
Hence E[disc,(B%,¥)P < p™mP%? so there exists a colouring x :
[n]? — {—1,1} such that [disc,(B%, x)]P < p™mP¥/2. Hence
disc,(B%) < [p7pmpd/2] 1/ < p' 27 (n +1)Y2.
Finally, note that (10) implies that the probability that for some set
B of B we have |y(B)| >t is at most
1B2|2 exp(—t?/2m?) < 29! exp(—t%/2m?) .
The above expression is strictly smaller than 1 for t = 2v/dnm®?, so
for some colouring ¥ we have disc(B, x) < 2vdnm®%? and

disc(BY) < 2Vdn m®? < 274 1\/d(n + 1)4+1D/2 0

We conclude the section with a remark that in the proof of the up-
per bound in Theorem 2, instead of the random colouring x one can
use the random colouring ¥, in which each element of [n]? is coloured
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independently with —1 or 1. Then, similarly as in the argument above,
for a given B € B? the random variable y/(B) is a sum of independent
identically distributed random variables €;, but in this case the number
of €’s can be substantially larger than for x(B). Consequently, Cher-
noff’s bounds we used in the paper would give a weaker estimate for
disc, (B2, ).
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